ERLANG

Kernel

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.
Kernel 5.4.3
March 13, 2018

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 13, 2018

Ericsson AB. All Rights Reserved.: Kernel | 1

1 Reference Manual

2 | Ericsson AB. All Rights Reserved.: Kernel

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

» Errorlogging

* Globa name service

e Supervision of Erlang/OTP

e Communication with sockets

e Operating system interface

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These are described in
error_| ogger(3).

OS Signal Event Handler

Asynchronous OS signals may be subscribed to viathe Kernel applications event manager (see OTP Design Principles
andgen_event (3)) registeredaser | _si gnal _ser ver . A default signal handler isinstalled which handlesthe
following signas:

sigusrl

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalentto callinger | ang: hal t (" Recei ved SI GUSR1").

sigquit
The default handler will halt Erlang immediately. Thisisequivalenttocalinger | ang: hal t ().
sigterm

The default handler will terminate Erlang normally. Thisis equivalent to callingi ni t : st op() .

Events
Any event handler addedtoer | _si gnal _ser ver must handle the following events.
si ghup
Hangup detected on controlling terminal or death of controlling process
sigquit
Quit from keyboard
si gabrt
Abort signal from abort

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel

sigalrm
Timer signal from alarm
sigterm
Termination signal
sigusrl
User-defined signal 1
si gusr?2
User-defined signal 2
sigchl d
Child process stopped or terminated
si gstop
Stop process
sigtstp
Stop typed at terminal
Setting OS signals are described in os: set _si gnal / 2.

Configuration

The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, seefileapp(4) .

browser_cnmd = string() | {MF, A}

When pressing the Help button in a tool such as Debugger, the help text (an HTML file Fi | e) is by default
displayed in a Netscape browser, which is required to be operational. This parameter can be used to change the
command for how to display the help text if another browser than Netscape is preferred, or if another platform
than Unix or Windows is used.

If set to astring Command, the command " Command Fi | e" isevaluated using os: cnd/ 1.

If set to amodule-function-argstuple, { M F, A} , thecall appl y(M F, [Fi | e|] A]) isevaluated.
distributed = [Distrib]

Specifieswhich applicationsthat are distributed and on which nodesthey are allowed to execute. In thisparameter:

e Distrib = {App, Nodes} | {App, Ti me, Nodes}

* App = aton()
« Time = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed inappl i cati on: | oad/ 2.
di st _aut o_connect = Val ue

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never

Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3).

4 | Ericsson AB. All Rights Reserved.: Kernel

kernel

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. Seenet _ker nel (3) .

perm ssions = [Perni
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

 Appl Nane = atom()
e Bool = bool ean()

Permissions are described inappl i cati on: perm t/ 2.
error _| ogger = Val ue
Val ue isoneof:
tty
Installs the standard event handler, which prints error reportsto st di 0. Thisisthe default option.
{file, FileNane}

Installs the standard event handler, which prints error reports to file Fi | eName, where Fi | eNane isa
string. Thefile is opened with encoding UTF-8.

fal se

No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messagestotty.
si | ent
Error logging isturned off.
error_| ogger format_depth = Depth
Can be used to limit the size of the formatted output from the error logger event handlers.

This configuration parameter was introduced in OTP 18.1 and is experimental . Based on user feedback, it can
be changed or improved in future releases, for example, to gain better control over how to limit the size of the
formatted output. We have no plans to remove this new feature entirely, unlessiit turns out to be useless.

Dept h is a positive integer representing the maximum depth to which terms are printed by the error logger
event handlersincluded in OTP. This configuration parameter is used by the two event handlers defined by the
Kernel application and the two event handlersin the SASL application. (If you have implemented your own error
handlers, this configuration parameter has no effect on them.)

Dept h is used as follows. Format strings passed to the event handlers are rewritten. The format controls ~p
and ~w are replaced with ~P and ~W respectively, and Dept h is used as the depth parameter. For details, see
io:format/2inSTDLIB.

A reasonable starting value for Dept h is 30. We recommend to test crashing various processes in your
application, examine the logs from the crashes, and then increase or decrease the value.

Ericsson AB. All Rights Reserved.: Kernel | 5

kernel

gl obal _groups = [G oupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:
e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupNanme = atom()
e PublishType = normal | hidden
* Node = node()
i net_default_connect _options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .
i net_default _listen_options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .
{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess() , seei net (3).

{inet _dist listen_mn, First} and{inet _dist _|isten_nmax, Last}
Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet_dist_listen_options, Opts}

Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/ 2.

{inet_dist_connect_options, Opts}

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_tcp: connect/ 4.

i net_parse_error_log = silent

If set, no error _| ogger messages are generated when erroneous lines are found and skipped in the various
Inet configuration files.

inetrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gurati on inthe
ERTS User's Guide.
net _setuptime = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net _ticktime = TickTinme

Specifiesthe net _ker nel tick time. Ti ckTi ne is specified in seconds. Once every Ti ckTi ne/ 4 second,
all connected nodes are ticked (if anything else is written to a node). If nothing is received from another node
within thelast four tick times, that node is considered to be down. This ensures that nodes that are not responding,
for reasons such as hardware errors, are considered to be down.

Thetime T, in which anode that is not responding is detected, iscalculated asM nT < T < MaxT, where:

6 | Ericsson AB. All Rights Reserved.: Kernel

kernel

MinT
MaxT

TickTime - TickTime / 4
TickTime + TickTime / 4

Ti ckTi me defaultsto 60 (seconds). Thus, 45 < T < 75 seconds.
Notice that all communicating nodes are to have the same Ti ckTi me value specified.
Normally, aterminating node is detected immediately.

shutdown_timeout = integer() | infinity

Specifiesthetimeappl i cati on_contr ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutally killsappl i cati on_mast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_optional = [NodeNane]

Specifies which other nodes that can be alive for this node to start properly. If some nodein thislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaultsto the empty list.

sync_nodes_tinmeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter isundefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

start_dist_ac = true | false

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start _boot _server = true | false

Startstheboot _ser ver if the parameterist r ue (seeer| _boot _server (3)). This parameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot server_slaves = [Sl avel P

If configuration parameter start boot server is true, this parameter can be used to initialize
boot server withalist of slave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.
Examples of SI avel P in atom, string, and tuple form:
' 150. 236. 16. 70', "150, 236, 16, 70", {150, 236, 16, 70}.
Defaultsto[] .
start _disk log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_I og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.

Ericsson AB. All Rights Reserved.: Kernel | 7

kernel

start_pg2 = true | fal se

Startsthepg?2 server (seepg?2(3)) if the parameter ist r ue. Thisparameteristobesettot r ue in an embedded
system that uses this service.

Defaultstof al se.
start_timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobesettotrue in
an embedded system using this service.

Defaultstof al se.
shell _history = enabled | disabled

Specifies whether shell history should be logged to disk between usages of er | .
shel | _history_drop = [string()]

Specific log lines that should not be persisted. For example["q().", "init:stop()."] will alow to
ignore commands that shut the node down. Defaultsto[] .

shell _history file bytes = integer()
how many bytes the shell should remember. By default, the valueis set to 512kb, and the minimal value is 50kb.
shel |l _history_path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
fil enane: basedi r (user_cache, "erl ang-history").

shut down_func = {Mdd, Func}
Where:
« Md = atom()
e Func = atom()
Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as

Mbd: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

source_search_rules = [DirRule] | [SuffixRule]
Where:
e DirRule = {ObjDirSuffix, SrchirSuffix}
o SuffixRule = {Qoj Suffix,SrcSuffix,[DirRule]}
e hjDirsuffix = string()
e Srchirsuffix = string()
e pjSuffix = string()
e SrcSuffix = string()
Specifiesalist of rulesfor useby filelib:find_file/2 filelib:find_source/2Ifthisissetto
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
suchas{"ebin", "src"},whichareusedbyfilelib:find_file/2,ortriplesspecifying separate

directory suffix rules depending on file name extensions, for example[{ " . beant, ".erl", [{"ebin",
"src"}]},whichareusedbyfil elib:find_source/2.Bothkindsof rulescan be mixed in thelist.

The interpretation of Cbj Di r Suf fi x and SrcDi r Suf fi x is as follows: if the end of the directory name
where an object islocated matches Obj Di r Suf f i x, then the name created by replacing Qbj Di r Suf f i x with
SrcDir Suffix isexpanded by caling fil elib:wi | dcard/ 1, andthefirst regular file found among the
matchesis the sourcefile.

8 | Ericsson AB. All Rights Reserved.: Kernel

kernel

See Also

app(4), application(3), code(3), disk log(3), erl_boot _server(3), erl_ddll(3),
error_logger(3), file(3), global(3), global _group(3), heart(3), inet(3),
net kernel (3),0s(3),pg2(3),rpc(3),seq_trace(3),user(3),timer(3)

Ericsson AB. All Rights Reserved.: Kernel | 9

application

application

Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
asaunit, and that can be reused in other systems. This module interacts with application controller, aprocess started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functionsto accessinformation about applications (for example, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Appl i cati on. app, where Appl i cat i on is the application name. For details about the
application specification, see app(4) .

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
asasupervision tree. The definition of how to start and stop thetreeisto belocated in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure _all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:
Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling st art / 1, 2 repeatedly on al dependencies that are not yet started for an application.

Returns { ok, AppNames} for asuccessful start or for an aready started application (which is, however, omitted
from the AppNanes list).

Thefunctionreports{ error, {AppNane, Reason}} for errors, where Reason isany possible reason returned
by start/ 1, 2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
toitsinitial state.

10 | Ericsson AB. All Rights Reserved.: Kernel

application

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart_type()

Reason = term()
Equivalenttost art/ 1, 2 except it returns ok for already started applications.

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> []1 | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their valuesfor Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returns undef i ned. If the process executing the call does not
belong to any application, the function returns|[] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}

get env(Application, Par) -> undefined | {ok, Val}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 11

application

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Appl i cati on. If the application argument is omitted, it
defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:
e The specified application is not loaded.

* Theconfiguration parameter does not exist.
» The process executing the call does not belong to any application.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Workslikeget _env/ 2 but returns value Def when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

» The specified application is not loaded.
e The specification key does not exist.
» The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}

Types.
AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed =

{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =

{application,

Application :: atom(),

AppSpecKeys :: [application_opt()]}
application opt() =

{description, Description :: string()} |

12 | Ericsson AB. All Rights Reserved.: Kernel

application

{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]1} |
{env, [{Par :: atom(), Val :: term()}1} |
{start phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by itsname Appl i cat i on. Inthiscase, the application controller searchesthe code
path for the application resource file Appl i cat i on. app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
describedinapp(4) .

IfDistributed == {Application,[Tine,] Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the application name (same as in the first argument). If a node crashes and Ti ne is specified, the application
controller waits for Ti me milliseconds before attempting to restart the application on another node. If Ti ne is not
specified, it defaultsto O and the application is restarted immediately.

Nodes isalist of node names where the application can run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority.

Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cave}]
This means that the application is preferably to be started at cpl@ave. If cpl@ave is down, the application is
to be started at cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefortheapplicationintheKernel configuration parameter di st ri but ed
isused.

loaded applications() -> [{Application, Description, Vsn}]
Types:

Application atom()

Description = Vsn = string()

Returns alist with information about the applications, and included applications, which areloaded usingl oad/ 1, 2.
Appl i cati on isthe application name. Descri pt i on and Vsn are the values of their descri pti on andvsn
application specification keys, respectively.

permit(Application, Permission) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 13

application

Application = atom()
Permission = boolean()
Reason = term()

Changes the permission for Appl i cati on to run at the current node. The application must be loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art returns ok but the application is
not started until the permissionissettotr ue.

If the permission of a running application is set to f al se, the application is stopped. If the permission later is set
totrue, itisrestarted.

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (seel oad/ 2).

Thefunction does not return until the application is started, stopped, or successfully moved to another node. However,
in some caseswhere permissionissettot r ue, the function returns ok even though the application isnot started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Appl i cat i on isstarted aswell.

By default, all applications are loaded with permissiont r ue on all nodes. The permission can be configured using
the Kernel configuration parameter per ni ssi ons.

set env(Application, Par, Val) -> ok
set env(Application, Par, Val, Opts) -> ok

Types:
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Setsthe value of configuration parameter Par for Appl i cati on.

set _env/ 4 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout can be specified if another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in file
Appl i cati on. app override the ones previously set. Thisis also true for application reloads.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the valueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types.

14 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = atom()
Type = restart _type()
Reason = term()
Starts Appl i cati on. If it is not loaded, the application controller first loads it using | oad/ 1. It ensures that

any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Appl i cati on.

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications needed to be started before this application arerunning. Otherwise, { er r or, { not _st art ed, App}}
isreturned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master isthe group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Modul e: st ar t / 2 asdefined by the application specification key nod.

Argument Type specifies the type of the application. If omitted, it defaultstot enpor ary.
» If apermanent application terminates, al other applications and the entire Erlang node are also terminated.

e « |[fatransient application terminateswith Reason == nor mal , thisisreported but no other applications
are terminated.
« |If atransient application terminates abnormally, all other applications and the entire Erlang node are also
terminated.

* If atemporary application terminates, this is reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by caling st op/ 1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shut down, not nor mal .

start_type() -> StartType | undefined | local
Types:
StartType = start_type()

This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, whichis St art Type or | ocal .

For adescription of St art Type, seeModul e: start/ 2.

| ocal isreturned if only parts of the application are restarted (by a supervisor), or if the function is called outside
astartup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthetop supervisor of the application to shut down (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe callback module as defined by the application specification key mod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process bel onging to the application, are also terminated.

Ericsson AB. All Rights Reserved.: Kernel | 15

application

When stopped, the application is still loaded.

To stop adistributed application, st op/ 1 must be called on all nodeswhere it can execute (that is, on all nodeswhere
it has been started). The call to st op/ 1 on the node where the application currently executes stopsits execution. The
application is not moved between nodes, as st op/ 1 is called on the node where the application currently executes
beforest op/ 1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart _type()

Reason = term()
Takes over the distributed application Appl i cati on, which executes at another node Node. At the current
node, the application isrestarted by calling Mbdul e: st art ({t akeover, Node}, St art Args) . Modul e and
St ar t Ar gs areretrieved from the loaded application specification. The application at the other node is not stopped

until the startup is completed, that is, when Modul e: st art/ 2 and any callsto Modul e: st art _phase/ 3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If thisis not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For adescription of Type, seestart/ 1, 2.

unload(Application) -> ok | {error, Reason}
Types.

Application = atom()

Reason = term()

Unloads the application specification for Appli cati on from the application controller. It aso unloads the
application specificationsfor any included applications. Notice that the function does not purge the Erlang object code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types:
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset _env/ 2 uses the standard gen_ser ver time-out value (5000 ms). Option t i neout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso alowsthe persistent option to be passed (seeset _env/ 4).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the valueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

16 | Ericsson AB. All Rights Reserved.: Kernel

application

which applications() -> [{Application, Description, Vsn}]

which applications(Timeout) -> [{Application, Description, Vsn}]

Types:
Timeout = timeout(
Application = atom
Description = Vsn

)
string()

I~ ~

Returns a list with information about the applications that are currently running. Appl i cat i on isthe application
name. Descri ption and Vsn are the values of their descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver time-out value (5000 ms). A Ti meout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

Callback Module

The following functions are to be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types:
Start Type = start_type()
StartArgs = tern()
Pid = pid()

State = term()

This function is called whenever an application is started using start/ 1, 2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

St ar t Type definesthe type of start:

* nornal ifitisanormal startup.

* nornal asoif theapplication is distributed and started at the current node because of afailover from another
node, and the application specificationkey st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node because of a takeover from
Node, either becauset akeover / 2 has been called or because the current node has higher priority than Node.

« {failover, Node} if theapplication is distributed and started at the current node because of afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function is to return { ok, Pi d} or {ok, Pi d, St at e}, where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If the application is stopped later, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}

Types.
Phase = aton()

Ericsson AB. All Rights Reserved.: Kernel | 17

application

Start Type = start_type()
PhaseArgs = term))
Pid = pid()

State = state()

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specificationkey st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For adescription of St art Type, see Modul e: start/ 2.

Module:prep stop(State) -> NewState
Types:
State = NewState = term)
Thisfunctioniscalled when an application isabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
ispassed to Mbdul e: st op/ 1.

Thefunctionisoptional. If it isnot defined, the processes are terminated and then Modul e: st op(St at e) iscalled.

Module:stop(State)
Types.
State = term)

Thisfunction is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and isto do any necessary cleaning up. Thereturn valueisignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types.

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term()

Thisfunction is called by an application after a code replacement, if the configuration parameters have changed.
Changed isalist of parameter-value tuplesincluding all configuration parameters with changed values.
Newisalist of parameter-value tuplesincluding all added configuration parameters.

Renmoved isalist of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

18 | Ericsson AB. All Rights Reserved.: Kernel

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

cookie() -> Cookie
Types.
Cookie = cooki e()
Useerl ang: get _cooki e() in ERTSinstead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.
Cookie = cooki e()

Useer | ang: set _cooki e(node(), Cookie) in ERTSinstead.

is_auth(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node isauthorized. Notice that a connection to Node is established in this case.
Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinksit has).

Usenet _adm pi ng(Node) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent tonode_cooki e(Node, Cooki e) .

node cookie(Node, Cookie) -> yes | no
Types:

Node = node()

Cookie = cookie()

Sets the magic cookie of Node to Cooki e and verifies the status of the authorization. Equivalent to calling
erl ang: set _cooki e(Node, Cooki e), followed by aut h: i s_aut h(Node) .

Ericsson AB. All Rights Reserved.: Kernel | 19

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in embedded or inter active mode. Which one is decided by command-line flag
- node:

% erl -mode interactive

The modes are as follows:

* Inembedded mode, all codeisloaded during system startup according to the boot script. (Code can a so be loaded
later by explicitly ordering the code server to do so).

e In interactive mode, which is default, only some code is loaded during system startup, basically the modules

needed by the runtime system. Other code is dynamically |oaded when first referenced. When acall to afunction
inacertain moduleis made, and the moduleis not |oaded, the code server searchesfor and triesto load the modul e.

To prevent accidentally rel oading of modules affecting the Erlang runtime system, directoriesker nel , st dl i b, and
conpi | er areconsidered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload amodule residing in any of them. The feature can be disabled by using command-lineflag - nost i ck.

Code Path

In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directories can benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those having the same Nane. Suffix - Vsn is optional. If an ebi n directory exists under Nane|[-
Vsn] , thisdirectory is added to the code path.

Environment variable ERL_ LI BS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebi n directory are ignored.

All application directories found in the additional directories appears before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_ LI BS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:
On aUnix-like system, ERL_ LI BS can be set to the following

/usr/local/jungerl:/home/some user/my erlang lib

On Windows, use semi-colon as separator.

20 | Ericsson AB. All Rights Reserved.: Kernel

code

Loading of Code From Archive Files

The support for loading code from archive files is experimental. The purpose of releasing it before it isready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
functionl i b_dir/ 2 andflag- code_pat h_choi ce areaso experimental.

The Erlang archives are ZI P fileswith extension . ez. Erlang archives can also beenclosedinescri pt fileswhose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of mesi a- 4. 4. 7,
the archive file must be named mesi a- 4. 4. 7. ez and it must contain atop directory named resi a- 4. 4. 7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, amrmesi a. ez archive must
contain ammesi a top directory.

An archivefile for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"1}]1).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beamand app files uncompressed in the archive.

Normally the top directory of an application islocated in library directory $OTPROOT/ | i b or in adirectory referred
to by environment variable ERL_ LI BS. At startup, when theinitial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebi n directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/ | i b/ rmesi a. ez/ mesi a/ ebi n or $OTPROOT/
i b/ mesia-4.4.7.ez/ mesia-4.4.7/ebin.

The code server uses module er| _prim | oader in ERTS (possibly through erl _boot server) to read
code files from archives. However, the functionsin er| _pri m | oader can aso be used by other applications
to read files from archives. For example, the call erl _prim |l oader:list _dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeer| _prim| oader(3).

An application archive file and aregular application directory can coexist. This can be useful when it is needed to have
parts of the application asregular files. A typical caseisthepr i v directory, which must reside as aregular directory
tolink in driversdynamically and start port programs. For other applications that do not need this, directory pri v can
reside in the archive and the files under the directory pr i v can beread througher| _pri m | oader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebi n, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code: lib _dir/2
returns the path to the subdirectory. For example, code: i b_di r (megaco, ebi n) can return / ot p/ r oot /
i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi n whilecode: | i b_di r (negaco, pri v) can return
/otp/root/lib/negaco-3.9.1. 1/priv.

Ericsson AB. All Rights Reserved.: Kernel | 21

code

Whenanescri pt filecontainsan archive, there are no restrictions on the name of theescr i pt and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can aso reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebi n directoriesin
the embedded archive are added to the code path. Seeert s: escri pt (1) .

When the choice of directories in the code path is stri ct, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/ | i b/ rmesi a- 4. 4. 7/ ebi nis
explicitly added to the code path, the code server does not load files from $OTPROOT/ | | b/ mesi a- 4. 4. 7. ez/
mmesi a- 4. 4. 7/ ebi n.

This behavior can be controlled through command-line flag - code_pat h_choi ce Choi ce. If theflagisset to
r el axed, the code server instead chooses a suitable directory depending on the actua file structure. If a regular
application ebi n directory exists, it is chosen. Otherwise, the directory ebi n in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-lineflag- code_pat h_choi ce Choi ce alsoaffectshow modulei ni t interpretstheboot scri pt.
The interpretation of the explicit code pathsinthe boot scri pt canbestrict orrel axed. Itisparticularly
useful to set the flag to r el axed when elaborating with code loading from archives without editing the boot
scri pt.Thedefaultisr el axed. Seeerts:init(3).

Current and Old Code

The code for amodule can exist in two variantsin asystem: current code and old code. When amoduleisloaded into
the system for the first time, the module code becomes 'current' and the global export tableis updated with references
to al functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes'old’, and all export entriesreferring to the previousinstance areremoved. After that, the new instance
isloaded as for the first time, and becomes ‘current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
cade, but old code can still be evaluated because of processes lingeringin it.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or atuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, anon-existing directory is specifiedto set _pat h/ 1).

Error Reasons for Code-Loading Functions

Functions that load code (such as| oad_fi | e/ 1) will return{ err or, Reason} if theload operation fails. Here
follows a description of the common reasons.

badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

22 | Ericsson AB. All Rights Reserved.: Kernel

code

nofile

No file with object code was found.
not _pur ged

The object code could not be loaded because an old version of the code already existed.
on_load failure

The module has an -on_load function that failed when it was called.
sticky_directory

The object code resides in a sticky directory.

Data Types
load ret() =
{error, What :: load_error_rsn()} |

{module, Module :: module()}

load error rsn() =
badfile |
nofile |
not purged |
on load failure |
sticky directory

prepared code()
An opague term holding prepared code.

Exports

set path(Path) -> true | {error, What}
Types:
Path [Dir :: file:filenane()]
What = bad directory
Sets the code path to the list of directories Pat h.

Returns:

true
If successful
{error, bad_directory}
If any Di r isnot adirectory name

get path() -> Path

Types.
Path = [Dir :: file:filenanme()]
Returns the code path.

Ericsson AB. All Rights Reserved.: Kernel | 23

code

add path(Dir) -> add_path_ret()
add pathz(Dir) -> add_path_ret()
Types:
Dir = file:filenane()
add path ret() = true | {error, bad directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r aready existsin the
path, it is not added.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add patha(Dir) -> add_path_ret()
Types:
Dir = file:filename()
add path ret() = true | {error, bad directory}
AddsDi r tothe beginning of the code path. If Di r exists, it isremoved from the old position in the code path.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add paths(Dirs) -> ok
add pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
Addsthedirectoriesin Di r s to the end of the code path. If aDi r exists, it is not added.
Always returns ok, regardless of the validity of each individual Di r .

add pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
TraversesDi r s and adds each Di r to the beginning of the code path. This means that the order of Di r s isreversed

in the resulting code path. For example, if you add [Di r 1, Di r 2] , the resulting path will be [Di r2, Di r 1|
A dCodePat h] .

If aDi r aready existsin the code path, it is removed from the old position.
Always returns ok, regardless of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:
NameOrDir = Name | Dir
Name = atom()
Dir = file:filenane()
What = bad name
Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the

name. ../ Nanme[- Vsn] [/ ebi n] isdeleted from the code path. Also, the complete directory name Di r can be
specified as argument.

Returns:

24 | Ericsson AB. All Rights Reserved.: Kernel

code

true

If successful
fal se

If the directory is not found
{error, bad_nane}

If theargument isinvalid

replace path(Name, Dir) -> true | {error, What}
Types:
Name = atom()
Dir = file:filename()
What = bad directory | bad name | {badarg, term()}

Replaces an old occurrence of adirectory named. . . / Nanme[- Vsn] [/ ebi n] inthecode path, with Di r . If Nane
doesnot exist, it addsthenew directory Di r lastinthe code path. Thenew directory must alsobenamed. . . / Naneg][-
Vsn] [/ ebi n] . Thisfunctionisto be used if a new version of the directory (library) is added to a running system.

Returns:
true
If successful
{error, bad_nane}
If Nanme is not found
{error, bad_directory}
If Di r does not exist
{error, {badarg, [Nanme, Dir]}}
If Narre or Di r isinvalid

load file(Module) -> load_ret()

Types.
Module = module()
load ret() =

{error, What :: load_error_rsn()} |
{module, Module :: module()}

Tries to load the Erlang module Modul e, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Modul e. beam Theloading failsif the module name found
in the object code differsfrom the name Modul e. | oad_bi nar y/ 3 must be used to load object code with amaodule
name that is different from the file name.

Returns{ nodul e, Mbdul e} if successful, or{error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

load abs(Filename) -> load_ret()
Types:
Filename = file:fil enane()
load ret() =

Ericsson AB. All Rights Reserved.: Kernel | 25

code

{error, What :: load_error_rsn()} |
{module, Module :: module()}

loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atons()

loaded ret _atoms() = cover_compiled | preloaded
Sameas!| oad_f il e(Mbdul e), but Fi | enane isan absolute or relative filename. The code path is not searched.

It returns avalue in the same way as| oad_fi |l e/ 1. Notice that Fi | ename must not contain the extension (for
example, . beam) because| oad_abs/ 1 addsthe correct extension.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:
Module = module()
What = embedded | badfile | nofile | on_load failure
Triestoload amoduleinthesameway asl oad_fi | e/ 1, unlessthemoduleisalready loaded. However, in embedded

mode it does not load a module that is not aready loaded, but returns{ error, enbedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types:
Module = module()
Filename = | oaded_fil enanme()
Binary = binary()
What = badarg | | oad_error_rsn()

loaded filename() =
(Filename :: file:filenane()) | |oaded_ret_atomns()

loaded ret atoms() = cover_compiled | preloaded

Thisfunction can be used to |oad object code on remote Erlang nodes. Argument Bi nar y must contain object codefor
Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for Modul e
comes. Thus, Fi | enane is not opened and read by the code server.

Returns{ nodul e, Mbodul e} if successful, or { error, Reason} if loadingfails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

atomic load(Modules) -> ok | {error, [{Module, What}]}
Types:
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:fil enane()
Binary = binary()
What =
badfile |
nofile |
on load not allowed |
duplicated |
not purged |
sticky directory |

26 | Ericsson AB. All Rights Reserved.: Kernel

code

pending on load

Triesto load all of the modulesin the list Modul es atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_| oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.
not purged
The object code can not be loaded because an old version of the code aready exists.
sticky_directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module containsan - on_| oad function that never finished.

If it isimportant to minimize the time that an application is inactive while changing code, use prepare loading/1 and
finish_loading/1 instead of at oni ¢_| oad/ 1. Hereis an example:

{ok,Prepared} = code:prepare_ loading(Modules),

Put the application into an inactive state or do any
other preparation needed before changing the code.

= code:finish loading(Prepared),

%% Resume the application.

@ of

)
"6
)

"6

o
x~

prepare loading(Modules) ->
{ok, Prepared} | {error, [{Module, What}]}

Types.
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:fil ename()
Binary = binary()
Prepared = prepared_code()
What = badfile | nofile | on load not allowed | duplicated
Prepares to load the modules in the list Mbdul es. Finish the loading by calling finish_loading(Prepared).
This function can fail with one of the following error reasons:
badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

Ericsson AB. All Rights Reserved.: Kernel | 27

code

nofile

No file with object code exists.
on_| oad_not _al | owed

A module contains an -on_load function.
dupl i cat ed

A moduleisincluded more than oncein Modul es.

finish loading(Prepared) -> ok | {error, [{Module, What}]}
Types:

Prepared = prepared_code()

Module = module()

What = not purged | sticky directory | pending on load

Tries to load code for all modules that have been previously prepared by prepare loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:
not _pur ged
The object code can not be loaded because an old version of the code aready exists.
sticky directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module contains an - on_| oad function that never finished.

ensure modules loaded(Modules :: [Module]) ->
ok | {error, [{Module, What}]}

Types:
Module = module()
What = badfile | nofile | on load failure
Triesto load any modules not already loaded in the list Modul es inthe sameway asload file/1.

Returnsok if successful, or{ err or, [{ Modul e, Reason}] } if loading of somemodulesfails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

delete(Module) -> boolean()
Types.
Module = module()

Removes the current code for Mbdul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be madeto it.

Returnst r ue if successful, or f al se if thereis old code for Modul e that must be purged first, or if Modul e is
not a (loaded) module.

purge (Module) -> boolean()
Types.

28 | Ericsson AB. All Rights Reserved.: Kernel

code

Module = module()

Purgesthe code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Asof ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For moreinformation see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

Returnst r ue if successful and any process is needed to be killed, otherwisef al se.

soft purge(Module) -> boolean()
Types:
Module = module()
Purges the code for Mbdul e, that is, removes code marked as old, but only if no processes linger init.

As of ERTS version 9.0, aprocess is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_process_code/ 3, whichisused in order
to determine this.

Returnsf al se if the module cannot be purged because of processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false

Types:
Module = module()
Loaded = | oaded_fil ename()
loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atons()

Fi | enane is an absolute filename.
loaded ret _atoms() = cover_compiled | preloaded
Checksif Modul e isloaded. If itis, {fi | e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute filename Fi | enane from which the code is obtained. If the module is
preloaded (see scri pt (4)), Loaded==pr el oaded. If the module is Cover-compiled (see cover (3)),
Loaded==cover _conpi | ed.

all loaded() -> [{Module, Loaded}]

Types.
Module = module()
Loaded = | oaded_fil enane()
loaded filename() =
(Filename :: file:filename()) | | oaded_ret_atons()

Fi | enane isan absolute filename.

Ericsson AB. All Rights Reserved.: Kernel | 29

code

loaded ret atoms() = cover_compiled | preloaded

Returns alist of tuples{ Modul e, Loaded} for al loaded modules. Loaded is normally the absolute filename,
asdescribed fori s_| oaded/ 1.

which(Module) -> Which

Types:
Module = module()
Which = file:filenane() | |oaded_ret_atons() | non existing

loaded ret atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Modul e
and returns the absol ute filename.

If the moduleisloaded, it returns the name of the file containing the loaded object code.
If the moduleis preloaded, pr el oaded isreturned.

If the moduleis Cover-compiled, cover _conpi | ed isreturned.

If the module cannot be found, non_exi st i ng isreturned.

get object code(Module) -> {Module, Binary, Filename} | error

Types:
Module = module()
Binary = binary()

Filename = file:fil enanme()

Searches the code path for the object code of module Modul e. Returns { Modul e, Bi nary, Fil enane} if
successful, otherwise er r or . Bi nary isabinary data object, which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in a distributed system. For example, loading module Modul e
on anode Node is done asfollows:

{ Module, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binaryl),

root dir() -> file:filename()
Returns the root directory of Erlang/OTP, which is the directory whereit isinstalled.
Example:

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returnsthe library directory, $OTPROCT/ | i b, where $OTPROOCT istheroot directory of Erlang/OTP.
Example:

> code:lib dir().
"/usr/local/otp/lib"

30 | Ericsson AB. All Rights Reserved.: Kernel

code

lib dir(Name) -> file:filename() | {error, bad name}
Types:
Name = atom()

Returnsthe path for the "library directory", the top directory, for an application Nane located under $OTPROOT/ | i b
or on adirectory referred to with environment variable ERL_ LI BS.

If aregular directory called Nanme or Nane- Vsn exists in the code path with an ebi n subdirectory, the path to this
directory isreturned (not the ebi n directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/ 1 ocal /ot p/lib/ mesia-4.2.2. ez/ mesia-4.2.2/ebin isin the
path, / usr/ 1 ocal / ot p/ |1 i b/ mesi a- 4. 2. 2/ ebi n isreturned. This means that the library directory for an
application isthe same, regardlessif the application residesin an archive or not.

Example:
> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{ error, bad_nane} if Nane isnot the name of an application under §OTPROOT/ | i b or on adirectory
referred to through environment variable ERL__ LI BS. Fails with an exception if Nane has the wrong type.

For backward compatibility, Narme is also allowed to be a string. That will probably change in afuture release.

lib dir(Name, SubDir) -> file:filenanme() | {error, bad name}
Types:
Name = SubDir = atom()

Returnsthe path to a subdirectory directly under the top directory of an application. Normally the subdirectoriesreside
under the top directory for the application, but when applications at |east partly resides in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while other reside in an archive file. It is not
checked whether this directory exists.

Example:
> code:lib dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nane or SubDi r hasthe wrong type.

compiler dir() -> file:filename()
Returns the compiler library directory. Equivalenttocode: | i b_di r (conpil er).

priv_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalentto code: | i b_di r (Name, priv).

Ericsson AB. All Rights Reserved.: Kernel | 31

code

For backward compatibility, Narme is also allowed to be a string. That will probably change in afuture release.

objfile extension() -> nonempty string()
Returns the object code file extension corresponding to the Erlang machine used, namely . beam

stick dir(Dir) -> ok | error
Types:

Dir = file:filename()
MarksDi r as sticky.
Returns ok if successful, otherwiseer r or .

unstick dir(Dir) -> ok | error
Types:

Dir = file:filename()
Unsticks adirectory that is marked as sticky.
Returns ok if successful, otherwiseer r or .

is sticky(Module) -> boolean()
Types:
Module = module()

Returnst r ue if Modul e is the name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or f al se if Modul e isnot aloaded module or is not sticky.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:fil enane()

Searches the code path for Fi | enane, afile of arbitrary type. If found, the full name is returned. non_exi sti ng
isreturned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches al directoriesin the code path for module names with identical names and writes areport to st dout .

module status(Module :: module()) ->
not loaded | loaded | modified | removed

Returns:
not | oaded
If Modul e isnot currently loaded.
| oaded
If Mbdul e isloaded and the object file exists and contains the same code.

32 | Ericsson AB. All Rights Reserved.: Kernel

code

renmoved

If Mbdul e isloaded but no corresponding object file can be found in the code path.
nodi fi ed

If Mbdul e isloaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as| oaded, without inspecting the contents on disk. Cover compiled modules
will always be reported asnodi f i ed if an object file exists, or asr enpved otherwise. Modules whose load path is
an empty string (which isthe convention for auto-generated code) will only bereported as| oaded or not _| oaded.

For modules that have native code loaded (seei s_nmodul e_nat i ve/ 1), the MD5 sum of the native code in the
object fileis used for the comparison, if it exists, the Beam code in the fileisignored. Reversely, for modules that do
not currently have native code loaded, any native code in the file will be ignored.

Seeadsonodi fi ed _nodul es/ 0.

modified modules() -> [module()]

Returns the list of al currently loaded modules for which nodul e_st at us/ 1 returns nodi fi ed. See aso
al | _| oaded/ 0.

is module native(Module) -> true | false | undefined
Types:

Module = module()
Returns:
true

If Modul e isthe name of aloaded module that has native code |oaded
fal se

If Mbdul e isloaded but does not have native code
undefi ned

If Modul e isnot loaded

get mode() -> embedded | interactive
Returns an atom describing the mode of the code server: i nt er act i ve or enrbedded.

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for arunning node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with | oad_bi nary/ 3.

Ericsson AB. All Rights Reserved.: Kernel | 33

disk log

disk log

Erlang module

di sk_| og isadisk-based term logger that enables efficient logging of items on files.
Two types of logs are supported:
halt logs

Appends itemsto asinglefile, which size can be limited by the di sk_| og module.
wrap logs

Uses a segquence of wrap log files of limited size. Asawrap log fileis filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file isfilled up.

For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. Thisisthe only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leaves it up to the user to read and interpret the logged data. The di sk_| og module cannot repair externally
formatted logs.

For each open disk log, one process handles requests made to the disk log. This processis created when open/ 1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by callingcl ose/ 1 orl cl ose/ 1, 2) or by terminating.

Owners can subscribe to notifications, messages of theform { di sk_| og, Node, Log, | nfo},whicharesent
from the disk log process when certain events occur, see the functions and in particular the open/ 1 optionnot i fy.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For adisk log process to closeits file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Itemscan belogged synchronoudly by using functions| og/ 2,bl og/ 2,1 og_t er ns/ 2,andbl og_t er ns/ 2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, usesync/ 1 to
ensurethat). By adding an a to each of the mentioned function names, we get functionsthat log itemsasynchronously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or lessimmediately.

When using the internal format for logs, use functions| og/ 2,1 og terns/ 2, al og/ 2, and al og_t er ns/ 2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding bl og() functions for the external format. These functions log one or more chunks of bytes.
For example, to log the string " hel | 0" in ASCII format, you can usedi sk_| og: bl og(Log, "hello"),or
di sk_1 og: bl og(Log, list_to_binary("hello")).Thetwo aternativesare equally efficient.

Thebl og() functionscan also be used for internally formatted logs, but in this case they must be called with binaries
constructed with callstot er m_ t o_bi nary/ 1. There is no check to ensure this, it is entirely the responsibility of

34 | Ericsson AB. All Rights Reserved.: Kernel

disk log

the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/ 2, 3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/ 2, 3 iscalled.

A collection of open disk logs with the same name running on different nodes is said to be adistributed disk log if
reguests made to any of the logs are automatically made to the other logs as well. The members of such a collection
arecalled individual distributed disk logs, or just distributed disk logsif thereisno risk of confusion. Thereisno order
between the members of such a collection. For example, logged terms are not necessarily written to the node where
the request was made before written to the other nodes. However, afew functions do not make requeststo all members
of distributed disk logs, namely i nf o/ 1, chunk/ 2, 3, bchunk/ 2, 3, chunk_step/ 3,andl cl ose/ 1, 2.

An open disk log that is not a distributed disk log is said to be alocal disk log. A local disk log is only accessible
from the node where the disk 1og process runs, whereas a distributed disk log is accessible from all nodesin the Erlang
system, except for those nodeswherealocal disk |og with the same name asthedistributed disk |og exists. All processes
on nodes that have accessto alocal or distributed disk log can log items or otherwise change, inspect, or close thelog.

It is not guaranteed that all log files of a distributed disk log contain the same log items. No attempt is made to
synchronize the contents of the files. However, as long as at least one of the involved nodes is alive at each time,
all items are logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If al nodes are down, the disk log functions reply with anonode error.

Note:

In some applications, it can be unacceptable that replies from individual logs are ignored. An aternative in such
situationsisto use many local disk logsinstead of one distributed disk log, and implement the distribution without
use of thedi sk_| og module.

Errors are reported differently for asynchronous log attempts and other uses of the di sk_| og module. When used
synchronously, thismodule replieswith an error message, but when called asynchronously, this modul e does not know
where to send the error message. Instead, owners subscribing to notificationsreceive an er r or _st at us message.

Thedi sk_| og module doesnot report errorstotheer r or _| ogger module. It isup to the caller to decide whether
to employ theerror logger. Functionf or mat _er r or / 1 can beused to produce readable messagesfrom error replies.
However, information events are sent to the error logger in two situations, namely when alog is repaired, or when
afileis missing while reading chunks.

Error message no_such_| og means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

If an attempt to reopen or truncate a log fails (see r eopen/ 2, 3 and t r uncat e/ 1, 2) the disk log process
terminates immediately. Before the process terminates, links to owners and blocking processes (see bl ock/ 1, 2)
areremoved. The effect is that the links work in one direction only. Any process using a disk log must check for
error message no_such_| og if some other process truncates or reopens the log simultaneously.

Data Types

log() = term()

dlog size() =
infinity |
integer() >= 1 |

Ericsson AB. All Rights Reserved.: Kernel | 35

disk log

{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog format() = external | internal
dlog head opt() = none | term() | iodata()
dlog mode() = read only | read write
dlog type() = halt | wrap
continuation()
Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.

invalid header() = term()
file error() = term()

Exports

accessible logs() -> {[LocallLog], [DistributedLog]}
Types:
LocalLog = DistributedLog = 1 0g()

Returns the names of the disk logs accessible on the current node. Thefirst list containslocal disk logs and the second
list contains distributed disk logs.

alog(Log, Term) -> notify ret()
balog(Log, Bytes) -> notify_ret()
Types:
Log = 1 og()
Term = term()
Bytes = iodata()
notify ret() = ok | {error, no such log}
Asynchronously append an item to a disk log. al og/ 2 is used for internally formatted logs and bal og/ 2 for

externally formatted logs. bal og/ 2 can also be used for internally formatted logs if the binary is constructed with
acdltotermto_binary/1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_| og, or f or mat _ext er nal if the
item cannot be written on the log, and possibly one of the messages wr ap, ful | , or err or _st at us if an item
is written on the log. Message er r or _st at us is sent if something is wrong with the header function or if afile
€rror occurs.

alog terms(Log, TermList) -> notify_ret()
balog terms(Log, BytelList) -> notify_ret()
Types.
Log = I og()
TermList = [term()]
BytelList = [iodata()]
notify ret() = ok | {error, no such log}
Asynchronously append a list of items to a disk log. al og_t erns/ 2 is used for internally formatted logs and

bal og_t er ms/ 2 for externally formatted logs. bal og_t er ms/ 2 can aso be used for internally formatted logs if
the binaries are constructed with callstot erm t o_bi nary/ 1.

36 | Ericsson AB. All Rights Reserved.: Kernel

disk log

Owners subscribing to notifications receive messager ead_onl y, bl ocked_I og, or f or mat _ext er nal if the
items cannot be written on the log, and possibly one or more of the messageswr ap, ful | , and err or _st at us
if items are written on the log. Message er r or _st at us is sent if something is wrong with the header function or
if afile error occurs.

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueuelLogRecords) -> ok | {error, block_error_rsn()}
Types.
Log = 1 og()
QueuelLogRecords = boolean()
block error rsn() = no such log | nonode | {blocked log, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can also
use functions chunk/ 2, 3, bchunk/ 2, 3, chunk_st ep/ 3, and unbl ock/ 1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message { bl ocked_| og, Log}, depending on whether the value of
QueuelLogRecords istrue orfal se. QueueLogRecor ds defaultstot r ue, whichisused by bl ock/ 1.

change header(Log, Header) -> ok | {error, Reason}

Types:
Log = 1 og()
Header =
{head, dl og_head_opt()} |
{head func, MFA :: {atom(), atom(), list()}}
Reason =
no_such log |
nonode |

{read only mode, Log} |
{blocked log, Log} |
{badarg, head}

Changes the value of option head or head_f unc for an owner of adisk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = I og()

Owner = pid()

Notify = boolean()

Reason =
no_such log |
nonode |
{blocked log, Log} |
{badarg, notify} |
{not_owner, Owner}

Changes the value of option not i fy for an owner of adisk log.

Ericsson AB. All Rights Reserved.: Kernel | 37

disk log

change size(Log, Size) -> ok | {error, Reason}
Types:
Log = 1 0g()
Size = dl og_si ze()
Reason =
no_such log |
nonode |
{read only mode, Log} |
{blocked log, Log} |
{new size too small, Log, CurrentSize :: integer() >= 1} |
{badarg, size} |
{file error, file:filenanme(), file_error()}

Changesthe size of an openlog. For ahalt log, the size can always beincreased, but it cannot be decreased to something
less than the current file size.

For awrap log, both the size and the number of files can always be increased, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change is not valid until the current file is full
and the log wraps to the next file. The redundant files are removed the next time the log wraps around, that is, starts
tolog to file number 1.

As an example, assume that the old maximum number of filesis 10 and that the new maximum number of filesis 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
isfull and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current fileis 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next time file 6 isfull.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files already full until the next time they are used.

If the log size is decreased, for example, to save space, functioni nc_w ap_fil e/ 1 can be used to force the log
to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk ret ()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types:

Log = I og()

Continuation = start | continuation()

N = integer() >= 1 | infinity

chunk ret() =

{Continuation2 :: continuation(), Terms :: [term()]} |
{Continuation2 :: continuation(),
Terms :: [term()],
Badbytes :: integer() >= 0} |
eof |
{error, Reason :: chunk_error_rsn()}
bchunk ret() =
{Continuation2 :: continuation(), Binaries :: [binary()1} |
{Continuation2 :: continuation(),
Binaries :: [binary()],

38 | Ericsson AB. All Rights Reserved.: Kernel

disk log

Badbytes :: integer() >= 0} |
eof |
{error, Reason :: chunk_error_rsn()}

chunk _error _rsn() =
no_such log |
{format_external, log()} |
{blocked log, log()} |
{badarg, continuation} |
{not_internal wrap, log()} |
{corrupt log file, FileName :: file:filenane()} |
{file error, file:filenane(), file_error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk 1/O by reading 64
kilobyte chunks from the file. Functions bchunk/ 2, 3 return the binaries read from the file, they do not call
bi nary_to_termn().Apart fromthat, they work just likechunk/ 2, 3.

The first time chunk() (or bchunk()) iscalled, aninitial continuation, the atom st ar t , must be provided. If a
disk log processis running on the current node, terms are read from that log. Otherwise, an individual distributed log
on some other node is chosen, if such alog exists.

When chunk/ 3 iscalled, N control s the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfinity, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the fileis reached.

chunk() returns a tuple { Conti nuati on2, Terns}, where Terns is a list of terms found in the log.
Cont i nuat i on2 isyet another continuation, which must be passed on to any subsequent callsto chunk() . With
aseries of calsto chunk() , al termsfrom alog can be extracted.

chunk() returnsatuple { Conti nuati on2, Terns, Badbytes} if thelog is opened in read-only mode
and the read chunk is corrupt. Badbyt es is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt _log file, FileNane} isreturnedif theread chunk iscorrupt.

chunk() returnseof when the end of thelog isreached, or { error, Reason} if anerror occurs. If awrap log
fileis missing, amessage is output on the error log.

When chunk/ 2, 3 isused with wrap logs, the returned continuation might not be valid in the next call to chunk() .
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

chunk_info(Continuation) -> InfolList | {error, Reason}

Types:
Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]

Reason = {no continuation, Continuation}

Returns the pair { node, Node}, describing the chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3.

Terms are read from the disk log running on Node.
chunk step(Log, Continuation, Step) ->

{ok, any()} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 39

disk log

Log = log()
Continuation = start | continuation()
Step = integer()

Reason =
no such log |
end of log |

{format external, Log} |

{blocked log, Log} |

{badarg, continuation} |

{file error, file:filenane(), file_error()}

Can be used with chunk/ 2, 3 and bchunk/ 2, 3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3, and steps forward (or
backward) St ep filesin the wrap log. The continuation returned, points to the first log item in the new current file.

If atom st ar t isspecified as continuation, adisk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individua distributed log on some other node.

If the wrap log is not full because all files are not yet used, { error, end_of | og} isreturned if trying to step
outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:
Log = log()
close error_rsn() =
no_such log |
nonode |
{file error, file:filenane(), file_error()}

Closes alocal or distributed disk log properly. An internally formatted log must be closed before the Erlang system
is stopped. Otherwise, the log is regarded as unclosed and the automatic repair procedure is activated next time the
log is opened.

The disk log processis not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement the user s counter by closing the log. Attemptsto close alog by a processthat is not an owner areignored
if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

format error(Error) -> io_lib:chars()
Types:
Error = term()

Given theerror returned by any function in thismodule, thisfunction returns a descriptive string of the error in English.
For file errors, functionf or mat _error/ 1 inmodulefi | e iscaled.

inc_wrap file(Log) -> ok | {error, inc_wap_error_rsn()}
Types:
Log = | og()
inc_wrap _error _rsn() =
no_such log |
nonode |

40 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{read only mode, log()} |

{blocked log, log()} |

{halt_log, log()} |

{invalid header, invalid_header()} |

{file error, file:filename(), file_error()}

invalid header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wr ap message, but if an error occurs with a reason tag of
i nval i d_header orfile_error,anerror_status messageis sent.

info(Log) -> InfoList | {error, no such log}
Types:

Log = 1 0g()
InfolList = [dlog_info()]
dlog info() =
{name, Log :: log()} |
{file, File :: file:filename()} |
{type, Type :: dlog_type()} |
{format, Format :: dlog_format()} |
{size, Size :: dlog_size()} |
{mode, Mode :: dlog_nmode()} |
{owners, [{pid(), Notify :: boolean()}1} |
{users, Users :: integer() >= 0} |
{status,
Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
{node, Node :: node()} |
{distributed, Dist :: local | [node()]} |

{head,
Head ::

none | {head, term()} | (MFA :: {atom(), atom(), list()})} |
{no written items, NoWrittenItems :: integer() >= 0} |

{full, Full :: boolean} |

{no _current bytes, integer() >= 0} |

{no current items, integer() >= 0} |

{no _items, integer() >= 0} |

{current file, integer() >= 1} |

{no_overflows,

{SinceLogWasOpened :: integer() >= 0,
SincelLastInfo :: integer() >= 0}}

Returnsalist of { Tag, Val ue} pairsdescribing the log. If adisk log process is running on the current node, that
log is used as source of information, otherwise an individual distributed log on some other node is chosen, if such
alog exists.

Thefollowing pairs are returned for all logs:
{nane, Log}
Log isthelog name as specified by the open/ 1 option nane.

Ericsson AB. All Rights Reserved.: Kernel | 41

disk log

{file, File}

For halt logs Fi | e isthe filename, and for wrap logs Fi | e isthe base name.
{type, Type}

Type isthelog type as specified by theopen/ 1 optiont ype.
{format, Fornat}

For mat isthelog format as specified by theopen/ 1 option f or nat .
{size, Size}

Si ze isthelog size as specified by the open/ 1 option si ze, or thesize set by change_si ze/ 2. Thevalue
set by change_si ze/ 2 isreflected immediately.

{node, Mode}
Mbde isthe log mode as specified by the open/ 1 option node.
{owners, [{pid(), Notify}]}

Not i fy isthe value set by the open/ 1 option not i fy or function change_noti fy/ 3 for the owners of
the log.

{users, Users}

User s isthe number of anonymous users of the log, seethe open/ 1 option| i nkt o.
{status, Status}

St at us isok or { bl ocked, QueuelLogRecor ds} asset by functionsbl ock/ 1, 2 and unbl ock/ 1.
{node, Node}

The information returned by the current invocation of function i nf o/ 1 is gathered from the disk log process
running on Node.

{distributed, Dist}

If thelogislocal onthe current node, Di st hasthevaluel ocal , otherwise all nodeswherethelog isdistributed
arereturned asalist.

Thefollowing pairs are returned for all logs opened inr ead_wr i t € mode:
{head, Head}

Depending on the value of the open/1 options head and head func, or set by function
change_header/ 2, the value of Head is none (default), { head, H} (head option), or { M F, A}
(head_f unc option).

{no_witten_itenms, NoWittenltens}
NoW i t t enl t ens isthe number of itemswritten to the log since the disk log process was created.
The following pair isreturned for halt logs opened inr ead_wr i t e mode:
{full, Full}
Ful | istrue orf al se depending on whether the halt log is full or not.
The following pairs are returned for wrap logs openedinr ead_wr i t € mode:
{no_current _bytes, integer() >= 0}
The number of bytes written to the current wrap log file.
{no_current _itenms, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.

42 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{no_itenms, integer() >= 0}
Thetotal number of itemsin all wrap log files.
{current_file, integer()}

The ordinal for the current wrap log filein therange 1. . MaxNoFi | es, where MaxNoFi | es is specified by
theopen/ 1 option si ze or set by change_si ze/ 2.

{no_overfl ows, {SinceLogWasOpened, SincelLastlnfo}}

Si nceLogWasOpened (Si ncelLast | nf 0) isthe number of times awrap log file has been filled up and a
new oneisopened ori nc_w ap_fil e/ 1 hasbeen called since the disk log was last opened (i nf o/ 1 was
last called). Thefirsttimei nf o/ 2 iscalled after alog was (re)opened or truncated, the two values are equal .

Notice that functions chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 do not affect any value returned by
i nfoll.

lclose(Log) -> ok | {error, Iclose_error_rsn()}
lclose(Log, Node) -> ok | {error, Iclose_error_rsn()}
Types.

Log = log()
Node = node()

lclose error _rsn() =
no such log | {file error, file:filenane(), file_error()}

| cl ose/ 1 closesalocal log or anindividual distributed log on the current node.

| cl ose/ 2 closes an individual distributed log on the specified node if the node is not the current one.
| cl ose(Log) isequivalenttol cl ose(Log, node()).Seeasocl ose/ 1.

If no log with the specified name exist on the specified node, no_such_| og isreturned.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = 1 0g()

Term = term()
Bytes = iodata()
log error _rsn() =
no_such log |
nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |
{full, lTog()} |
{invalid header, invalid_header()} |
{file error, file:filename(), file_error()}

Synchronously appends aterm to adisk log. Returnsok or { er r or, Reason} when the termiswritten to disk. If
thelog isdistributed, ok isreturned, unless all nodes are down. Terms are written by the ordinary wr i t e() function
of the operating system. Hence, it is not guaranteed that the term iswritten to disk, it can linger in the operating system
kernel for awhile. To ensure that the item is written to disk, function sync/ 1 must be called.

Ericsson AB. All Rights Reserved.: Kernel | 43

disk log

| og/ 2 isused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 can also be used
for internally formatted logs if the binary is constructed withacall to t erm t o_bi nary/ 1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isinvalid_header orfile_error.

log terms(Log, TermList) ->

ok | {error, Resaon :: log_error_rsn()}
blog terms(Log, BytesList) ->
ok | {error, Reason :: log_error_rsn()}
Types:
Log = 1 0g()

TermList = [term()]
BytesList = [iodata()]
log _error_rsn() =
no_such log |
nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |
{full, log()} |
{invalid header, invalid_header()} |
{file error, file:filename(), file_error()}

Synchronously appendsalist of itemsto thelog. It is more efficient to use these functionsinstead of functions!| og/ 2
and bl og/ 2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist islogged as one single item, which reduces the overhead.

|l og terns/ 2 is used for internaly formatted logs, and bl og _terns/2 for externaly formatted logs.
bl og terns/ 2 can adso be used for internally formatted logs if the binaries are constructed with calls to
termto_binary/1.

Owners subscribing to notifications are notified of an error with aner r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dl og_options()

dlog options() = [dlog_option()]

dlog option() =

{name, Log :: log()} |

{file, FileName :: file:filenane()} |
{linkto, LinkTo :: none | pid()} |

{repair, Repair :: true | false | truncate} |

{type, Type :: dlog_type()} |

{format, Format :: dlog_format()} |

{size, Size :: dlog_size()} |

{distributed, Nodes :: [node()]1} |

{notify, boolean()} |

{head, Head :: dl og_head_opt()} |

{head func, MFA :: {atom(), atom(), Ulist()}} |
{quiet, boolean()} |

44 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{mode, Mode :: dl og_node()}
open ret() =ret() | {error, open_error_rsn()}

ret() =
{ok, Log :: log()} |
{repaired,
Log :: log(),
{recovered, Rec :: integer() >= 0},

{badbytes, Bad :: integer() >= 0}}
dist open ret() =

{[{node(), ret()}], [{node(), {error, dist_error_rsn()}}1}
dist error _rsn() = nodedown | open_error_rsn()

open_error_rsn()
no_such log |
{badarg, term()} |
{size mismatch,
CurrentSize :: dl og_size(),
NewSize :: dlog_size()} |
{arg mismatch,
OptionName :: dlog optattr(),

CurrentValue :: term(),

Value :: term()} |

{name_already open, Log :: log()} |

{open_read write, Log :: log()} |

{open read only, Log :: log()} |

{need repair, Log :: log()} |

{not_a log file, FileName :: file:filename()} |
{invalid index file, FileName :: file:filename()} |

{invalid header, invalid_header()} |
{file error, file:filenanme(), file_error()} |
{node_already open, Log :: log()}
dlog optattr() =
name |
file |
linkto |
repair |
type |
format |
size |
distributed |
notify |
head |
head func |
mode
dlog size() =
infinity |
integer() >= 1 |
{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}

Parameter Ar gL isalist of the following options:

Ericsson AB. All Rights Reserved.: Kernel | 45

disk log

{nane, Log}

Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.

{file, FileNane}

Specifies the name of the file to be used for logged terms. If this value is omitted and the log name is an atom or
astring, the filename defaultsto | i st s: concat ([Log, ".LOG']) for haltlogs.

For wrap logs, this is the base name of thefiles. Each filein awrap log iscaled <base_nane>. N, where Nis
an integer. Each wrap log also hastwo files called <base_nane>. i dx and <base_nane>. si z.

{l'i nkto, LinkTo}

If Li nkTo is a pid, it becomes an owner of the log. If Li nkTo is none, the log records that it is used
anonymously by some process by incrementing the user s counter. By default, the process that calls open/ 1
ownsthe log.

{repair, Repair}

If Repair istrue, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If f al se is specified, no automatic repair is attempted. Instead, the tuple { er r or,
{need_repair, Log}} isreturnedif anattemptismadetoopenacorruptlogfile.Ift r uncat e isspecified,
the log file becomes truncated, creating an empty log. Defaults to t r ue, which has no effect on logs opened
in read-only mode.

{type, Type}

Thelog type. Defaultsto hal t .
{format, Fornat}

Disk log format. Defaultstoi nt er nal .
{size, Size}

Logsize.

When ahalt log hasreached itsmaximum size, all attemptstolog moreitemsarerejected. Defaultstoi nfi nity,
which for halt implies that there is no maximum size.

For wrap logs, parameter Si ze can be a pair { MaxNoByt es, MaxNoFi | es} ori nfi ni ty. Inthe latter
case, if thefiles of an existing wrap log with the same name can be found, the size is read from the existing wrap
log, otherwise an error is returned.

Wrap logs write at most MaxNoByt es bytes on each file and use MaxNoFi | es files before starting al over
with the first wrap log file. Regardless of MaxNoByt es, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

When opening an existing wrap log, it is not necessary to supply a value for option Si ze, but any supplied
value must equal the current log size, otherwisethetuple{error, {size_mi smatch, CurrentSi ze,
NewSi ze} } isreturned.

{di stributed, Nodes}

This option can be used for adding members to a distributed disk log. Defaultsto [] , which means that the log
islocal on the current node.

{notify, boolean()}

If t r ue, thelog owners are notified when certain log events occur. Defaultsto f al se. The owners are sent one
of the following messages when an event occurs:

46 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{di sk_l og, Node, Log, {wap, NoLostltens}}

Sent when awrap log has filled up one of its filesand a new fileis opened. NoLost | t ens isthe number
of previously logged items that were lost when truncating existing files.

{di sk_l og, Node, Log, {truncated, NoLostltens}}

Sent when alog is truncated or reopened. For halt logs NoLost | t ens isthe number of items written on
the log since the disk log process was created. For wrap logs NoLost | t ens is the number of items on
all wrap log files.

{di

sk |l og, Node, Log, {read only, Itens}}

Sent when an asynchronous log attempt is made to alog file opened in read-only mode. | t ens istheitems
from the log attempt.

{di

sk _l og, Node, Log, {blocked |og, Itens}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. | t enrs
isthe items from the log attempt.

{di sk_l og, Node, Log, {format_external, Itens}}

Sent when function al og/ 2 or al og_t er ns/ 2 isused for internally formatted logs. | t ens istheitems
from the log attempt.

sk | og, Node, Log, full}
Sent when an attempt to log itemsto awrap log would write more bytes than the limit set by option si ze.

{di

{di sk_log, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1,inc_wap_file/1l, or
change_si ze/ 2. St at us iseitherok or {error, Error},theformeristheinitial value.

{head, Head}

Specifies a header to be written first on the log file. If thelog isawrap log, the item Head iswritten first in each
new file. Head isto be aterm if the format isi nt er nal , otherwise a sequence of bytes. Defaults to none,
which means that no header is written first on thefile.

{head_func, {MF, A}}

Specifiesafunction to be called each time anew log fileisopened. Thecall M F(A) isassumed to return { ok,
Head} . Theitem Head iswritten first in each file. Head isto be aterm if the format isi nt er nal , otherwise
a sequence of bytes.

{node, Mode}
Specifiesif thelog isto be opened in read-only or read-write mode. Defaultstor ead_wri t e.
{qui et, Bool ean}
Specifiesif messageswill besenttoer r or _| ogger onrecoverableerrorswiththelogfiles. Defaultstof al se.

open/ 1 returns { ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe number
of whole Erlang terms found in the file and Bad is the number of bytes in the file that are non-Erlang terms. If the
parameter di st ri but ed is specified, open/ 1 returns a list of successful replies and a list of erroneous replies.
Each reply istagged with the node name.

When adisk log is opened in read-write mode, any existing log fileis checked for. If thereisnone, anew empty logis
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts

Ericsson AB. All Rights Reserved.: Kernel | 47

disk log

from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a log file, FileNane}} isreturned.

open/ 1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
alog, all option values except name, | i nkt 0, and not i fy are only checked against the values supplied before as
option valuesto functionopen/ 1, change_header/ 2,change_noti fy/ 3,orchange_si ze/ 2. Thus, none
of the options except nanme is mandatory. If some specified value differs from the current value, atuple { er r or,
{arg_m smatch, OptionNane, CurrentVal ue, Val ue}} isreturned.

If an owner attempts to open alog as owner once again, it is acknowledged with the return value { ok, Log},
but the state of the disk log is not affected.

If alog with a specified name is local on some node, and one tries to open the log distributed on the same node, the
tuple{error, {node_al ready_open, Log}} isreturned. Thesametupleisreturnedif thelog is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The supplied option values are used on all nodes
mentioned by option di st ri but ed. Individua distributed logs know nothing about each other's option values, so
each node can be given unique option values by creating a distributed log with many callsto open/ 1.

A log file can be opened more than once by giving different values to option nane or by using the same file when
distributing alog on different nodes. It is up to the user of module di sk_| og to ensure that not more than one disk
log process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_| og, open, 1}]1}. The function returns { error, Reason} for al other
errors.

pid2name(Pid) -> {ok, Log} | undefined

Types:
Pid = pid()
Log = 1 og()

Returns the log name given the pid of a disk log process on the current node, or undef i ned if the specified pid is
not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = log()

File = file:fil enanme()

Head = term()

BHead = iodata()

reopen error rsn() =
no such log |
nonode |
{read_only mode, log()} |
{blocked log, log()} |

48 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{same_file name, log()} |

{invalid index file, file:filename()} |
{invalid header, invalid_header()} |

{file error, file:filename(), file_error()}

Renamesthelog fileto Fi | e and then recreatesanew log file. If awrap log exists, Fi | e isused as the base name of
the renamed files. By default the header givento open/ 1 iswritten first in the newly opened log file, but if argument
Head or BHead is specified, thisitem is used instead. The header argument is used only once. Next time awrap log
file is opened, the header given to open/ 1 isused.

reopen/ 2, 3 are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
Owners subscribing to notifications receiveat r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai |l ed, Error},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message { di sk_| og,
Node, {error, disk_|og stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types:
Log = I og()
sync_error_rsn() =
no_such log |
nonode |
{read only mode, log()} |
{blocked log, log()?} |
{file error, file:filename(), file_error()}

Ensures that the contents of the log are written to the disk. Thisis usually arather expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types:

Log = I og()

Head = term()

BHead = iodata()

trunc _error _rsn() =
no such log |
nonode |
{read only mode, log()} |
{blocked log, log()} |
{invalid header, invalid_header()} |
{file error, file:filenane(), file_error()}

Removes all items from a disk log. If argument Head or BHead is specified, this item is written first in the newly
truncated log, otherwise the header given to open/ 1 is used. The header argument is used only once. Next time a
wrap log file is opened, the header givento open/ 1 is used.

truncat e/ 1, 2 are used for internally formatted logs, and bt r uncat e/ 2 for externally formatted logs.

Owners subscribing to notifications receiveat r uncat e message.

Ericsson AB. All Rights Reserved.: Kernel | 49

disk log

If the attempt to truncate thelog fail s, the disk log processterminateswith the EXIT message{ { f ai | ed, Reason},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message { di sk_I og,
Node, {error, disk_|log_stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:
Log = 1 og()
unblock error rsn() =
no_such log |
nonode |
{not_blocked, log()} |
{not_blocked by pid, log()}

Unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3),pg2(3),wap_|og reader(3)

50 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
lineflag - | oader i net. All hosts specified with command-line flag - host s Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter st art _boot _ser ver.

Theer| boot _server canread regular filesand filesin archives. Seecode(3) ander| _pri m | oader (3)
in ERTS.

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. The file format, semantics, interfaces, and so on, can be changed in a future release.

Exports

add slave(Slave) -> ok | {error, Reason}

Types:
Slave = Host
Host = inet:ip_address() | inet:hostnane()

Reason = {badarg, Slave}
AddsaSl ave nodeto thelist of allowed Slave hosts.

delete slave(Slave) -> ok | {error, Reason}

Types:
Slave = Host
Host = inet:ip_address() | inet:hostnane()

Reason = {badarg, Slave}
Deletesa Sl ave node from the list of allowed dave hosts.

start(Slaves) -> {ok, Pid} | {error, Reason}

Types:
Slaves = [Host]
Host = inet:ip_address() | inet:hostnane()
Pid = pid()

Reason = {badarg, Slaves}
Starts the boot server. Sl aves isalist of IP addresses for hosts, which are allowed to use this server as aboot server.

start_link(Slaves) -> {ok, Pid} | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 51

erl_boot_server

Slaves = [Host]

Host = inet:ip_address() | inet:hostnane()
Pid = pid()

Reason = {badarg, Slaves}

Startsthe boot server and linksto the caller. Thisfunctionisused to start the server if itisincluded in asupervision tree.

which slaves() -> Slaves

Types:
Slaves = [Slavel]
Slave =
{Netmask :: inet:ip_address(), Address :: inet:ip_address()}
Returns the current list of allowed slave hosts.
SEE ALSO

erts:init(3),erts:erl_primloader(3)

52 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

erl_ddll

Erlang module

This module provides an interface for loading and unloading Erlang linked-in driversin runtime.

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions| oad/ 2 and unl oad/ 1 are enough to getting started.

The driver isto be provided as a dynamically linked library in an object code format specific for the platform in use,
thatis, . so fileson most Unix systemsand . ddl fileson Windows. An Erlang linked-in driver must provide specific
interfacesto the emulator, so this moduleis not designed for loading arbitrary dynamic libraries. For moreinformation
about Erlang drivers, seeerts: erl _dri ver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use addll-driver, we use theterm user. A process can have many users (different modul es needing the
same driver) and many processes running the same code, making up many users of adriver.

Inthe basic scenario, each user loadsthe driver before starting to useit and unloadsthe driver when done. Thereference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wantsit (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can aso have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a" When Needed Basis'

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver isawaysreference counted and as long as a process keeping the driver loaded
isstill alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:
load/2 and unload/1

When using thel oad/ unl oad interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unl oad/ 1 can return immediately, as the users have no interrest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If a process having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function | oad/ 2 returns ok when any instance of the driver is present. Thus, if adriver is
waiting to get unloaded (because of open ports), it ssmply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to adriver that no
user has loaded. The portsthat are still open when the last user callsunl oad_dri ver/ 1 or when the last
process having the driver loaded dies, are killed with reason dr i ver _unl oaded.

The function names| oad_dri ver andunl oad_dri ver arekept for backward compatibility.

Ericsson AB. All Rights Reserved.: Kernel | 53

erl_ddll

L oading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is a little more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of adriver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processesin the system from using the driver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver isloaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is already in progress is always an error. Using the high-level functions, it is
also an error to demand rel oading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2
This pair of functionsis used when reloading is to be done after the last open port to the driver is closed.

Asr el oad/ 2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interfacet ry | oad/ 3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
dri ver _unl oaded to alow for new driver code to get |oaded.

However, if another process has the driver loaded, caling rel oad_dri ver returns error code
pendi ng_pr ocess. Asstated earlier, the recommended designisto not allow other usersthan the"driver
reloader” to demand loading of the driver in question.

Data Types

driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types.
MonitorRef = reference()

Removes adriver monitor in much the ssmeway aser | ang: denoni t or/ 1 in ERTS does with process monitors.
For details about how to create driver monitors, seeroni tor/ 2,try_| oad/ 3,andtry_unl oad/ 2.

The function throws abadar g exception if the parameter isnot ar ef er ence() .

format error(ErrorDesc) -> string()
Types:

54 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

ErrorDesc = term()

Takes an Er r or Desc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1is called in the same instance of the Erlang virtual
machine asthe error appeared in (meaning the same operating system process).

info() -> AllInfolList
Types.
AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfolList}
DriverName = string()
Infolist [InfoIltem]
Infoltem {Tag :: atom(), Value :: term()}

Returnsalist of tuples{ Dri ver Nane, | nfoList}, wherel nfolLi st istheresult of calingi nf o/ 1 for that
Dr i ver Nane. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfolList

Types.
Name = driver()
InfolList = [InfoItem, ...]

InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples{ Tag, Val ue}, where Tag is the information item and Val ue is the result of calling
i nf o/ 2 withthisdriver name and thistag. Theresultisatuplelist containing all information available about adriver.

The following tags appearsin the list:

e processes
e driver_options

e port_count

e linked_in_driver

e pernanent

e awaiting_load

e awaiting_unl oad

For a detailed description of each value, seei nf o/ 2.

The function throws abadar g exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:
Name = driver ()
Tag =
processes |
driver_options |

Ericsson AB. All Rights Reserved.: Kernel | 55

erl_ddll

port _count |
linked in driver |
permanent |
awaiting load |
awaiting unload

Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Val ue differs between different tags:

processes

Returns all processes containing users of the specific driversasalist of tuples{ pi d(), i nteger() >= 0},
wherei nt eger () denotesthe number of usersin processpi d() .

driver_options

Returnsalist of the driver options provided when loading, and any options set by the driver during initialization.
Theonly valid optioniski | | _ports.

port _count

Returns the number of ports (ani nt eger () >= 0) using the driver.
i nked_i n_driver

Returnsabool ean(), whichist r ue if thedriver isastaticaly linked-in one, otherwisef al se.
per manent

Returns abool ean(), whichist r ue if the driver has made itself permanent (and is not a statically linked-
in driver), otherwisef al se.

awai ti ng_| oad

Returns a list of al processes having monitors for | oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nt eger () isthe number of monitors held by process pi d() .

awai t i ng_unl oad

Returns a list of all processes having monitors for unl oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthenumber of monitors held by processpi d() .

If option| i nked_i n_dri ver or per manent returnst r ue, all other optionsreturn | i nked_i n_dri ver or
per manent , respectively.

The function throws abadar g exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = term()

Loads and links the dynamic driver Nane. Pat h isafile path to the directory containing the driver. Nane must be a
sharable object/dynamic library. Two driverswith different Pat h parameters cannot be loaded under the same name.
Nane isastring or atom containing at least one character.

The Nane specified is to correspond to the filename of the dynamically loadable object file residing in the directory
specified as Pat h, but without the extension (that is, . s0). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as Erlang module names correspond to the names
of the. beamfiles.

56 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

If the driver was previously unloaded, but is still present because of open ports to it, a call to | oad/ 2 stops the
unloading and keepsthe driver (aslong as Pat h isthe same), and ok isreturned. If you really want the object code to
bereloaded, user el oad/ 2 orthelow-level interfacet ry | oad/ 3 instead. Seealsothedescriptionof di f f er ent
scenar i os for loading/unloading in the introduction.

If more than one processtriesto load an already loaded driver with the same Pat h, or if the same processtriesto load
it many times, the function returns ok . The emulator keepstrack of thel oad/ 2 calls, so that acorresponding number
of unl oad/ 2 calls must be done from the same process before the driver gets unloaded. It is therefore safe for an
application to load a driver that is shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It isnot allowed to load multiple drivers with the same name but with different Pat h parameters.

Pat h is interpreted literally, so that all loaders of the same driver must specify the same literal Pat h string,
although different paths can point out the same directory in the file system (because of use of relative paths and
links).

On success, the function returns ok. On failure, the return valueis{ err or, Err or Desc}, where Er r or Desc is
an opague term to be translated into human readable form by function f or mat _error/ 1.

For more control over the error handling, usethet ry_| oad/ 3 interface instead.
The function throws abadar g exception if the parameters are not specified as described here.

load driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()

Name = driver ()

ErrorDesc = term()

Works essentially as| oad/ 2, but loads the driver with other options. All ports using the driver are killed with reason
dri ver _unl oaded when the driver isto be unloaded.

The number of loads and unloads by different users influences the loading and unloading of a driver file. The port
killing therefore only occurs when the last user unloads the driver, or when the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Usingtry | oad/ 3 with
{driver_options,[kill_ports]} intheoption list givesthe same effect regarding the port killing.

The function throws abadar g exception if the parameters are not specified as described here.

loaded drivers() -> {ok, Drivers}
Types:

Drivers = [Driver]

Driver = string()

Returns alist of all the available drivers, both (statically) linked-in and dynamically loaded ones.
The driver names are returned as alist of strings rather than alist of atoms for historical reasons.
For more information about drivers, seei nf o.

Ericsson AB. All Rights Reserved.: Kernel | 57

erl_ddll

monitor(Tag, Item) -> MonitorRef
Types:
Tag = driver

Item = {Name, When}
Name = driver()
When = loaded | unloaded | unloaded only

MonitorRef = reference()

Creates a driver monitor and works in many ways as er | ang: noni t or/ 2 in ERTS, does for processes. When
a driver changes state, the monitor results in a monitor message that is sent to the calling process. Moni t or Ref
returned by this function isincluded in the message sent.

Aswith process monitors, each driver monitor set only generates one single message. The monitor is"destroyed" after
the message is sent, so it isthen not needed to call denoni t or/ 1.

Moni t or Ref can also be used in subsequent callsto denoni t or / 1 to remove amonitor.
The function accepts the following parameters:
Tag

The monitor tag is always dr i ver , as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be specified for consistence.

Item

Parameter | t em specifies which driver to monitor (the driver name) and which state change to monitor. The
parameter isatuple of arity two whosefirst element isthe driver name and second element is one of thefollowing:

| oaded

Notifieswhenthedriver isreloaded (or loaded if |oading isunderway). It only makes senseto monitor drivers
that are in the process of being loaded or reloaded. A future driver name for loading cannot be monitored.
That only resultsin a DOAN message sent immediately. Monitoring for loading istherefore most useful when
triggered by functiont ry | oad/ 3, where the monitor is created because the driver is in such a pending
State.

Setting adriver monitor for | oadi ng eventually leads to one of the following messages being sent:
{*UP", reference(), driver, Nane, |oaded}

This message is sent either immediately if the driver is aready loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded before creating a monitor for loading.
{"UP", reference(), driver, Nane, pernanent}

This message is sent if reloading was expected, but the (old) driver made itself permanent before
reloading. It is also sent if the driver was permanent or statically linked-in when trying to create the
monitor.

{* DO\, reference(), driver, Nane, |oad_cancell ed}

Thismessage arrivesif reloading was underway, but the requesting user cancelled it by dying or calling
try_unl oad/ 2 (or unl oad/ 1/unl oad_dri ver/ 1) again before it was reloaded.

{'DOMW , reference(), driver, Name, {load_failure, Failure}}

This message arrivesif reloading was underway but the loading for some reason failed. TheFai | ur e
term is one of the errors that can be returned fromt ry | oad/ 3. The error term can be passed to

58 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

format _error/ 1 fortrandation into human readable form. Notice that the trand ation must be done
in the same running Erlang virtual machine as the error was detected in.

unl oaded

Monitors when a driver gets unloaded. If one monitors a driver that is not present in the system, one
immediately gets notified that the driver got unloaded. Thereisno guarantee that the driver was ever loaded.

A driver monitor for unload eventually resultsin one of the following messages being sent:
{'DOWN , reference(), driver, Nane, unloaded}

The monitored driver instanceis now unloaded. Asthe unload can be aresult of ar el oad/ 2 request,
the driver can once again have been loaded when this message arrives.

{*UP", reference(), driver, Nane, unload_cancell ed}

This message is sent if unloading was expected, but while the driver was waiting for all ports to get
closed, anew user of the driver appeared, and the unloading was cancelled.

Thismessage appearsif { ok, pendi ng_dri ver} wasreturnedfromt ry_unl oad/ 2 for thelast
user of thedriver, and then { ok, al ready_| oaded} isreturned fromacaltotry_| oad/ 3.

If oner eally wantsto monitor when the driver gets unloaded, this message distorts the picture, because
no unloading wasdone. Optionunl oaded_onl y createsamonitor similar toanunl oaded monitor,
but never results in this message.

{*UP", reference(), driver, Nane, permanent}

Thismessageis sent if unloading was expected, but the driver madeitself permanent before unloading.
It isalso sent if trying to monitor a permanent or statically linked-in driver.

unl oaded_only

A monitor created as unl oaded_onl y behaves exactly as one created as unl oaded except that the
{*UP", reference(), driver, Name, unload_cancel | ed} messageisnever sent, but the
monitor instead persists until the driver really gets unloaded.

The function throws abadar g exception if the parameters are not specified as described here.

reload(Path, Name) -> ok | {error, ErrorDesc}
Types.
Path = path()
Name = driver ()
ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Reloads the driver named Namne from a possibly different Pat h than previoudly used. This function is used in the
code changescenar i o described in the introduction.

If there are other users of thisdriver, thefunctionreturns{ err or, pendi ng_pr ocess}, butif thereareno other
users, the function call hangs until all open ports are closed.

Avoid mixing multiple users with driver reload requests. ‘

To avoid hanging on open ports, use functiont ry_| oad/ 3 instead.

The Nane and Pat h parameters have exactly the same meaning as when calling the plain function| oad/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 59

erl_ddll

On success, thefunction returns ok. On failure, the function returns an opaque error, except thependi ng_pr ocess
error described earlier. The opague errors are to be trandated into human readable form by function
format _error/1.

For more control over the error handling, usethet ry_| oad/ 3 interface instead.

The function throws abadar g exception if the parameters are not specified as described here.

reload driver(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Works exactly asr el oad/ 2, but for driversloaded with thel oad_dri ver/ 2 interface.

As this interface implies that ports are killed when the last user disappears, the function does not hang waiting for
portsto get closed.

For more details, see scenar i os in this module description and the function description for r el oad/ 2.
The function throws abadar g exception if the parameters are not specified as described here.

try load(Path, Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorDesc}
Types:
Path = path()
Name driver()
OptionList = [Option]
Option =
{driver options, DriverOptionList} |
{monitor, MonitorOption} |
{reload, ReloadOption}
DriverOptionList = [DriverOption]
DriverOption = kill ports
MonitorOption = ReloadOption = pending driver | pending
Status = loaded | already loaded | PendingStatus
PendingStatus = pending driver | pending process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError
ErrorAtom =
linked in driver |
inconsistent |
permanent |
not loaded by this process |
not loaded |
pending reload |

60 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

pending process
OpaqueError = term()

Provides more control than the | oad/ 2/r el oad/ 2 and | oad_dri ver/ 2/rel oad_dri ver/ 2 interfaces. It
never waits for completion of other operations related to the driver, but immediately returns the status of the driver
as one of the following:

{ok, | oaded}
The driver was loaded and isimmediately usable.
{ok, already_| oaded}

Thedriver wasalready |oaded by another processor isin use by aliving port, or both. Theload by youisregistered
and acorrespondingt ry_unl oad is expected sometime in the future.

{ok, pending driver}or{ok, pending driver, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded (open ports use it). Still, unload is expected when you are done with the driver. This return
value mostly occurs when options { r el oad, pendi ng_dri ver} or {rel oad, pendi ng} are used, but
can occur when another user is unloading a driver in parallel and driver option ki | | _port s isset. In other
words, this return value always needs to be handled.

{ok, pending process}or{ok, pending_process, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded by another user (not only by aport, in which case{ ok, pendi ng_dri ver} would have been
returned). Still, unload is expected when you are done with the driver. Thisreturn value only occurs when option
{rel oad, pendi ng} isused.

When the function returns { ok, pendi ng_dri ver} or{ok, pendi ng_process}, onecan get information
about when the driver isactually loaded by using option { noni t or, Monitor Opti on}.

When monitoring is requested, and a corresponding { ok, pendi ng _driver} or{ok, pendi ng_process}
would bereturned, the function instead returnsatuple{ ok, Pendi ngSt at us, reference()} andtheprocess
then gets a monitor message later, when the driver gets loaded. The monitor message to expect is described in the
function description of noni t or/ 2.

In case of loading, monitoring can not only get triggered by using option {r el oad, Rel oadOpti on}, but
also in specia cases where the load error is transient. Thus, { noni t or, pendi ng_dri ver} isto be used
under basically all real world circumstances.

The function accepts the following parameters:
Pat h

Thefile system path to the directory where the driver object file islocated. The filename of the object file (minus
extension) must correspond to the driver name (used in parameter Nane) and the driver must identify itself with
the same name. Pat h can be provided asaniolist(), meaning it can bealist of otheri ol i st () s, characters (8-
bit integers), or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Pat h parameter must be consistent throughout the system. A driver isto, by all users,
be loaded using the same literal Pat h. The exception is when reloading is requested, in which case Pat h can
be specified differently. Notice that all users trying to load the driver later need to use the new Pat h if Pat h
is changed using ar el oad option. This is yet another reason to have only one loader of a driver one wants
to upgrade in arunning system.

Ericsson AB. All Rights Reserved.: Kernel | 61

erl_ddll

Nane

This parameter is the name of the driver to be used in subsequent calls to function er | ang: open_port in
ERTS. The name can be specified asani ol i st () or anat on() . The name specified when loading is used
to find the object file (with the help of Pat h and the system-implied extension suffix, that is, . so). The name
by which the driver identifies itself must also be consistent with this Name parameter, much as the module name
of aBeam file much correspondsto its filename.

Opt i onLi st
Some options can be specified to control the loading operation. The options are specified as alist of two-tuples.
The tuples have the following values and meanings:
{driver_options, DriverQptionList}
Thisisto provide options that changes its general behavior and "sticks' to the driver throughout itslifespan.

The driver options for a specified driver name need always to be consistent, even when the driver is
reloaded, meaning that they are as much a part of the driver as the name.

The only allowed driver optioniski | I _port s, which meansthat all ports opened to the driver are killed
with exit reason dr i ver _unl oaded when no process any longer has the driver loaded. This situation
arises either when the last user callst ry_unl oad/ 2, or when the last process having loaded the driver
exits.

{moni tor, MbnitorOption}

A MonitorOptiontellstry | oad/ 3 to trigger a driver monitor under certain conditions. When the
monitor is triggered, the function returns a three-tuple { ok, Pendi ngSt atus, reference()},
wherer ef er ence() isthe monitor reference for the driver monitor.

Only one Moni t or Opt i on can be specified. It is one of the following:

» Theatom pendi ng, which meansthat amonitor isto be created whenever aload operation is delayed,

e Theatompendi ng_dri ver ,inwhichamonitor iscreated whenever the operation is delayed because
of open portsto an otherwise unused driver.

Optionpendi ng_dri ver isof littleuse, but ispresent for completeness, asit iswell defined which reload
optionsthat can giveriseto which delays. However, it can be agood ideato usethesameMoni t or Opt i on
asthe Rel oadOpt i on, if present.

If reloading is not requested, it can still be useful to specify option noni t or, as forced unloads (driver
optionki I I _ports oroptionkill _portstotry unl oad/ 2) trigger atransient state where driver
loading cannot be performed until al closing ports are closed. Thus, ast ry_unl oad can, in aimost all
situations, return{ ok, pendi ng_dri ver}, awaysspecify atleast{ noni t or, pendi ng_driver}
in production code (see the monitor discussion earlier).

{rel oad, Rel oadOption}

Thisoption is used to reload a driver from disk, most often in a code upgrade scenario. Having ar el oad
option also implies that parameter Pat h does not need to be consistent with earlier loads of the driver.

To reload a driver, the process must have loaded the driver before, that is, there must be an active user of
the driver in the process.

Ther el oad option can be either of the following:
pendi ng

Withtheatom pendi ng, reloading isrequested for any driver and is effectuated when all ports opened
to the driver are closed. The driver replacement in this case takes place regardless if there are till
pending users having the driver loaded.

62 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

The option also triggers port-killing (if driver optionki | | _por t s isused) although there are pending
users, making it usablefor forced driver replacement, but laying much responsibility onthedriver users.
The pending option is seldom used as one does not want other users to have loaded the driver when
code change is underway.

pendi ng_dri ver

This option is more useful. Here, reloading is queued if the driver is not loaded by any other users,
but the driver has opened ports, in which case { ok, pendi ng_dri ver} isreturned (anoni t or
option is recommended).

If the driver isunloaded (not present in the system), error code not _| oaded isreturned. Optionr el oad
isintended for when the user has already |oaded the driver in advance.

The function can return numerous errors, some can only be returned given a certain combination of options.

Some errors are opague and can only be interpreted by passing them to function f or mat _error/ 1, but some can
be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an Erlang statically linked-in driver, which cannot be manipulated with
thisAPI.

{error,inconsistent}
Thedriver isaready loaded with other Dr i ver Opt i onLi st or adifferent literal Pat h argument.
This can occur evenif ar el oad option is specified, if Dri ver Opt i onLi st differsfrom the current.
{error, pernanent}

The driver has requested itself to be permanent, making it behave like an Erlang linked-in driver and can no
longer be manipulated with this API.

{error, pending_process}

The driver isloaded by other userswhen option { r el oad, pendi ng_dri ver} was specified.
{error, pending_rel oad}

Driver reload is already requested by another user when option { r el oad, Rel oadOpti on} was specified.
{error, not | oaded by this process}

Appears when option r el oad is specified. The driver Nane is present in the system, but there is no user of
it in this process.
{error, not_I| oaded}

Appears when option r el oad is specified. The driver Nane is not in the system. Only drivers loaded by this
process can be rel oaded.

All other error codes are to be translated by function f or nat _err or/ 1. Noticethat callstof or mat _error are
to be performed from the same running instance of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.

If the arguments or options are malformed, the function throws abadar g exception.

try unload(Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorAtom}

Types:

Ericsson AB. All Rights Reserved.: Kernel | 63

erl_ddll

Name = driver ()

OptionList = [Option]

Option = {monitor, MonitorOption} | kill ports
MonitorOption = pending driver | pending

Status = unloaded | PendingStatus

PendingStatus = pending driver | pending process
Ref = reference()

ErrorAtom =
linked in driver |
not loaded |
not loaded by this process |
permanent

Thisisthelow-level function to unload (or decrement reference counts of) adriver. It can be used to force port killing,
in much the same way asthedriver optionki | | _port s implicitly does. Also, it can trigger amonitor either because
other users still have the driver loaded or because open ports use the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (that is, this user) no longer needs the driver. That can, if there are no other users, trigger unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.

If the driver hasoption ki | | _ports set,orif ki | | _ports isspecified as an option to this function, all pending
ports using this driver are killed when unloading is done by the last user. If no port-killing is involved and there are
open ports, the unloading is delayed until no more open ports use the driver. If, in this case, another user (or even this
user) loads the driver again before the driver is unloaded, the unloading never takes place.

To dlow the user to request unloading to wait for actual unloading, noni t or triggers can be specified in much
the same way as when loading. However, as users of this function seldom are interested in more than decrementing
the reference counts, monitoring is seldom needed.

If optionki I | _port s isused, monitor trigging is crucial, as the ports are not guaranteed to be killed until the
driver isunloaded. Thus, a monitor must be triggered for at least the pendi ng_dr i ver case.

The possible monitor messages to expect are the same as when using option unl oaded to function noni t or / 2.
The function returns one of the following statuses upon success:
{ok, unl oaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and no more users require it to be loaded.
{ok, pending_driver}or{ok, pending driver, reference()}

Indicates that this call removed the last user from the driver, but there are still open ports using it. When all ports
are closed and no new users have arrived, the driver is reloaded and the name and memory reclaimed.

Thisreturn valueisvalid even if option ki | | _port s was used, askilling ports can be a process that does not
completeimmediately. However, the condition isin that case transient. Monitors are always useful to detect when
the driver isreally unloaded.

64 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{ok, pending_process}or{ok, pending_process, reference()}

The unload request is registered, but other users still hold the driver. Notice that the term pendi ng_pr ocess
can refer to the running process; there can be more than one user in the same process.

Thisisanormal, healthy, return valueif the call wasjust placed toinform the emulator that you have no further use
of the driver. It isthe most common return value in the most common scenar i 0 described in the introduction.

The function accepts the following parameters:
Nanme

Narre isthe name of the driver to be unloaded. The name can be specified asani ol i st () orasanat on().
Opt i onLi st

Argument Opt i onLi st can be used to specify certain behavior regarding ports and triggering monitors under
certain conditions:

kill_ports

Forces killing of all ports opened using this driver, with exit reason dri ver _unl oaded, if you are the
last user of the driver.

If other users have the driver loaded, this option has no effect.

To get the consistent behavior of killing ports when the last user unloads, use driver option ki I | _ports
when loading the driver instead.

{rmoni tor, MbnitorQOption}
Creates adriver monitor if the condition specified in Moni t or Opt i on istrue. The valid options are:
pendi ng_dri ver
Creates adriver monitor if the return valueisto be{ ok, pendi ng _driver}.
pendi ng
Createsamonitor if thereturnvalueis{ ok, pendi ng_driver} or{ok, pendi ng_process}.

The pendi ng_dri ver Monitor Opti on isby far the most useful. It must be used to ensure that the
driver really is unloaded and the ports closed whenever option ki | | _por t s isused, or the driver can have
been loaded with driver option ki | | _ports.

Using themonitor triggersinthecall tot r y_unl oad ensuresthat the monitor isadded before the unloading
is executed, meaning that the monitor is always properly triggered, which is not the case if noni t or/ 2
iscalled separately.

The function can return the following error conditions, all well specified (no opague values):
{error, linked in_driver}

Y ou were trying to unload an Erlang statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_| oaded}
The driver Narre is not present in the system.
{error, not_I| oaded_by_this_process}
The driver Nane is present in the system, but thereis no user of it in this process.

Asaspecial case, drivers can be unloaded from processes that have done no corresponding call totry | oad/ 3
if, and only if, there are no user s of thedriver at all, which can occur if the process containing the last user dies.

Ericsson AB. All Rights Reserved.: Kernel | 65

erl_ddll

{error, pernanent}

The driver has made itself permanent, in which case it can no longer be manipulated by thisinterface (much like
astatically linked-in driver).

The function throws abadar g exception if the parameters are not specified as described here.

unload(Name) -> ok | {error, ErrorDesc}
Types.

Name = driver ()

ErrorDesc = term()

Unloads, or at |east dereferences the driver named Nanre. If the caller isthe last user of the driver, and no more open
ports use the driver, the driver gets unloaded. Otherwise, unloading is delayed until al ports are closed and no users
remain.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For use scenarios, seethedescri pt i on inthe beginning of this module.

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

unload driver(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver ()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Nane. If the caller isthe last user of the driver, all remaining open
ports using the driver are killed with reason dr i ver _unl oaded and the driver eventually gets unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For use scenarios, seethedescri pti on in the beginning of this module.

The Er r or Desc returned is an opague value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

See Also

erts:erl _driver(4),erts:driver_entry(4)

66 | Ericsson AB. All Rights Reserved.: Kernel

erl_prim_loader

erl_prim_loader

Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_loader(3) in the ERTS
reference manual instead.

Ericsson AB. All Rights Reserved.: Kernel | 67

erlang

erlang

Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the ERTS reference manual
instead.

68 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

error_handler

Erlang module

This module defines what happens when certain types of errors occur.

Exports

raise undef exception(Module, Function, Args) -> no_return()
Types:
Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Ar g1, . ., ArgN
Raisesan undef exception with a stacktrace, indicating that Modul e: Funct i on/ Nisundefined.

undefined function(Module, Function, Args) -> any()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN
This function is called by the runtime system if a call is made to Modul e: Functi on(Argl,.., ArgN) and
Modul e: Funct i on/ Nisundefined. Noticethat thisfunctionisevaluated insidethe processmaking theorigina call.
This function first attempts to autoload Modul e. If that is not possible, an undef exceptionis raised.
If it is possible to load Modul e and function Funct i on/ Nisexported, it is called.

Otherwise, if function ' $handl e _undefined function'/2 is exported, it is «caled as
" $handl e_undefi ned_functi on' (Function, Args).

Defining' $handl e_undefi ned_f uncti on'/ 2 inordinary application codeishighly discouraged. Itisvery
easy to make subtle errorsthat can take along time to debug. Furthermore, none of thetoolsfor static code analysis
(such as Dialyzer and Xref) supportsthe use of ' $handl e_undef i ned_f uncti on' / 2 and no such support
will beadded. Only usethisfunction after having carefully considered other, less dangerous, solutions. Oneexample
of potential legitimate useis creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception israised.

undefined lambda(Module, Fun, Args) -> term()
Types:

Module = atom()

Fun = function()

Args = list()

A (possibly empty) list of argumentsAr g1, . ., ArgN

This function is evaluated if acall ismadeto Fun(Argl, .., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

Ericsson AB. All Rights Reserved.: Kernel | 69

error_handler

If Modul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Fun(Argl, . ., ArgN)
cal isreturned.

Otherwise, it returns, if possible, the value of appl y(Fun, Ar gs) after an attempt is made to autoload Mbdul e.
If thisis not possible, the call fails with exit reason undef .

Notes

Thecodeinerror _handl er iscomplex. Do not changeit without fully understanding the interaction between the
error handler, thei ni t process of the code server, and the 1/0O mechanism of the code.

Code changes that seem small can cause a deadlock, as unforeseen consequences can occur. The use of i nput is
dangerousin thistype of code.

70 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

error_logger

Erlang module

The Erlang error logger is an event manager (see OTP Design Principles and gen_event (3)), registered as
error_| ogger . Errors, warnings, and info events are sent to the error logger from the Erlang runtime system and
the different Erlang/OTP applications. The events are, by default, logged to the terminal. Notice that an event from a
process P islogged at the node of the group leader of P. This meansthat log output is directed to the node from which
aprocess was created, which not necessarily is the same node as where it is executing.

Initially, er r or _| ogger hasonly aprimitive event handler, which buffersand printstheraw event messages. During
system startup, the Kernel application replaces this with a standard event handler, by default one that writes nicely
formatted output to the terminal. Kernel can also be configured so that events arelogged to afileinstead, or not logged
a al, seeker nel (6).

Also the SASL application, if started, adds its own event handler, which by default writes supervisor, crash, and
progress reportsto the terminal. See sasl (6) .

It is recommended that user-defined applications report errors through the error logger to get uniform reports. User-
defined event handlers can be added to handle application-specific events, seeadd_report _handl er/ 1, 2. Also,
auseful event handler is provided in STDLIB for multi-file logging of events, seel og_nf _h(3).

Warning events were introduced in Erlang/OTP R9C and are enabled by default as from Erlang/OTP 18.0. To retain
backwards compatibility with existing user-defined event handlers, the warning events can be tagged aser r or s or
i nf o using command-line flag+W <e | i | w>, thusshowing up as ERROR REPORT or | NFO REPORT
inthelogs.

Data Types

report() =
[{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

add report handler(Handler) -> any()
add_report handler(Handler, Args) -> Result
Types:
Handler = module()
Args = gen_event: handl er _args()
Result = gen_event:add_handl er_ret()
Adds a new event handler to the error logger. The event handler must be implemented as agen_event callback
module, seegen_event (3).
Handl er istypically the name of the callback module and Ar gs is an optional term (defaults to []) passed to the
initialization callback function Handl er : i ni t / 1. The function returns ok if successful.

The event handler must be able to handle the events in this modul e, see section Events.

delete report handler(Handler) -> Result
Types:

Ericsson AB. All Rights Reserved.: Kernel | 71

error_logger

Handler = module()
Result = gen_event:del handler_ret()

Deletes an event handler from the error logger by caling gen_event : del et e_handl er (error _| ogger,
Handl er, []),seegen_event(3).

error_msg(Format) -> ok
error_msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:
Format = string()
Data = list()
Sends a standard error event to the error logger. The For mat and Dat a arguments are the same as the arguments of
i o: format/ 2 inSTDLIB. The event is handled by the standard event handler.

Example:

1> error_logger:error msg("An error occurred in ~p~n", [a module]).

=ERROR REPORT==== 11-Aug-2005::14:03:19 ===
An error occurred in a module
ok

War ning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, useer ror _report/ 1 instead.

Warning:

If the Unicode translation modifier (t) isused in the format string, all error handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

error_report(Report) -> ok
Types:
Report = report()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.

Example:

72 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

2> error_logger:error_report([{tagl,datal},a term,{tag2,data}]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:
Type = term()
Report = report()
Sends a user-defined error report event to the error logger. An event handler to handle the event is supposed to have
been added. The event isignored by the standard event handler.

It is recommended that Repor t follows the same structure asfor error _report/ 1.

get format depth() -> unlimited | integer() >=1

Returnsmax(10, Dept h), where Dept h isthevalue of error_logger format_depth in the Kernel application, if
Depth isan integer. Otherwise, unl i mi t ed isreturned.

info msg(Format) -> ok
info msg(Format, Data) -> ok
Types:

Format = string()

Data = list()

Sends a standard information event to the error logger. The For nat and Dat a arguments are the same as the
argumentsof i o: f or mat / 2 in STDLIB. The event is handled by the standard event handler.

Example:

1> error_logger:info msg("Something happened in ~p~n", [a module]).

=INFO REPORT==== 11-Aug-2005::14:06:15 ===
Something happened in a module
ok

War ning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usei nf o_report/ 1 instead.

Ericsson AB. All Rights Reserved.: Kernel | 73

error_logger

If the Unicode translation modifier (t) isused in the format string, all error handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

info_report(Report) -> ok
Types:
Report = report()
Sends a standard information report event to the error logger. The event is handled by the standard event handler.
Example:

2> error_logger:info_report([{tagl,datal},a term,{tag2,data}]).

=INFO REPORT==== 11-Aug-2005::13:55:09 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:info_report("Something strange happened").
=INFO REPORT==== 11-Aug-2005::13:55:36 ===
Something strange happened
ok

info report(Type, Report) -> ok
Types:

Type = any()

Report = report ()

Sends a user-defined information report event to the error logger. An event handler to handle the event is supposed to
have been added. The event isignored by the standard event handler.

It isrecommended that Repor t follows the same structure asfor i nf o_r eport/ 1.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types.

Filename = file: nane()

OpenReason = allready have logfile | open_error()

CloseReason = module not found

FilenameReason = no log file

open error() = file:posix() | badarg | system limit
Enables or disables printout of standard eventsto afile.

Thisis done by adding or deleting the standard event handler for output to file. Thus, calling this function overrides
the value of the Kernel er r or _I ogger configuration parameter.

Enabling file logging can be used together with callingt t y(f al se), to have a silent system where al standard
events are logged to afile only. Only onelog file can be active at atime.

74 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Request isone of the following:
{open, Fil enane}

OpenslogfileFi | ename. Returnsok if successful,or{error, allready_have_| ogfil e} ifloggingto
fileisalready enabled, or an error tupleif another error occurred (for example, if Fi | enanme cannot be opened).
Thefile is opened with encoding UTF-8.

cl ose
Closes the current log file. Returns ok, or { error, nodul e_not _found}.
fil enane

Returnsthe name of thelog fileFi | ename, or{error, no_l og fil e} if loggingtofileisnot enabled.

tty(Flag) -> ok
Types:
Flag = boolean()
Enables (FI ag == true) ordisables(Fl ag == f al se) printout of standard events to the terminal.

This is done by adding or deleting the standard event handler for output to the terminal. Thus, calling this function
overrides the value of the Kernel er r or _| ogger configuration parameter.

warning map() -> Tag
Types:
Tag = error | warning | info

Returns the current mapping for warning events. Events sent using warning_nsg/ 1,2 or
war ni ng_report/ 1, 2 aretagged as errors, warnings (default), or info, depending on the value of command-line
flag +W

Example:

os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with "G)

1> error_logger:warning map().

warning

2> error_logger:warning msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
- => q
0s$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with "G)

1> error_logger:warning map().

error

2> error_logger:warning msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

Ericsson AB. All Rights Reserved.: Kernel | 75

error_logger

warning msg(Format) -> ok
warning msg(Format, Data) -> ok
Types:
Format = string()
Data = list()
Sends a standard warning event to the error logger. The For mat and Dat a arguments are the same as the arguments

of i o: format/ 2 in STDLIB. The event is handled by the standard event handler. It istagged as an error, warning,
or info, seewar ni ng_map/ 0.

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usewar ni ng_r eport/ 1 instead.

If the Unicode translation modifier (t) isused in the format string, all error handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

warning report(Report) -> ok
Types:
Report = report ()

Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is
tagged as an error, warning, or info, seewar ni ng_map/ 0.

warning report(Type, Report) -> ok
Types:

Type = any()

Report = report()

Sends a user-defined warning report event to the error logger. An event handler to handle the event is supposed to have
been added. The event isignored by the standard event handler. It istagged as an error, warning, or info, depending
on the value of war ni ng_map/ 0.

Events

All event handlers added to the error logger must handle the following events. G eader isthe group leader pid of
the process that sent the event, and Pi d isthe process that sent the event.

{error, deader, {Pid, Format, Data}}
Generated whenerror _nmsg/ 1, 2 or f or mat iscalled.

{error_report, G eader, {Pid, std _error, Report}}
Generated whenerror _report/ 1iscaled.

{error _report, deader, {Pid, Type, Report}}
Generated whener r or _report/ 2 iscaled.

76 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

{warni ng_nsg, d eader, {Pid, Format, Data}}

Generated when war ni ng_mnsg/ 1, 2 iscalled if warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, std warning, Report}}

Generated when war ni ng_r eport/ 1 iscaled if warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, Type, Report}}

Generated whenwar ni ng_r eport/ 2 iscalled if warnings are set to be tagged as warnings.
{info_nsg, d eader, {Pid, Format, Data}}

Generated wheni nf o_mnsg/ 1, 2 iscalled.
{info_report, deader, {Pid, std_info, Report}}

Generated wheni nf o_r eport/ liscalled.
{info_report, deader, {Pid, Type, Report}}

Generated wheni nf o_report/ 2 iscalled.

Notice that some system-internal events can also be received. Therefore a catch-al clause last in the definition
of the event handler callback function Modul e: handl e_event/ 2 is necessary. This aso applies for
Modul e: handl e_i nf o/ 2, asthe event handler must also take care of some system-internal messages.

See Also
gen_event (3),1 og_nf_h(3) kernel (6) sasl (6)

Ericsson AB. All Rights Reserved.: Kernel | 77

file

file

Erlang module

This module provides an interface to the file system.

On operating systems with thread support, file operations can be performed in threads of their own, allowing other
Erlang processes to continue executing in parallel with the file operations. See command-lineflag +Ainer| (1).

Regarding filename encoding, the Erlang VM can operate in two modes. The current mode can be queried using
functionnat i ve_name_encodi ng/ 0. Itreturns| ati nl orut f 8.

Inl at i n1 mode, the Erlang VM does not change the encoding of filenames. In ut f 8 mode, filenames can contain
Unicode characters greater than 255 and the VM converts filenames back and forth to the native filename encoding
(usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows and MacOS X enforce consistent filename encoding
and therefore the VM uses ut f 8 mode.

On operating systems with transparent naming (for example, all Unix systems except MacOS X), default isut f 8 if
thetermina supportsUTF-8, otherwisel at i n1. Thedefault can be overridden using +f nl (toforcel at i n1 mode)
or +f nu (to force ut f 8 mode) when startingert s: erl .

On operating systems with transparent naming, files can be inconsistently named, for example, somefiles are encoded
in UTF-8 while others are encoded in I SO Latin-1. The concept of raw filenamesisintroduced to handlefile systems
with inconsistent naming when running in ut f 8 mode.

A raw filenameisafilename specified asabinary. The Erlang VM does not trandlate a filename specified as a binary
on systems with transparent naming.

When running in ut f 8 mode, functions! i st _dir/ 1 andread_| i nk/ 1 never return raw filenames. To return
all filenamesincluding raw filenames, use functions!l i st _dir_all/landread_|ink_all/1.

See also section Notes About Raw Filenames in the STDLIB User's Guide.

Data Types
deep list() = [char() | atom() | deep_list()]
fd()

A file descriptor representing afile opened in r aw mode.

filename() = string()

filename all() = string() | binary()

io device() = pid() | fd()

Asreturned by open/ 2; pi d() isaprocess handling I/O-protocols.

name() = string() | atom() | deep_list()

If VM isin Unicode filename mode, st ri ng() and char () arealowed to be > 255.

name all() =
string() | atom() | deep_list() | (RawFilename :: binary())

If VM isin Unicodefilenamemode, st ri ng() andchar () areallowedto be>255. RawFi | enane isafilename
not subject to Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding
expected from the file system (that is, non-UTF-8 characters although the VM is started in Unicode filename mode).
posix() =

eacces |

78 | Ericsson AB. All Rights Reserved.: Kernel

file

eagain |

ebadf |

ebusy |

edquot |
eexist |
efault |

efbig |

eintr |

einval |

eio |

eisdir |

eloop |

emfile |
emlink |
enametoolong |
enfile |
enodev |
enoent |
enomem |
enospc |
enotblk |
enotdir |
enotsup |
enxio |
eperm |
epipe |
erofs |
espipe |
esrch |
estale |
exdev

An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
date time() = cal endar:datetime()
Must denote avalid date and time,

file info() =
#file info{size = integer() >= 0 | undefined,
type =
device |
directory |
other |
regular |
symlink |
undefined,
access =
read | write | read write | none | undefined,
atime =
file:date_tine() |
integer() >= 0 |
undefined,
mtime =

Ericsson AB. All Rights Reserved.: Kernel | 79

file

file:date_time() |
integer() >= 0 |
undefined,
ctime =
file:date_time() |
integer() >= 0 |
undefined,
mode = integer() >= 0 | undefined,
links = integer() >= 0 | undefined,
major device = integer() >= 0 | undefined,
minor device = integer() >= 0 | undefined,
inode = integer() >= 0 | undefined,
uid integer() >= 0 | undefined,
gid integer() >= 0 | undefined}

location() =
integer() |
{bof, Offset :: integer()} |
{cur, Offset :: integer()} |
{eof, Offset :: integer()} |
bof |
cur |
eof

mode() =

read |

write |

append |

exclusive |

raw |

binary |

{delayed write,

Size :: integer() >= 0,
Delay :: integer() >= 0} |
delayed write |

{read_ahead, Size :: integer() >= 1} |
read_ahead |

compressed |

{encoding, unicode: encoding() } |

sync

file info option() =
{time, local} | {time, universal} | {time, posix} | raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:

IoDevice = io_device()

Offset Length = integer()

Advise posi x_file_advise()

Reason = posi x() | badarg

posix file advise() =

80 | Ericsson AB. All Rights Reserved.: Kernel

file

normal |
sequential |
random |
no_reuse |
will need |
dont need

advi se/ 4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:

File = i o_device()

Offset = Length = integer() >= 0

al | ocat e/ 3 can be used to preallocate space for afile.

This function only succeeds in platforms that provide this feature. When it succeeds, space is preallocated for the file
but the file size might not be updated. This behaviour depends on the preallocation implementation. To guarantee that
thefile size is updated, truncate the file to the new size.

change group(Filename, Gid) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Gid = integer()

Reason = posix() | badarg
Changes group of afile. Seewrite file_info/2.

change mode(Filename, Mode) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Mode = integer()

Reason = posix() | badarg
Changes permissions of afile. Seewrite file_info/2.

change owner(Filename, Uid) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Uid = integer()

Reason = posix() | badarg
Changes owner of afile. Seewite file_info/2.

change owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 81

file

Filename = nane_all ()
Uid = Gid = integer()
Reason = posix() | badarg

Changes owner and group of afile. Seewrite file_ info/2.

change time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = nanme_all ()

Mtime = date_time()

Reason = posix() | badarg
Changes the modification and accesstimes of afile. Seewrite_fil e_i nfo/ 2.

change time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = nanme_all ()

Atime = Mtime = date_tine()

Reason = posix() | badarg

Changes the modification and last accesstimes of afile. Seewrite fil e_info/ 2.

close(IoDevice) -> ok | {error, Reason}
Types:
IoDevice = io_device()
Reason = posix() | badarg | terminated
Closesthefilereferenced by | oDevi ce. It mostly returns ok, except for some severe errors such as out of memory.

Notice that if option del ayed_wri t e was used when opening the file, cl ose/ 1 can return an old write error and
not even try to close thefile. Seeopen/ 2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = nanme_all ()

Terms = [term()]

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by ".", from Fi | enan®e. Returns one of the following:
{ok, Terns}
The file was successfully read.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.

82 | Ericsson AB. All Rights Reserved.: Kernel

file

{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang termsin the file. To convert the three-element tuple to an English
description of the error, usef or mat _error/ 1.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
{ok, [{person, "kalle", 25}, {person, "pelle",30}]}

The encoding of Fi | enane can be set by acomment, as described in epp(3) .

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}

copy(Source, Destination, ByteCount) ->
{ok, BytesCopied} | {error, Reason}

Types:
Source = Destination = io_device() | Filename | {Filename, Modes}
Filename = nane_all ()
Modes = [npde()]
ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0
Reason = posix() | badarg | terminated

CopiesByt eCount bytesfrom Sour ce toDest i nati on. Sour ce and Dest i nat i on refer to either filenames
or 10 devicesfrom, for example, open/ 2. Byt eCount defaultstoi nf i ni t y, denoting aninfinite number of bytes.

Argument Modes isalist of possible modes, see open/ 2, and defaultsto[] .

If both Sour ce and Dest i nat i on refer to filenames, thefilesare opened with[r ead, bi nary] and[write,
bi nary] prepended to their mode lists, respectively, to optimize the copy.

If Sour ce refersto afilename, it is opened with r ead mode prepended to the mode list before the copy, and closed
when done.

If Desti nati on refersto afilename, it is opened with wr i t @ mode prepended to the mode list before the copy,
and closed when done.

Returns{ ok, Byt esCopi ed}, where Byt esCopi ed isthe number of bytes that was copied, which can be less
than Byt eCount if end of filewasencountered on the source. If theoperationfails,{ er r or, Reason} isreturned.

Typical error reasons. asfor open/ 2 if afile had to be opened, and asforr ead/ 2 andwri t e/ 2.

datasync(IoDevice) -> ok | {error, Reason}
Types:
IoDevice = io_device()
Reason = posi x() | badarg | terminated
Ensures that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In many

ways it resembles f sync but it does not update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

Applications that access databases or log files often write atiny data fragment (for example, onelinein alogfile) and
then call f sync() immediately to ensure that the written data is physically stored on the hard disk. Unfortunately,

Ericsson AB. All Rights Reserved.: Kernel | 83

file

fsync() aways initiates two write operations: one for the newly written data and another one to update the
modificationtimestoredinthei node. If themodificationtimeisnot apart of thetransaction concept, f dat async()
can be used to avoid unnecessary i node disk write operations.

Availableonly in some POSI X systems, thiscall resultsinacall tof sync() , or hasno effect in systemsnot providing
thef dat async() syscall.

del dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane_all ()
Reason = posix() | badarg
Triesto delete directory Di r . The directory must be empty before it can be deleted. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directories of Di r .
eexi st
The directory is not empty.
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.
ei nval

Attempt to delete the current directory. On some platforms, eacces isreturned instead.

delete(Filename) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Reason = posix() | badarg

Triesto deletefile Fi | enane. Returns ok if successful.
Typical error reasons:
enoent

The file does not exist.
eacces

Missing permission for the file or one of its parents.
eperm

Thefileisadirectory and the user is not superuser.
enotdir

A component of the filename is not a directory. On some platforms, enoent isreturned instead.
ei nval

Fi | ename has an improper type, such astuple.

84 | Ericsson AB. All Rights Reserved.: Kernel

file

In afuture release, abad type for argument Fi | enamne will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:
Filename = nane_all ()
Reason =
posi x() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}
Reads and evaluates Erlang expressions, separated by "' (or ',', a sequence of expressionsis also an expression) from
Fi | ename. Theresult of the evaluation is not returned; any expression sequence in the file must be there for its side
effect. Returns one of the following:

ok
Thefile was read and evaluated.
{error, atom()}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}
An error occurred when interpreting the Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, usef or mat _error/ 1.
The encoding of Fi | enamne can be set by acomment, as described in epp(3) .

eval(Filename, Bindings) -> ok | {error, Reason}

Types:
Filename
Bindings
Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

The same as eval / 1, but the variable bindings Bi ndi ngs are used in the evaluation. For information about the
variable bindings, seeer| _eval (3).

nane_al | ()
erl _eval : bi ndi ng_struct ()

format error(Reason) -> Chars

Types.
Reason =
posi x() |
badarg |
terminated |

system limit |

Ericsson AB. All Rights Reserved.: Kernel | 85

file

{Line :: integer(), Mod :: module(), Term :: term()}
Chars = string()

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get cwd() -> {ok, Dir} | {error, Reason}
Types:
Dir = fil enane()
Reason = posi x()
Returns{ ok, Dir},whereDi r isthe current working directory of the file server.

In rare circumstances, this function can fail on Unix. It can occur if read permission does not exist for the parent
directories of the current directory.

A typical error reason:
eacces

Missing read permission for one of the parents of the current directory.

get cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:
Drive = string()
Dir = fil enane()
Reason = posix() | badarg
Returns{ok, Dir} or{error, Reason},whereDi r isthecurrent working directory of the specified drive.
Dri ve istobeof theform"Let t er : ", for example, "c:".
Returns{ error, enot sup} on platformsthat have no concept of current drive (Unix, for example).
Typical error reasons:
enot sup
The operating system has no concept of drives.
eacces
The drive does not exist.
ei nval
Theformat of Dri ve isinvalid.

list dir(Dir) -> {ok, Filenames} | {error, Reason}
Types.

Dir = nane_all ()

Filenames = [fil enane()]

Reason =

posi x() |
badarg |

86 | Ericsson AB. All Rights Reserved.: Kernel

file

{no_translation, Filename :: unicode:latinl_binary()}

Listsal filesin a directory, except files with raw filenames. Returns{ ok, Fi | enanes} if successful, otherwise
{error, Reason}.Fil enanes isalist of the names of all the filesin the directory. The names are not sorted.

Typical error reasons:
eacces
Missing search or write permissions for Di r or one of its parent directories.
enoent
The directory does not exist.
{no_transl ation, Filenane}

Fi | enameisabi nar y() withcharacterscodedinlSO Latin-1 and the VM was started with parameter +f nue.

list dir all(Dir) -> {ok, Filenames} | {error, Reason}
Types.

Dir = nane_all ()

Filenames = [filenane_all ()]

Reason = posix() | badarg

Lists all the files in a directory, including files with raw filenames. Returns { ok, Fi | enanes} if successful,
otherwise {error, Reason}.Fil enanes isalist of the names of all the files in the directory. The names are
not sorted.

Typical error reasons:
eacces

Missing search or write permissions for Di r or one of its parent directories.
enoent

The directory does not exist.

make dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane_all ()
Reason = posix() | badarg
Triesto create directory Di r . Missing parent directories are not created. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directories of Di r .
eexi st
A fileor directory named Di r exists already.
enoent
A component of Di r does not exist.
enospc
No spaceis left on the device.

Ericsson AB. All Rights Reserved.: Kernel | 87

file

enotdir

A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

make link(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = nane_all ()

Reason = posi x() | badarg

Makes a hard link from Exi sti ng to New on platforms supporting links (Unix and Windows). This function
returns ok if the link was successfully created, otherwise{error, Reason}. On platforms not supporting links,
{error, enot sup} isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup

Hard links are not supported on this platform.

make symlink(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = nane_all ()

Reason = posi x() | badarg

Creates a symbolic link Newto the file or directory Exi st i ng on platforms supporting symbolic links (most Unix
systems and Windows, beginning with Vista). Exi st i ng doesnot needto exist. Returnsok if thelink is successfully
created, otherwise { error, Reason}. On platforms not supporting symbolic links, { error, enot sup} is
returned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Symbolic links are not supported on this platform.
eperm
User does not have privilegesto create symboliclinks (SeCr eat eSynbol i cLi nkPri vi | ege onWindows).

native name_encoding() -> latinl | utf8

Returnsthe filename encoding mode. If itisl at i n1, the system tranglates no filenames. If itisut f 8, filenames are
converted back and forth to the native filename encoding (usually UTF-8, but UTF-16 on Windows).

88 | Ericsson AB. All Rights Reserved.: Kernel

file

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:
File = Filename | iodata()
Filename = nane_all ()
Modes = [nmpde() | ram]
IoDevice = io_device()
Reason = posix() | badarg | system limit
OpensfileFi | e in the mode determined by Modes, which can contain one or more of the following options:
read
Thefile, which must exist, is opened for reading.
wite
Thefileis opened for writing. It is created if it does not exist. If the file existsand wr i t e isnot combined with
r ead, thefileis truncated
append

Thefileisopened for writing. It iscreated if it does not exist. Every write operation to afile opened withappend
takes place at the end of thefile.

excl usi ve
Thefileisopened for writing. It iscreated if it does not exist. If thefileexists, { error, eexi st} isreturned.

Warning:

This option does not guarantee exclusiveness on file systems not supporting O_EXCL properly, such as NFS.
Do not depend on this option unless you know that the file system supports it (in general, local file systems
are safe).

raw

Allows faster access to afile, as no Erlang process is heeded to handle the file. However, a file opened in this
way has the following limitations:

e The functionsin the i 0 module cannot be used, as they can only talk to an Erlang process. Instead, use
functionsread/ 2,read_line/1,andwite/?2.

e Especidly if read_I| i ne/ 1 isto be used on ar awfile, it is recommended to combine this option with
option{read ahead, Si ze} asline-oriented I/O isinefficient without buffering.

e Only the Erlang process that opened the file can use it.

e A remote Erlang file server cannot be used. The computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

bi nary
Read operations on the file return binaries rather than lists.
{del ayed write, Size, Del ay}

Datain subsequent wr i t e/ 2 callsisbuffered until at least Si ze bytes are buffered, or until the oldest buffered
datais Del ay milliseconds old. Then all buffered datais written in one operating system call. The buffered data
is aso flushed before some other file operation thanwr i t e/ 2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls. Thus,
thewr i t e/ 2 calls must be for sizes significantly less than Si ze, and not interspersed by too many other file
operations.

Ericsson AB. All Rights Reserved.: Kernel | 89

file

When this option is used, the result of wri t e/ 2 calls can prematurely be reported as successful, and if awrite
error occurs, the error is reported as the result of the next file operation, which is not executed.

For example, when del ayed_write is used, after a number of wite/2 cals, cl ose/1 can return
{error, enospc}, asthereis not enough space on the disc for previously written data. cl ose/ 1 must
probably be called again, asthefileis till open.

del ayed wite

Thesame as{del ayed wite, Size, Delay} with reasonable default values for Si ze and Del ay
(roughly some 64 KB, 2 seconds).

{read_ahead, Size}

Activates read data buffering. If r ead/ 2 calls are for significantly less than Si ze bytes, read operations to
the operating system are still performed for blocks of Si ze bytes. The extra data is buffered and returned in
subsequent r ead/ 2 calls, giving a performance gain as the number of operating system callsis reduced.

Ther ead_ahead buffer isalso highly used by functionr ead_I i ne/ 1 inr awmode, therefore thisoption is
recommended (for performance reasons) when accessing raw files using that function.

If read/ 2 callsarefor sizes not significantly less than, or even greater than Si ze bytes, no performance gain
can be expected.

read_ahead
Thesameas{r ead_ahead, Si ze} with areasonable default valuefor Si ze (roughly some 64 KB).
conpr essed

Makes it possible to read or write gzip compressed files. Option conpr essed must be combined with r ead
orwri t e, but not both. Notice that the file size obtained withr ead_f i | e_i nf o/ 1 does probably not match
the number of bytes that can be read from a compressed file.

{encodi ng, Encodi ng}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Notice
that the data supplied towr i t e/ 2 or returned by r ead/ 2 till is byte-oriented; this option denotes only how
dataisstored in the disk file.

Depending on the encoding, different methods of reading and writing datais preferred. The default encoding of
| at i n1impliesusingthismodule(f i | e) for reading and writing data as the interfaces provided herework with
byte-oriented data. Using other (Unicode) encodingsmakesthei o(3) functionsget _chars,get | i ne,and
put _char s more suitable, as they can work with the full Unicode range.

If dataissenttoani o_devi ce() inaformat that cannot be converted to the specified encoding, or if data
isread by afunction that returns datain aformat that cannot cope with the character range of the data, an error
occurs and thefileis closed.

Allowed values for Encodi ng:
latinl

The default encoding. Bytes supplied to thefile, that is, wr i t e/ 2 are written "asis' on thefile. Likewise,
bytes read from thefile, that is, r ead/ 2 arereturned "asis". If modulei o(3) isused for writing, thefile
can only cope with Unicode characters up to code point 255 (the SO Latin-1 range).

uni code or utf8

Characters are trandated to and from UTF-8 encoding before they are written to or read from the file. A
file opened in this way can be readable using function r ead/ 2, as long as no data stored on the file lies
beyond the 1SO Latin-1 range (0..255), but failure occurs if the data contains Unicode code points beyond
that range. Thefile is best read with the functions in the Unicode aware modulei o(3) .

90 | Ericsson AB. All Rights Reserved.: Kernel

file

ram

Bytes written to the file by any means are trandlated to UTF-8 encoding before being stored on the disk file.
utf16 or {utf16, bi g}

Works like uni code, but tranglation is done to and from big endian UTF-16 instead of UTF-8.
{utfieé,little}

Workslike uni code, but translation is done to and from little endian UTF-16 instead of UTF-8.
utf32 or {utf32, big}

Workslike uni code, but tranglation is done to and from big endian UTF-32 instead of UTF-8.
{utf32,little}

Workslike uni code, but tranglation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for afile"onthefly" by using functioni o: set opt s/ 2. So afilecan beanalyzed
in latinl encoding for, for example, aBOM, positioned beyond the BOM and then be set for the right encoding
before further reading. For functions identifying BOMs, see module uni code(3) .

Thisoption is not allowed on r awfiles.

Fil e must bei odat a() . Returnsan f d() , which lets module f i | e operate on the data in-memory as if it
isafile.

sync

On platforms supporting it, enables the POSIX O_SYNC synchronous 1/O flag or its platform-dependent
equivalent (for example, FI LE_FLAG WRI TE_THROUGH on Windows) so that writesto thefile block until the
datais physically written to disk. However, be aware that the exact semantics of thisflag differ from platform to
platform. For example, none of Linux or Windows guaranteesthat all file metadata are al so written before the call
returns. For precise semantics, check the details of your platform documentation. On platforms with no support
for POSIX O_SYNC or equivalent, use of thesync flag causesopen toreturn{ err or, enot sup}.

Returns:

{ ok,

| oDevi ce}

Thefileis opened in the requested mode. | oDevi ce isareferenceto thefile.

{error, Reason}

The file cannot be opened.

| oDevi ce isreally the pid of the process that handles the file. This process is linked to the process that originally
opened thefile. If any processto which thel oDevi ce islinked terminates, the fileis closed and the processitself is

termi

nated. An | oDevi ce returned from this call can be used as an argument to the 1/0O functions (seei o(3)).

Inpreviousversionsof f i | e, modes were specified as one of theatomsr ead, wite,orread wit e instead
of alist. Thisis still allowed for reasons of backwards compatibility, but is not to be used for new code. Also note
thatr ead_writ e isnot alowed in amodelist.

Typical error reasons:

enoent

The file does not exist.

Ericsson AB. All Rights Reserved.: Kernel | 91

file

eacces
Missing permission for reading the file or searching one of the parent directories.
eisdir
The named fileis not aregular file. It can be adirectory, a FIFO, or adevice.
enotdir
A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
enospc

There is no space left on the device (if wr i t e access was specified).

path consult(Path, Filename) ->
{ok, Terms, FullName} | {error, Reason}

Types:
Path = [Dir]
Dir = Filename = nane_all ()
Terms = [term()]
FullName = fil ename_all ()
Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | enan®e isfound. If Fi | ename is an absolute
filename, Pat h isignored. Then reads Erlang terms, separated by '.", from thefile.

Returns one of the following:
{ok, Terms, Full Nane}
Thefileis successfully read. Ful | Name isthe full name of thefile
{error, enoent}
The file cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang termsin the file. Usef or mat _er r or/ 1 to convert the three-
element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .

path eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types.

Path = [Dir :: nanme_all ()]

Filename = nane_all ()

FullName = fil enanme_all ()

Reason =

92 | Ericsson AB. All Rights Reserved.: Kernel

file

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | ename isfound. If Fi | enane is an absolute

filename, Pat h is ignored. Then reads and evaluates Erlang expressions, separated by "' (or '), a sequence of
expressions is also an expression), from the file. The result of evaluation is not returned; any expression sequence in
the file must be there for its side effect.

Returns one of the following:
{ok, Full Nane}
Thefileisread and evaluated. Ful | Name isthe full name of thefile.
{error, enoent}
The file cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .

path open(Path, Filename, Modes) ->
{ok, IoDevice, FullName} | {error, Reason}

Types:
Path = [Dir :: nane_all ()]
Filename = nane_all ()
Modes = [npde()]
IoDevice = io_device()
FullName = filenanme_all ()
Reason = posix() | badarg | system limit

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | ename is an absolute
filename, Pat h isignored. Then opens the file in the mode determined by Modes.

Returns one of the following:
{ok, loDevice, Full Nane}

Thefile is opened in the requested mode. | oDevi ce isareference to thefile and Ful | Name is the full name
of thefile.

{error, enoent}

Thefile cannot be found in any of the directoriesin Pat h.
{error, atom)}

The file cannot be opened.

path script(Path, Filename) ->

Ericsson AB. All Rights Reserved.: Kernel | 93

file

{ok, Value, FullName} | {error, Reason}
Types:
Path = [Dir :: name_all ()]
Filename = nane_all ()
Value = term()
FullName = fil ename_all ()
Reason =
posi x() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}
Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | enane is an absolute
filename, Pat h is ignored. Then reads and evaluates Erlang expressions, separated by "' (or '), a sequence of
expressionsis also an expression), from the file.

Returns one of the following:
{ok, Value, Full Nane}
Thefileisread and evaluated. Ful | Nane isthefull name of thefileand Val ue the value of thelast expression.
{error, enoent}
Thefile cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | ename can be set by a comment as described in epp(3) .

path script(Path, Filename, Bindings) ->
{ok, Value, FullName} | {error, Reason}

Types.

Path = [Dir :: name_all ()]

Filename = nane_all ()

Bindings = erl _eval : bi ndi ng_struct ()

Value = term()

FullName = fil enanme_all ()

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Thesameaspat h_scri pt/ 2 but thevariablebindingsBi ndi ngs areusedintheevaluation. Seeer | _eval (3)
about variable bindings.

94 | Ericsson AB. All Rights Reserved.: Kernel

file

pid2name(Pid) -> {ok, Filename} | undefined

Types.
Filename = fil enane_all ()
Pid = pid()

If Pi disan /O device, that is, apid returned from open/ 2, this function returns the filename, or rather:
{ok, Filenane}

If the file server of this node is not a slave, the file was opened by the file server of this node (this implies that
Pi d must bealocal pid) and the fileis not closed. Fi | enane isthefilenamein flat string format.

undef i ned
In all other cases.

Thisfunction isintended for debugging only.

position(IoDevice, Location) ->
{ok, NewPosition} | {error, Reason}

Types:
IoDevice = io_device()
Location = | ocation()

NewPosition = integer()
Reason = posix() | badarg | terminated

Sets the position of the file referenced by | oDevi ce to Locat i on. Returns{ ok, NewPosi ti on} (asabsolute
offset) if successful, otherwise{ error, Reason}.Locati on isone of thefollowing:

O fset

Thesameas{bof, O fset}.
{bof, Ofset}

Absolute offset.
{cur, Ofset}

Offset from the current position.
{eof, O fset}

Offset from the end of file.
bof | cur | eof

The same as above with OF f set O.

Notice that offsets are counted in bytes, not in characters. If the file is opened using some other encodi ng than
| at i n1, one byte does not correspond to one character. Positioning in such afile can only be doneto known character
boundaries. That is, to a position earlier retrieved by getting a current position, to the beginning/end of the file or to
some other position known to be on a correct character boundary by some other means (typically beyond a byte order
mark in the file, which has a known byte-size).

A typical error reason is:

Ericsson AB. All Rights Reserved.: Kernel | 95

file

ei nval

Either Locat i on isillegal, or it is evaluated to a negative offset in the file. Notice that if the resulting position
isanegative value, the result is an error, and after the call the file position is undefined.

pread(IoDevice, LocNums) -> {ok, DatalL} | eof | {error, Reason}
Types:
IoDevice = io_device()
LocNums =
[{Location :: location(), Number :: integer() >= 0}]
DataL = [Data]
Data = string() | binary() | eof
Reason = posix() | badarg | terminated
Performs a sequence of pr ead/ 3 in one operation, which is more efficient than calling them one at atime. Returns

{ok, [Data, ...]} or{error, Reason}, whereeach Dat a, the result of the corresponding pr ead, is
either alist or abinary depending on the mode of thefile, or eof if the requested position is beyond end of file.

Asthe position is specified as a byte-offset, take special caution when working with fileswhere encodi ng isset to
something elsethan | at i n1, as not every byte position isavalid character boundary on such afile.

pread(IoDevice, Location, Number) ->
{ok, Data} | eof | {error, Reason}

Types:
IoDevice = io_device()
Location = |l ocation()

Number = integer() >= 0
Data = string() | binary()
Reason = posix() | badarg | terminated

Combines posi ti on/ 2 andr ead/ 2 in one operation, which is more efficient than calling them one at atime. If
| oDevi ce isopenedinr awmode, some restrictions apply:

* Locati onisonly allowed to be an integer.
e Thecurrent position of the file is undefined after the operation.

Asthe position is specified as a byte-offset, take special caution when working with fileswhere encodi ng isset to
something elsethan | at i n1, as not every byte position isavalid character boundary on such afile.

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}

Types:
IoDevice = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]

N = integer() >= 0
Reason = posix() | badarg | terminated

Performs a sequence of pwr i t e/ 3 in one operation, which is more efficient than calling them one at atime. Returns
okor{error, {N, Reason}},whereNisthenumber of successful writes done before the failure.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary. For details, see posi ti on/ 2.

96 | Ericsson AB. All Rights Reserved.: Kernel

file

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}

Types.
IoDevice = io_device()
Location = |l ocation()

Bytes = iodata()
Reason = posix() | badarg | terminated

Combinesposi tion/ 2 andwr it e/ 2 inone operation, which is more efficient than calling them one at atime. If
| oDevi ce hasbeen opened in r aw mode, some restrictions apply:

* Locati onisonly alowed to be an integer.

* Thecurrent position of the file is undefined after the operation.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary. For details, see posi ti on/ 2.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device() | atom()

Number = integer() >= 0

Data = string() | binary()

Reason =

posi x() |

badarg |

terminated |

{no_translation, unicode, latinl}

Reads Nunber bytes/characters from the file referenced by | oDevi ce. The functions r ead/ 2, pr ead/ 3, and
read_I| i ne/ 1 arethe only waysto read from afile opened in r aw mode (although they work for normally opened
files, too).

For files where encodi ng is set to something else than | at i n1, one character can be represented by more than
one byte on the file. The parameter Nunber always denotes the number of characters read from the file, while the
position in the file can be moved much more than this number when reading a Unicode file.

Also, if encodi ng isset to something elsethan| at i n1, ther ead/ 3 call failsif the data contains characters larger
than 255, which iswhy modulei o(3) isto be preferred when reading such afile.

The function returns:
{ok, Dat a}

If thefile was opened in binary mode, the read bytes are returned in abinary, otherwisein alist. Thelist or binary
is shorter than the number of bytes requested if end of file was reached.

eof
Returned if Nurmber >0 and end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.

Ericsson AB. All Rights Reserved.: Kernel | 97

file

{no_translation, unicode, |atinl}

Thefileis opened with another encodi ng than| at i n1 and the datain thefile cannot be tranglated to the byte-
oriented data that this function returns.

read file(Filename) -> {ok, Binary} | {error, Reason}
Types:

Filename = nane_all ()

Binary = binary()

Reason = posix() | badarg | terminated | system limit

Returns { ok, Bi nary}, where Bi nary is a binary data object that contains the contents of Fi | enane, or
{error, Reason} if anerror occurs.

Typical error reasons:
enoent
Thefile does not exist.
eacces
Missing permission for reading the file, or for searching one of the parent directories.
eisdir
The named fileis adirectory.
enotdir
A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
enomem

There is not enough memory for the contents of the file.

read file info(Filename) -> {ok, FileInfo} | {error, Reason}
read file info(Filename, Opts) -> {ok, FileInfo} | {error, Reason}
Types.

Filename = nane_all ()

Opts = [file_info_option()]

FileInfo = file_info()

Reason = posix() | badarg

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwise {error, Reason}.
Filelnfoisarecordfil e_i nf o, defined in the Kernel includefilefi | e. hr1 . Include the following directive
in the module from which the function is called:

-include lib("kernel/include/file.hrl").

The time type returned in at i e, nti e, and ct i e is dependent on thetime typeset inOpts :: {tine,
Type} asfollows:

| ocal
Returnslocal time.
uni ver sal

Returns universal time.

98 | Ericsson AB. All Rights Reserved.: Kernel

file

posi x

Returns seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.
Defaultis{ti me, |ocal}.
If the option r awis set, the file server is not called and only information about local filesis returned.

Asfiletimes are stored in POSIX time on most OS, it is faster to query file information with option posi x. |

Therecordfi | e_i nf o contains the following fields:
size = integer() >=0
Size of filein bytes.
type = device | directory | other | regular | symink
Thetype of thefile.
access = read | wite | read_wite | none
The current system access to the file.
atime = date tine() | integer() >= 0
The last time the file was read.
ntine = date_time() | integer() >= 0
The last time the file was written.
ctime = date tine() | integer() >=0

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
i node was changed. In Windows, it isthe create time.

nmode = integer() >= 0
Thefile permissions as the sum of the following bit values:
8#00400

read permission: owner
8#00200

write permission: owner
8#00100

execute permission: owner
8#00040

read permission: group
8#00020

write permission: group
8#00010

execute permission: group
8#00004

read permission: other

Ericsson AB. All Rights Reserved.: Kernel | 99

file

8#00002
write permission: other
8#00001
execute permission: other
16#800
set user id on execution
16#400
set group id on execution
On Unix platforms, other bits than those listed above may be set.
links = integer() >= 0
Number of links to the file (thisisaways 1 for file systems that have no concept of links).
maj or _device = integer() >= 0

Identifiesthe file system where thefile is located. In Windows, the number indicates a drive as follows: 0 means
A:, 1 meansB:, and so on.

m nor_device = integer() >= 0

Only valid for character devices on Unix. In all other cases, thisfield is zero.
inode = integer() >= 0

Givesthei node number. On non-Unix file systems, thisfield is zero.
uid = integer() >= 0

Indicates the owner of the file. On non-Unix file systems, thisfield is zero.
gid = integer() >= 0

Gives the group that the owner of the file belongsto. On non-Unix file systems, thisfield is zero.
Typical error reasons:
eacces

Missing search permission for one of the parent directories of thefile.
enoent

The file does not exist.
enotdir

A component of the filename is not adirectory. On some platforms, enoent isreturned instead.

read line(IoDevice) -> {ok, Data} | eof | {error, Reason}

Types.
IoDevice = io_device() | atom()
Data = string() | binary()
Reason =
posi x() |
badarg |
terminated |

100 | Ericsson AB. All Rights Reserved.: Kernel

file

{no_translation, unicode, latinl}

Reads a line of bytes/characters from the file referenced by | oDevi ce. Lines are defined to be delimited by the
linefeed (LF, \ n) character, but any carriage return (CR, \ r) followed by a newline is also treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by an LF. This behaviour is consistent with the behaviour of i 0: get _| i ne/ 2. If end of file
is reached without any LF ending the last line, aline with no trailing LF is returned.

The function can be used on files opened in r aw mode. However, it isinefficient to use it on r aw files if the file is
not opened with option { r ead_ahead, Si ze} specified. Thus, combiningr awand {r ead_ahead, Si ze}
is highly recommended when opening atext file for raw line-oriented reading.

If encodi ng is set to something elsethan | at i n1, theread_| i ne/ 1 cal fails if the data contains characters
larger than 255, why modulei o(3) isto be preferred when reading such afile.

The function returns:
{ok, Data}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by asingle LF
(see above).

If thefileis opened in binary mode, the read bytes are returned in abinary, otherwise in alist.
eof
Returned if end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.
{no_transl ation, unicode, |atinl}

The file is opened with another encodi ng than | ati n1 and the data on the file cannot be translated to the
byte-oriented data that this function returns.

read link(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_al | ()

Filename = fil enane()

Reason = posix() | badarg

Returns{ ok, Fi |l enane} if Name refersto asymbolic link that is not araw filename, or { err or, Reason}
otherwise. On platforms that do not support symbolic links, the return valueis{ err or, enot sup}.

Typical error reasons:
ei nval

Nane does not refer to a symbolic link or the name of the file that it refers to does not conform to the expected
encoding.

enoent
The file does not exist.

Ericsson AB. All Rights Reserved.: Kernel | 101

file

enot sup

Symbolic links are not supported on this platform.

read link all(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = nane_al |l ()

Filename = filenane_all ()

Reason = posix() | badarg

Returns{ ok, Fi |l enane} if Nane referstoasymboliclink or { error, Reason} otherwise. On platformsthat
do not support symbolic links, the return valueis{ er r or , enot sup}.

Noticethat Fi | enane can be either alist or abinary.
Typical error reasons:
ei nval
Narne does not refer to a symbolic link.
enoent
The file does not exist.
enot sup
Symbolic links are not supported on this platform.

read link info(Name) -> {ok, FileInfo} | {error, Reason}
read link info(Name, Opts) -> {ok, FileInfo} | {error, Reason}

Types:
Name = nane_al | ()
Opts = [file_info_option()]

FileInfo = file_info()
Reason = posix() | badarg

Workslikeread file_infol1, 2 exceptthat if Nanme isasymbolic link, information about the link is returned
inthefi | e_i nf orecordandthet ype field of therecordissettosym i nk.

If the option r awis set, the file server is not called and only information about local filesis returned.

If Narre is not asymboalic link, this function returns the sasmeresult asr ead_fi | e_i nf o/ 1. On platforms that do
not support symbolic links, this functionis aways equivalenttoread_fil e_i nfo/ 1.

rename (Source, Destination) -> ok | {error, Reason}

Types:
Source = Destination = nane_all ()
Reason = posix() | badarg

Triestorenamethefile Sour ce toDest i nat i on. It can be used to movefiles (and directories) between directories,
but it is not sufficient to specify the destination only. The destination filename must also be specified. For example,
if bar isanormal file and f oo and baz are directories, r enane("f oo/ bar", "baz") returns an error, but
renane("foo/ bar", "baz/bar") succeeds. Returnsok if it issuccessful.

102 | Ericsson AB. All Rights Reserved.: Kernel

file

Renaming of open filesis not allowed on most platforms (see eacces below).

Typical error reasons:
eacces

Missing read or write permissions for the parent directories of Sour ce or Dest i nat i on. On some platforms,
thiserror isgiven if either Sour ce or Dest i nat i on isopen.

eexi st

Dest i nati on isnot an empty directory. On some platforms, also given when Sour ce and Dest i nati on
are not of the same type.

ei nval
Sour ce isaroot directory, or Dest i nat i on isasubdirectory of Sour ce.
eisdir
Desti nati on isadirectory, but Sour ce isnot.
enoent
Sour ce does not exist.
enotdir
Sour ce isadirectory, but Dest i nat i on isnot.
exdev

Sour ce and Dest i nat i on are on different file systems.

script(Filename) -> {ok, Value} | {error, Reason}
Types.

Filename = nane_all ()

Value = term()

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressionsis also an expression), from
thefile.

Returns one of the following:
{ok, Val ue}
Thefileisread and evaluated. Val ue isthe value of the last expression.
{error, atom()}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 103

file

{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | ename can be set by a comment as described in epp(3) .

script(Filename, Bindings) -> {ok, Value} | {error, Reason}
Types.

Filename = nane_all ()

Bindings erl _eval : bi ndi ng_struct ()

Value = term()

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Thesameasscri pt/ 1 but the variable bindings Bi ndi ngs areused in the evaluation. Seeer | _eval (3) about
variable bindings.

sendfile(Filename, Socket) ->
{ok, integer() >= 0} |
{error, inet:posix() | closed | badarg | not owner}

Types:
Filename = nane_all ()
Socket = inet:socket ()

SendsthefileFi | enane to Socket . Returns{ ok, Byt esSent} if successful, otherwise{ error, Reason}.

sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
{ok, integer() >= 0} |
{error, inet:posix() | closed | badarg | not owner}

Types:
RawFile = fd()
Socket = inet:socket ()

Offset = Bytes = integer() >= 0
Opts = [sendfile_option()]
sendfile option() =
{chunk size, integer() >= 0} | {use threads, boolean()}

SendsByt es fromthefilereferenced by RawFi | e beginningat Of f set toSocket . Returns{ ok, Byt esSent}
if successful, otherwise{ error, Reason}.If Byt es issettoO al data after the specified Of f set issent.

Thefile used must be opened using the r awflag, and the process calling sendf i | e must be the controlling process
of the socket. Seegen_t cp: control I i ng_process/ 2.

If the OS used does not support sendf i | e, an Erlang fallback using r ead/ 2 and gen_t cp: send/ 2 isused.
The option list can contain the following options:

104 | Ericsson AB. All Rights Reserved.: Kernel

file

chunk_si ze

The chunk size used by the Erlang fallback to send data. If using the fallback, set thisto avalue that comfortably
fitsin the systems memory. Default is 20 MB.

use_t hreads

Instructs the emulator to use the async thread pool for the sendf i | e system call. This can be useful if the
OS you are running on does not properly support non-blocking sendf i | e calls. Notice that using async
threads potentially makes your system vulnerableto slow client attacks. If settot r ue and noasync threadsare
available, thesendfi | e call returns{ error, ei nval }. Introduced in Erlang/OTP 17.0. Default isf al se.

set cwd(Dir) -> ok | {error, Reason}
Types.
Dir = nane() | EncodedBinary
EncodedBinary = binary()
Reason = posix() | badarg | no_translation

Sets the current working directory of thefile server to Di r . Returns ok if successful.

Thefunctionsinthemodulef i | e usually treat binariesasraw filenames, that is, they are passed "asis"' even when the
encoding of the binary does not agreewith nat i ve_nane_encodi ng() . However, this function expects binaries
to be encoded according to the value returned by nat i ve_nanme_encodi ng() .

Typical error reasons are:
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned.
eacces
Missing permission for the directory or one of its parents.
badar g
Di r has an improper type, such astuple.
no_translation

Dir isabinary() with characters coded in ISO-latin-1 and the VM is operating with unicode filename
encoding.

In afuture release, abad type for argument Di r will probably generate an exception. ‘

sync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()

Reason = posix() | badarg | terminated

Ensuresthat any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On some
platforms, this function might have no effect.

A typical error reason is:

Ericsson AB. All Rights Reserved.: Kernel | 105

file

enospc
Not enough space |eft to write the file.

truncate(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()

Reason = posix() | badarg | terminated

Truncates the file referenced by | oDevi ce at the current position. Returns ok if successful, otherwise { er r or,
Reason}.

write(IoDevice, Bytes) -> ok | {error, Reason}
Types.

IoDevice = io_device() | atom()

Bytes = iodata()

Reason = posix() | badarg | terminated

Writes Byt es to the file referenced by | oDevi ce. This function is the only way to write to afile opened in r aw
mode (although it worksfor normally opened filestoo). Returnsok if successful,and{ er r or, Reason} otherwise.

If thefileis opened with encodi ng set to something elsethan | at i nl, each byte written can result in many bytes
being written to the file, as the byte range 0..255 can represent anything between one and four bytes depending on
value and UTF encoding type.

Typical error reasons:
ebadf

Thefileis not opened for writing.
enospc

No spaceisleft on the device.

write file(Filename, Bytes) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Bytes = iodata()

Reason = posix() | badarg | terminated | system limit

Writes the contents of thei odat a term Byt es tofileFi | enane. Thefileiscreated if it does not exist. If it exists,
the previous contents are overwritten. Returns ok if successful, otherwise{ error, Reason}.

Typical error reasons:
enoent
A component of the filename does not exist.
enotdir
A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
enospc
No spaceis left on the device.

106 | Ericsson AB. All Rights Reserved.: Kernel

file

eacces
Missing permission for writing the file or searching one of the parent directories.
eisdir

The named fileis adirectory.

write file(Filename, Bytes, Modes) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Bytes = iodata()

Modes = [node()]

Reason = posix() | badarg | terminated | system limit

Sameasw i te_fil e/ 2, buttakesathird argument Modes, alist of possible modes, see open/ 2. The mode flags
bi nary andwri t e areimplicit, so they are not to be used.

write file info(Filename, FileInfo) -> ok | {error, Reason}
write file info(Filename, FileInfo, Opts) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Opts = [file_info_option()]

FileInfo = file_info()

Reason = posix() | badarg

Changes file information. Returns ok if successful, otherwise {error, Reason}. Fil el nfo is a record
file_info,definedintheKernel includefilefi | e. hrl .Includethefollowing directiveinthe modulefromwhich
the function is called:

-include lib("kernel/include/file.hrl").

Thetimetypesetinati ne, i me, and cti ne dependsonthetimetypesetinOpts :: {tine, Type} as
follows:

| ocal

Interprets the time set as local.
uni ver sal

Interpretsit as universal time.
posi x

Must be seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.
Defaultis{ti me, |ocal}.
If the option r awis set, the file server is not called and only information about local filesis returned.
The following fields are used from the record, if they are specified:

atime = date tine() | integer() >=0
The last time the file was read.
nime = date_time() | integer() >=0

The last time the file was written.

Ericsson AB. All Rights Reserved.: Kernel | 107

file

ctime = date_tine() | integer() >= 0

On Unix, any value specified for this field is ignored (the "ctime" for the file is set to the current time). On
Windows, thisfield is the new creation time to set for thefile.

nmode = integer() >= 0
Thefile permissions as the sum of the following bit values:
8#00400
Read permission: owner
8#00200
Write permission: owner
8#00100
Execute permission: owner
8#00040
Read permission: group
8#00020
Write permission: group
8#00010
Execute permission: group
8#00004
Read permission: other
8#00002
Write permission: other
8#00001
Execute permission: other
16#800
Set user id on execution
16#400
Set group id on execution
On Unix platforms, other bits than those listed above may be set.
uid = integer() >= 0
Indicates the file owner. Ignored for non-Unix file systems.
gid = integer() >=0
Gives the group that the file owner belongsto. Ignored for non-Unix file systems.
Typical error reasons:
eacces
Missing search permission for one of the parent directories of thefile.
enoent
Thefile does not exist.

108 | Ericsson AB. All Rights Reserved.: Kernel

file

enotdir

A component of the filename is not a directory. On some platforms, enoent isreturned instead.

POSIX Error Codes

* eacces - Permission denied

e eagai n - Resource temporarily unavailable
e ebadf - Bad file number

e ebusy - Filebusy

e edquot - Disk quota exceeded

e eexi st - Fileadready exists

« efault -Badaddressin system call argument
- efbig-Filetoolarge

e eintr -Interrupted system call

e einval -Invaidargument

e eio-l/Oeror

e eisdir -lllegal operation on adirectory
e el oop - Too many levels of symbalic links
« enfil e-Toomany open files

* enlink-Toomany links

e enanet ool ong - Filenametoo long

« enfil e - Filetable overflow

* enodev - No such device

e enoent - Nosuchfileor directory

« enonem- Not enough memory

e enospc - No space left on device

e enot bl k - Block device required

e enotdir -Notadirectory

e enot sup - Operation not supported

e enxi o - Nosuch device or address

e eper m- Not owner

e epi pe - Broken pipe

e erof s - Read-only file system

e espi pe - Invalid seek

e esrch - No such process

e estal e -Staleremotefile handle

* exdev - Cross-domain link

Performance

Some operating system file operations, for example, async/ 1 or cl ose/ 1 on a huge file, can block their calling
thread for seconds. If this affects the emulator main thread, the responsetimeis no longer in the order of milliseconds,
depending on the definition of "soft" in soft real-time system.

Ericsson AB. All Rights Reserved.: Kernel | 109

file

If the device driver thread pool is active, file operations are done through those threads instead, so the emulator can
go on executing Erlang processes. Unfortunately, the time for serving a file operation increases because of the extra
scheduling required from the operating system.

If the device driver thread pool is disabled or of size 0, large file reads and writes are segmented into many smaller,
which enable the emulator to serve other processes during the file operation. This has the same effect as when using
the thread pool, but with larger overhead. Other file operations, for example, sync/ 1 or cl ose/ 1 on a huge file,
still are a problem.

For increased performance, raw files are recommended. Raw files use the file system of the host machine of the node.

For normal files (non-raw), the file server is used to find thefiles, and if the nodeis running its file server as lave
to the file server of another node, and the other node runs on some other host machine, they can have different file
systems. However, thisis seldom a problem.

A normal fileisreally aprocesssoit can beused asan 1/O device (seei 0). Therefore, when dataiswritten to anormal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binariesis therefore recommended. If the file is opened on another node, or if the file server runs as slave
to the file server of another node, also binaries are copied.

Caching datato reduce the number of file operations, or rather the number of callsto thefiledriver, generally increases
performance. The following function writes 4 MBytesin 23 seconds when tested:

create file slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed write, binaryl]),

ok = create file slow(FD, 0, N),
ok = ?FILE MODULE:close(FD),
ok.

create file slow(FD, M, M) ->
ok;

create file slow(FD, M, N) ->
ok = file:write(FD, <<M:32/unsigned>>),
create file slow(FD, M+1, N).

The following, functionally equivalent, function collects 1024 entries into a list of 128 32-byte binaries before each
cal towr i t e/ 2 and so does the same work in 0.52 seconds, which is 44 times faster:

110 | Ericsson AB. All Rights Reserved.: Kernel

file

create file(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed write, binary]),
ok = create file(FD, 0, N),
ok = ?FILE MODULE:close(FD),
ok.

create file(FD, M, M) ->
ok;
create file(FD, M, N) when M + 1024 =< N ->
create file(FD, M, M + 1024, [1]),
create file(FD, M + 1024, N);
create file(FD, M, N) ->
create file(FD, M, N, []).

create file(FD, M, M, R) ->
ok = file:write(FD, R);
create file(FD, M, NO, R) when M + 8 =< NO ->
N1 = NO-1, N2 = NO-2, N3 NO-3, N4
N5 = NO-5, N6 = N0-6, N7 NO-7, N8
create file(FD, M, N8,
[<<N8:32/unsigned, N7:32/unsigned,
N6:32/unsigned, N5:32/unsigned,
N4:32/unsigned, N3:32/unsigned,
N2:32/unsigned, N1:32/unsigned>> | R]);
create file(FD, M, NO, R) ->
N1 = NO-1,
create file(FD, M, N1, [<<N1:32/unsigned>> | R]).

Trust only your own benchmarks. If thelist lengthincreat e fi | e/ 2 aboveisincreased, it runsslightly faster,
but consumes more memory and causes more memory fragmentation. How much this affects your application is
something that this simple benchmark cannot predict.

If the size of each binary isincreased to 64 bytes, it aso runs dightly faster, but the code is then twice as clumsy.
In the current implementation, binaries larger than 64 bytes are stored in memory common to all processes and
not copied when sent between processes, while these smaller binaries are stored on the process heap and copied
when sent like any other term.

So, with abinary size of 68 bytes, cr eat e_fi | e/ 2 runs 30 percent slower than with 64 bytes, and causes much
more memory fragmentation. Notice that if the binaries were to be sent between processes (for example, a non-
raw file), the results would probably be completely different.

A raw fileisreally aport. When writing datato aport, it is efficient to write alist of binaries. It is not needed to flatten
adeep list before writing. On Unix hosts, scatter output, which writes a set of buffersin one operation, is used when
possible. Inthiswaywrit e(FD, [Bi nl, Bin2 | Bi n3]) writesthe contents of the binaries without copying
the data at all, except for perhaps deep down in the operating system kernel.

For raw files, pwri t e/ 2 and pr ead/ 2 areefficiently implemented. Thefiledriver iscalled only oncefor the whole
operation, and the list iteration isdone in the file driver.

Theoptionsdel ayed write andread_ahead toopen/ 2 makethefile driver cache data to reduce the number
of operating system calls. The function creat e_fi | e/ 2 in the recent example takes 60 seconds without option
del ayed_writ e, whichis2.6 timesslower.

As abad example, create_fil e_sl ow 2 without optionsr aw, bi nary, and del ayed_wri t e, meaning it
calsopen(Nane, [wite]),needslmin 20 secondsforthejob, whichis3.5timessower thanthefirst example,
and 150 times slower than the optimized cr eate_fi |l e/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 111

file

If an error occurs when accessing an open file with module i o, the process handling the file exits. The dead file
process can hang if a process tries to accessit later. Thiswill be fixed in afuture release.

See Also

fil ename(3)

112 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

gen_sctp

Erlang module

This module provides functions for communicating with sockets using the SCTP protocol. The implementation
assumes that the OS kernel supports SCTP (RFC 2960) through the user-level Sockets API Extensions.

During devel opment, this implementation was tested on:

e Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed)
+ Solaris10, 11

During OTP adaptation it was tested on:

e SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with Iksctp-tools-1.0.6

» Briefly on Solaris 10

e SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with Iksctp-tools-1.0.7
* FreeBSD 8.2

This module was written for one-to-many style sockets (type seqpacket). With the addition of peel of f / 2, one-
to-one style sockets (type st r ean) were introduced.

Record definitions for this module can be found using:

-include lib("kernel/include/inet sctp.hrl").

These record definitions use the "new" spelling "adaptation’, not the deprecated 'adaption’, regardless of which spelling
the underlying C APl uses.

Data Types
assoc_id()

An opague term returned in, for example, #sct p_paddr _change{}, which identifies an association for an SCTP
socket. The term is opaque except for the special value 0, which has a meaning such as "the whole endpoint" or "all
future associations'.

option() =
{active, true | false | once | -32768..32767} |
{buffer, integer() >= 0} |
{dontroute, boolean()} |
{high msgq watermark, integer() >= 1} |
{linger, {boolean(), integer() >= 0}} |
{low msgq watermark, integer() >= 1} |
{mode, list | binary} |
list |
binary |
{priority, integer() >= 0} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{ipv6 v6only, boolean()} |
{sctp adaptation layer, #sctp setadaptation{}} |
{sctp associnfo, #sctp assocparams{}} |
{sctp autoclose, integer() >= 0} |
{sctp default send param, #sctp sndrcvinfo{}} |

Ericsson AB. All Rights Reserved.: Kernel | 113

href
href

gen_sctp

{sctp delayed ack time, #sctp assoc value{}} |
{sctp disable fragments, boolean()} |

{sctp _events, #sctp event subscribe{}} |

{sctp get peer addr info, #sctp paddrinfo{}} |
{sctp_i want mapped v4 addr, boolean()} |
{sctp _initmsg, #sctp initmsg{}} |

{sctp _maxseg, integer() >= 0} |

{sctp _nodelay, boolean()} |

{sctp peer addr params, #sctp paddrparams{}} |
{sctp _primary addr, #sctp prim{}} |

{sctp _rtoinfo, #sctp rtoinfo{}} |

{sctp _set peer primary addr, #sctp setpeerprim{}} |
{sctp _status, #sctp status{}} |

{sndbuf, integer() >= 0} |

{tos, integer() >= 0}

One of the SCTP Socket Options.

option name() =
active |
buffer |
dontroute |
high msgq watermark |
linger |
low_msgq watermark |
mode |
priority |
recbuf |
reuseaddr |
ipv6_v6only |
sctp_adaptation layer |
sctp_associnfo |
sctp_autoclose |
sctp _default send param |
sctp delayed ack time |
sctp disable fragments |
sctp_events |
sctp _get peer addr_info |
sctp i want mapped v4 addr |
sctp_initmsg |
sctp _maxseg |
sctp _nodelay |
sctp _peer addr params |
sctp_primary addr |
sctp_rtoinfo |
sctp _set peer primary addr |
sctp_status |
sndbuf |
tos

sctp socket()
Socket identifier returned from open/ * .

114 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Exports

abort(Socket, Assoc) -> ok | {error, inet:posix()}
Types.

Socket = sctp_socket ()

Assoc = #sctp assoc change{}

Abnormally terminates the association specified by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are still valid, and the socket can be used in new associations.

close(Socket) -> ok | {error, inet:posix()}
Types:
Socket = sctp_socket ()
Closesthe socket and all associationson it. The unsent dataisflushed asineof / 2. Thecl ose/ 1 cal isblocking or

otherwise depending of the value of thel i nger socket option. If cl ose does not linger or linger time-out expires,
the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()

Port = inet:port_nunber()

Opts [Opt :: option()]

Assoc = #sctp assoc change{}
Sameasconnect (Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, Opts, Timeout) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()

Port = inet:port_nunber()
Opts [Opt :: option()]
Timeout = timeout()

Assoc = #sctp assoc_change{}

Establishes a new association for socket Socket , with the peer (SCTP server socket) specified by Addr and Por t .
Ti meout , isexpressed in milliseconds. A socket can be associated with multiple peers.

Using avalue of Ti neout less than the maximum time taken by the OS to establish an association (around 4.5
minutesif the default values from RFC 4960 are used), can result in inconsistent or incorrect return values. Thisis
especialy relevant for associations sharing the same Socket (that is, source address and port), as the controlling
process blocks until connect / * returns. connect _i ni t/* provides an alternative without this limitation.

Ericsson AB. All Rights Reserved.: Kernel | 115

href

gen_sctp

Theresult of connect / * isan#sct p_assoc_change{} event that contains, in particular, the new Association
ID:

#sctp_assoc_change{

state = atom(),
error = atom(),
outbound streams = integer(),
inbound streams = integer(),
assoc_id = assoc_id()

}

The number of outbound and inbound streams can be set by givingan sct p_i ni t nsg optionto connect asin:

connect(Socket, Ip, Port>,
[{sctp_initmsg,#sctp initmsg{num ostreams=0utStreams,
max_instreams=MaxInStreams}}])

All options Opt are set on the socket before the association is attempted. If an option record has undefined field values,
the options record is first read from the socket for those values. In effect, Opt option records only define field values
to change before connecting.

Thereturned out bound_st r eans andi nbound_st r eans are the stream numbers on the socket. These can be
different from the requested values (Qut St r eans and Max| nSt r eans, respectively) if the peer requires lower
values.

st at e can have the following values:
comm_up

Association is successfully established. This indicates a successful completion of connect .
cant _assoc

The association cannot be established (connect / * failure).

Other states do not normally occur in the output from connect/*. Rather, they can occur in
#sct p_assoc_change{} events received instead of data in r ecv/* calls. All of them indicate losing the
association because of various error conditions, and are listed here for the sake of completeness:

comm | ost
restart
shut down_conp

Field er r or can provide more detailed diagnostics.

connect init(Socket, Addr, Port, Opts) ->
ok | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Opts = [option()]

Sameasconnect _i nit(Socket, Addr, Port, Opts, infinity).

connect init(Socket, Addr, Port, Opts, Timeout) ->

116 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

ok | {error, inet:posix()}

Types.
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostnane()
Port = inet: port_nunber()
Opts = [option()]

Timeout = timeout()
Initiates a new association for socket Socket , with the peer (SCTP server socket) specified by Addr and Por t .

The fundamental difference between this APl and connect / * isthat the return value is that of the underlying OS
connect (2) system cal. If ok is returned, the result of the association establishment is received by the calling
processasan#sct p_assoc_change{} event. The calling process must be prepared to receive this, or poll for it
usingr ecv/ *, depending on the value of the active option.

The parameters are as described in connect / *, except the Ti meout value.

The timer associated with Ti meout only supervises I P resolution of Addr .

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = sctp_socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet:posix()
Assigns a new controlling process Pid to Socket. Same implementation as

gen_udp: control I i ng_process/ 2.

eof (Socket, Assoc) -> ok | {error, Reason}
Types:

Socket = sctp_socket ()

Assoc = #sctp assoc_change{}

Reason = term()

Gracefully terminates the association specified by Assoc, with flushing of all unsent data. The socket itself remains
open. Other associations opened on this socket are till valid. The socket can be used in new associations.

error_string(ErrorNumber) -> ok | string() | unknown error
Types:
ErrorNumber = integer()

Trandates an SCTP error number from, for example, #sct p_renote_error{} or #sct p_send_fai |l ed{}
into an explanatory string, or one of the atoms ok for no error or undef i ned for an unrecognized error.

listen(Socket, IsServer) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 117

gen_sctp

Socket = sctp_socket ()
Backlog = integer()
Reason = term()

Sets up a socket to listen on the IP address and port number it is bound to.

For type seqpacket , sockets (the default) | sSer ver must bet rue or f al se. In contrast to TCP, there is no
listening queue length in SCTP. If | sSer ver istr ue, the socket accepts new associations, that is, it becomes an
SCTP server socket.

For type st r eam sockets Backlog define the backlog queue length just likein TCP.

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(0Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}
Types.
Opts = [Opt]
Opt =
{ip, IP} |
{ifaddr, IP} |
i net:address_famly() |
{port, Port} |
{type, SockType} |
option()
IP = inet:ip_address() | any | loopback
Port = inet:port_nunber()
SockType = seqpacket | stream
Socket = sctp_socket ()
Creates an SCTP socket and binds it to the local addresses specified by al {ip, 1P} (or synonymously

{ifaddr, | P}) options (this feature is called SCTP multi-homing). The default | P and Port are any and O,
meaning bind to all local addresses on any free port.

Other options:
inet6
Sets up the socket for |Pv6.
i net
Sets up the socket for IPv4. Thisisthe default.

A default set of socket optionsisused. In particular, the socket is opened in binary and passive mode, with SockType
segpacket , and with reasonably large kernel and driver buffers.

peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
Types:

118 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Socket = sctp_socket ()

Assoc = #sctp _assoc_change{} | assoc_id()
NewSocket = sctp_socket ()

Reason = term()

Branches off an existing association Assoc inasocket Socket of typeseqpacket (one-to-many style) into anew
socket NewSocket of typest r eam(one-to-one style).

The existing association argument Assoc can be either a#sct p_assoc_change{} record as returned from, for
example, r ecv/ *, connect / *, or from alistening socket in active mode. It can also be just the field assoc_i d
integer from such arecord.

recv(Socket) ->
{ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

recv(Socket, Timeout) ->
{ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

Types:
Socket = sctp_socket ()
Timeout = timeout()
FromIP = inet:ip_address()

FromPort = inet: port_nunber()
AncData = [#sctp sndrcvinfo{}]
Data =

binary() |

string() |

#sctp _sndrcvinfo{} |
#sctp _assoc_change{} |
#sctp paddr change{} |
#sctp adaptation event{}
Reason =
i net: posix() |
#sctp send failed{} |
#sctp paddr change{} |
#sctp pdapi_event{} |
#sctp remote error{} |
#sctp _shutdown event{}

Receives the Dat a message from any association of the socket. If the receive times out, {error, ti meout} is
returned. The default time-outisi nfi ni ty. From Pand Fr onPor t indicate the address of the sender.

AncDat a isalist of ancillary data items that can be received along with the main Dat a. This list can be empty,
or contain a single #sct p_sndr cvi nfo{} record if receiving of such ancillary data is enabled (see option
sct p_event s). It isenabled by default, as such ancillary data provides an easy way of determining the association
and stream over which the message is received. (An alternative way is to get the association ID from Fr o P and
Fr onPor t using socket optionsct p_get _peer _addr _i nf o, but thisdoesstill not produce the stream number).

The Dat a received can beabi nary() oralist () of bytes (integersin the range O through 255) depending on
the socket mode, or an SCTP event.

Possible SCTP events:

e #sctp_sndrcvinfo{}
e #sctp_assoc_change{}

Ericsson AB. All Rights Reserved.: Kernel | 119

gen_sctp

#sctp _paddr_change{

addr = {ip_address(),port()},
state = atom(),

error = integer(),

assoc_id = assoc_id()

}

Indicates change of the status of the IP address of the peer specified by addr within association assoc_i d.
Possible values of st at e (mostly self-explanatory) include:

addr _unr eachabl e
addr _avai |l abl e
addr _renoved
addr _added

addr _made_prim
addr _confirned

In case of an error (for example, addr _unr eachabl e), field er r or provides more diagnostics. In such
cases, event#sct p_paddr _change{} isautomatically convertedintoaner r or termreturnedbyr ecv. The
error field value can be converted into astringusinger ror _stri ng/ 1.

#sctp_send failed{

flags = true | false,

error = integer(),

info = #sctp_sndrcvinfo{},
assoc_id = assoc_id()

data = binary()

}
The sender can receive this event if a send operation fails.
flags
A Boolean specifying if the data has been transmitted over the wire.
error
Provides extended diagnostics, useer ror _stri ng/ 1.
i nfo
Theoriginal #sct p_sndr cvi nf o{} record used in the failed send/ *.
dat a
The whole original data chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, thisevent isinternally convertedintoaner r or term
returned by r ecv/ *.

#sctp_adaptation_event{
adaptation_ind
assoc_id

integer(),
assoc_id()

}

Delivered when a peer sends an adaptation layer indication parameter (configured through option
sct p_adapt ati on_| ayer). Notice that with the current implementation of the Erlang/SCTP binding, this
event is disabled by defaullt.

120 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

#sctp _pdapi event{
indication
assoc_id

sctp partial delivery aborted,
assoc_id()

}

A partia delivery failure. In the current implementation of the Erlang/SCTP binding, this event is internally
converted intoan er r or termreturned by r ecv/ *.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
Types.
Socket = sctp_socket ()
SndRcvInfo = #sctp sndrcvinfo{}
Data = binary() | iolist()
Reason = term()
Sends the Dat a message with all sending parameters from a#sct p_sndr cvi nf o{} record. This way, the user
can specify the PPID (passed to the remote end) and context (passed to the local SCTP layer), which can be used, for

example, for error identification. However, such afine level of user control israrely required. The function send/ 4
is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket ()

Assoc = #sctp _assoc_change{} | assoc_id()

Stream = integer()

Data = binary() | iolist()

Reason = term()
Sends a Dat a message over an existing association and specified stream.

SCTP Socket Options

The set of admissible SCTP socket optionsis by construction orthogonal to the sets of TCP, UDP, and generici net
options. Only options listed here are allowed for SCTP sockets. Options can be set on the socket using open/ 1, 2 or
i net: setopts/2,retrievedusingi net: get opt s/ 2. Options can be changed when calling connect / 4, 5.

{node, list|binary} orjustlist orbinary
Determines the type of datareturned fromrecv/ 1, 2.

{active, true|fal se|once|l N}

« Iff al se (passive mode, the default), the caller must do an explicit r ecv call to retrieve the available data
from the socket.

e Ift rue (full active mode), the pending data or events are sent to the owning process.
Notice that this can cause the message queue to overflow, as there is no way to throttle the sender in this
case (no flow contral).

* If once, only one message is automatically placed in the message queue, and after that the mode is
automatically reset to passive. This provides flow control and the possibility for the receiver to listen for its
incoming SCTP data interleaved with other inter-process messages.

e Ifactive isspecified as an integer N in the range -32768 to 32767 (inclusive), that number is added to
the socket's counting of data messages to be delivered to the controlling process. If the result of the addition

Ericsson AB. All Rights Reserved.: Kernel | 121

gen_sctp

is negative, the count is set to 0. Once the count reaches 0, either through the delivery of messages or by
being explicitly set withi net : set opt s/ 2, the socket modeisautomatically reset to passive ({ act i ve,
f al se}). When a socket in this active mode transitions to passive mode, the message{ sct p_passi ve,
Socket } issent to the controlling process to notify it that if it wants to receive more data messages from
the socket, it must call i net : set opt s/ 2 to set the socket back into an active mode.

{tos, integer()}

Setsthe Type-Of-Servicefield on the | P datagramsthat are sent, to the specified value. Thiseffectively determines
aprioritization policy for the outbound packets. The acceptable values are system-dependent.

{priority, integer()}
A protocol-independent equivalent of t os above. Setting priority implies setting t os as well.
{dontroute, true|false}

Defaultstof al se. If t r ue, the kernel does not send packets through any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

Defaultstof al se. If true, thelocal binding address{ | P, Por t } of the socket can be reused immediately. No
waiting in state CLOSE_WAI T is performed (can be required for high-throughput servers).

{sndbuf, integer()}

The size, in bytes, of the OS kernel send buffer for this socket. Sending errors would occur for datagrams larger
than val (sndbuf) . Setting this option also adjusts the size of the driver buffer (see buf f er above).

{recbuf, integer()}

Thesize, in bytes, of the OSkernel receive buffer for this socket. Sending errorswould occur for datagrams|larger
thanval (r echuf) . Setting this option also adjusts the size of the driver buffer (see buf f er above).

{sctp_nodul e, nodul e()}
Overrides which callback module is used. Defaultstoi net _sct p for IPvdandi net 6_sct p for IPv6.
{sctp_rtoinfo, #sctp_rtoinfo{}}

#sctp rtoinfo{

assoc_id = assoc_id(),
initial = integer(),
max = integer(),
min = integer()

}
Determines retransmission time-out parameters, in milliseconds, for the association(s) specified by assoc_i d.

assoc_i d = 0 (default) indicates the whole endpoint. See RFC 2960 and Sockets API Extensionsfor SCTP
for the exact semantics of the field values.

{sctp_associ nfo, #sctp_assocparans{}}

#sctp assocparams{

assoc_id = assoc_id(),
asocmaxrxt = integer(),
number peer destinations = integer(),
peer rwnd = integer(),
local rwnd = integer(),
cookie life = integer()

122 | Ericsson AB. All Rights Reserved.: Kernel

href
href

gen_sctp

Determines association parameters for the association(s) specified by assoc_i d.

assoc_id = 0 (default) indicates the whole endpoint. See Sockets APl Extensions for SCTP for the
discussion of their semantics. Rarely used.

{sctp_initnmsg, #sctp_initmsg{}}

#sctp initmsg{

num ostreams = integer(),
max_instreams = integer(),
max_attempts = integer(),
max_init timeo = integer()

}

Determines the default parameters that this socket triesto negotiate with its peer while establishing an association
with it. Isto be set after open/ * but before the first connect / *. #sct p_i ni t msg{} can aso be used as
ancillary datawith the first call of send/ * to anew peer (when anew association is created).

num ost r eans
Number of outbound streams
max_i nstreans
Maximum number of inbound streams
max_attenpts
Maximum retransmissions while establishing an association
max_init_timeo
Time-out, in milliseconds, for establishing an association
{sctp_autocl ose, integer() >= 0}

Determines the time, in seconds, after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

{sctp_nodel ay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones. This improves throughput at the
expense of latency.

{sctp_disable fragnents, true|false}

If t rue, induces an error on an attempt to send a message larger than the current PMTU size (which would
require fragmentation/reassembling). Notice that message fragmentation does not affect the logical atomicity of
its delivery; this option is provided for performance reasons only.

{sctp_i _want _mapped_v4_addr, true|false}
Turns on|off automatic mapping of IPv4 addresses into |Pv6 ones (if the socket address family is AF_| NET6).
{sctp_naxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

{sctp_primary_addr, #sctp_prin{}}

#sctp _prim{
assoc_id
addr

assoc_id(),
{IP, Port}

}
IP = ip _address()
Port = port_number()

Ericsson AB. All Rights Reserved.: Kernel | 123

href

gen_sctp

For the association specified by assoc_i d, {1 P, Port} must be one of the peer addresses. This option
determines that the specified address is treated by the local SCTP stack as the primary address of the peer.

{sctp_set_peer_primary_addr, #sctp_setpeerprin{}}

#sctp setpeerprim{

assoc_id = assoc_id(),
addr = {IP, Port}
}
IP ip address()

Port = port _number()

When set, informsthe peer touse{ | P, Port} asthe primary address of the local endpoint for the association
specified by assoc_i d.

{sctp_adaptation_|l ayer, #sctp_setadaptation{}}

#sctp setadaptation{
adaptation ind = integer()
}

When set, requests that the local endpoint uses the value specified by adapt ati on_i nd as the Adaptation
Indication parameter for establishing new associations. For details, see RFC 2960 and Sockets APl Extenstions
for SCTP.

{sctp_peer_addr_parans, #sctp_paddrparans{}}

#sctp paddrparams{
assoc_id = assoc_id(),
address = {IP, Port},
hbinterval = integer(),
pathmaxrxt = integer(),
pathmtu = integer(),
sackdelay = integer(),
flags = list()

}

IP = ip address()

Port = port number()

Determines various per-address parameters for the association specified by assoc_i d and the peer address
addr ess (the SCTP protocol supports multi-homing, so more than one address can correspond to a specified
association).

hbi nt er val
Heartbeat interval, in milliseconds
pat hmaxr xt

Maximum number of retransmissions before this address is considered unreachable (and an alternative
addressiis selected)

pat hnt u

Fixed Path MTU, if automatic discovery isdisabled (seef | ags below)
sackdel ay

Delay, in milliseconds, for SAC messages (if the delay is enabled, seef | ags below)
flags

The following flags are available:

124 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

hb_enabl e
Enables heartbeat
hb_di sabl e
Disables heartbeat
hb_demand
Initiates heartbeat immediately
prmt ud_enabl e
Enables automatic Path MTU discovery
prt ud_di sabl e
Disables automatic Path MTU discovery
sackdel ay_enabl e
Enables SAC delay
sackdel ay_di sabl e
Disables SAC delay

{sctp_default_send _param #sctp_sndrcvinfo{}}

#sctp sndrcvinfo{

}

stream = integer(),
ssn = integer(),
flags = list(),

ppid = integer(),
context = integer(),
timetolive = integer(),
tsn = integer(),
cumtsn = integer(),
assoc_id = assoc_id()

#sct p_sndrcvi nfo{} isused both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides default values for subsequent send calls on the association
specified by assoc_i d.

assoc_id = 0 (default) indicates the whole endpoint.

The following fields typically must be specified by the sender:

sinfo_stream

Stream number (0-base) within the association to send the messages through;

sinfo_fl ags

The following flags are recognised:

unor der ed
The message is to be sent unordered
addr _over
The address specified in send overwrites the primary peer address
abort
Aborts the current association without flushing any unsent data
eof
Gracefully shuts down the current association, with flushing of unsent data

Other fields are rarely used. For complete information, see RFC 2960 and Sockets API Extensions for
SCTP.

Ericsson AB. All Rights Reserved.: Kernel | 125

href
href
href

gen_sctp

{sctp_events, #sctp_event_subscribe{}}

#sctp event subscribe{

data io event = true |
association event = true |
address_event = true |
send failure event = true |
peer error_event = true |
shutdown_event = true |
partial _delivery event = true |
adaptation layer event = true |

}

This option determines which SCTP Events are to be received (through recv/*) aong with the data
The only exception isdat a_i o_event , which enables or disables receiving of #sct p_sndr cvi nf o{ }
ancillary data, not events. By default, all flags except adapt ati on_| ayer _event are enabled, athough
sctp_data_i o_event and associ ati on_event are used by the driver itself and not exported to the

user level.

{sctp_del ayed_ack_tinme, #sctp_assoc_value{}}

#sctp assoc value{
assoc_id
assoc_value

assoc_id(),
integer()

}

Rarely used. Determines the ACK time (specified by assoc_val ue, in milliseconds) for the specified
association or the whole endpoint if assoc_val ue = 0 (default).

{sctp_status, #sctp_status{}}

#sctp status{

false,
false,
false,
false,
false,
false,
false,
false

assoc_id = assoc_id(),

state = atom(),

rwnd = integer(),
unackdata = integer(),
penddata = integer(),
instrms = integer(),
outstrms = integer(),
fragmentation point = integer(),
primary = #sctp paddrinfo{}

}

Thisoption isread-only. It determines the status of the SCTP association specified by assoc_i d. Thefollowing
are the possible values of st at e (the state designations are mostly self-explanatory):

sctp_state_enpty

Default. Means that no other stateis active.
sctp_state_cl osed
sctp_state_cookie_wait
sctp_state_cooki e_echoed
sctp_state_established
sct p_stat e_shut down_pendi ng
sct p_state_shut down_sent
sctp_state_shutdown_recei ved
sctp_state_shutdown_ack_sent

Semantics of the other fields:

126 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

sstat _rwnd
Current receiver window size of the association
sstat _unackdat a
Number of unacked data chunks
sstat _penddat a
Number of data chunks pending receipt
sstat _instrns
Number of inbound streams
sstat_outstrns
Number of outbound streams
sstat _fragmentation_point
Message size at which SCTP fragmentation occurs
sstat_primary
Information on the current primary peer address (see below for the format of #sct p_paddri nf o{})

{sctp_get peer_addr _info, #sctp_paddrinfo{}}

#sctp paddrinfo{

assoc_id = assoc_id(),

address = {IP, Port},

state = inactive | active | unconfirmed,
cwnd = integer(),

srtt = integer(),

rto = integer(),

mtu = integer()

}
IP = ip _address()
Port = port _number()

This option is read-only. It determines the parameters specific to the peer address specified by addr ess within
the association specifiedby assoc_i d. Fieldaddr ess fmust be set by thecaller; all other fieldsarefilledinon
return. If assoc_i d = 0 (default), theaddr ess isautomatically translated into the corresponding association
ID. This option is rarely used. For the semantics of al fields, see RFC 2960 and Sockets APl Extensions for
SCTP.

SCTP Examples
Example of an Erlang SCTP server that receives SCTP messages and prints them on the standard output:

Ericsson AB. All Rights Reserved.: Kernel | 127

href
href
href

gen_sctp

-module(sctp_server).

-export([server/0,server/1,server/2]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

server() ->
server(any, 2006).

server([Host,Port]) when is list(Host), is list(Port) ->
{ok, #hostent{h addr list = [IP|]}} = inet:gethostbyname(Host),

io:format("~w -> ~w~n", [Host, IP]),
server([IP, list to integer(Port)]).

server(IP, Port) when is tuple(IP) orelse IP == any orelse IP == loopback,
is_integer(Port) ->
{ok,S} = gen _sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
ok = gen_sctp:listen(S, true),
server_loop(S).

server_loop(S) ->
case gen _sctp:recv(S) of
{error, Error} ->
io:format("SCTP RECV ERROR: ~p~n", [Error]);
Data ->
io:format("Received: ~p~n", [Datal)
end,
server_loop(S).

Example of an Erlang SCTP client interacting with the above server. Notice that in this example the client creates
an association with the server with 5 outbound streams. Therefore, sending of " Test 0" over stream O succeeds,
but sending of " Test 5" over stream 5 fails. The client then abor t s the association, which results in that the
corresponding event is received on the server side.

128 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

-module(sctp client).

-export([client/0, client/1l, client/2]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

client() ->
client([localhost]).

client([Host]) ->
client(Host, 2006);

client([Host, Port]) when is list(Host), is list(Port) ->
client(Host,list to integer(Port)),
init:stop().

client(Host, Port) when is integer(Port) ->
{ok,S} = gen_sctp:open(),
{ok,Assoc} = gen sctp:connect
(S, Host, Port, [{sctp initmsg,#sctp initmsg{num ostreams=5}}]),
io:format("Connection Successful, Assoc=~p~n", [Assoc]),

io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
io:nl(),

timer:sleep(10000),

io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
io:nl(),

timer:sleep(10000),

io:write(gen sctp:abort(S, Assoc)),

io:nl(),

timer:sleep(1000),
gen_sctp:close(S).

A simple Erlang SCTP client that usesthe connect _i nit API:

Ericsson AB. All Rights Reserved.: Kernel | 129

gen_sctp

-module(ex3).

-export([client/4]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

client(Peerl, Portl, Peer2, Port2)
when is tuple(Peerl), is integer(Portl), is tuple(Peer2), is integer(Port2) ->

{ok,S} = gen_sctp:open(),
SctpInitMsgOpt = {sctp initmsg,#sctp _initmsg{num ostreams=5}},
ActiveOpt = {active, true},
Opts = [SctpInitMsgOpt, ActiveOpt],
ok = gen sctp:connect(S, Peerl, Portl, Opts),
ok = gen sctp:connect(S, Peer2, Port2, Opts),
io:format("Connections initiated~n", []),
client loop(S, Peerl, Portl, undefined, Peer2, Port2, undefined).

client loop(S, Peerl, Portl, AssocIdl, Peer2, Port2, AssocIld2) ->

receive
{sctp, S, Peerl, Portl, { Anc, SAC}}
when is record(SAC, sctp assoc change), AssocIdl == undefined ->

io:format("Association 1 connect result: ~p. AssocId: ~p~n",
[SAC#sctp _assoc_change.state,
SAC#sctp _assoc_change.assoc_id]),
client loop(S, Peerl, Portl, SAC#sctp assoc change.assoc id,
Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, { Anc, SAC}}
when is record(SAC, sctp assoc change), AssocId2 == undefined ->
io:format("Association 2 connect result: ~p. AssocId: ~p~n",
[SAC#sctp _assoc_change.state, SAC#sctp assoc change.assoc id]),
client loop(S, Peerl, Portl, AssocIdl, Peer2, Port2,
SAC#sctp assoc_change.assoc_id);

{sctp, S, Peerl, Portl, Data} ->
io:format("Association 1: received ~p~n", [Data]),
client loop(S, Peerl, Portl, AssocIdl,

Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, Data} ->
io:format("Association 2: received ~p~n", [Data]),
client loop(S, Peerl, Portl, AssocIdl,

Peer2, Port2, Assocld2);

Other ->
io:format("Other ~p~n", [Other]),
client loop(S, Peerl, Portl, AssocIdl,
Peer2, Port2, Assocld2)

after 5000 ->
ok
end.
See Also

gen_tcp(3), gen_udp(3), inet(3), RFC 2960 (Stream Control Transmission Protocol), Sockets API
Extensionsfor SCTP

130 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_tcp

gen_tcp

Erlang module

This module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment is a simple example of aclient connecting to aserver at port 5678, transferring abinary,
and closing the connection:

client() ->
SomeHostInNet = "localhost", % to make it runnable on one machine
{ok, Sock} = gen tcp:connect(SomeHostInNet, 5678,
[binary, {packet, 0}1),
gen_tcp:send(Sock, "Some Data"),
gen_tcp:close(Sock).

ok
ok

At the other end, a server islistening on port 5678, accepts the connection, and receives the binary:

server() ->
{ok, LSock} = gen tcp:listen(5678, [binary, {packet, 0},
{active, false}l),
{ok, Sock} = gen tcp:accept(LSock),
{ok, Bin} = do _recv(Sock, [1),
ok = gen tcp:close(Sock),
ok = gen _tcp:close(LSock),
Bin.

do recv(Sock, Bs) ->
case gen_tcp:recv(Sock, 0) of
{ok, B} ->
do recv(Sock, [Bs, Bl);
{error, closed} ->
{ok, list to binary(Bs)}
end.

For more examples, see section Examples.

Data Types

option() =
{active, true | false | once | -32768..32767} |
{buffer, integer() >= 0} |
{delay send, boolean()} |
{deliver, port | term} |
{dontroute, boolean()} |
{exit _on close, boolean()} |
{header, integer() >= 0} |
{high msgq watermark, integer() >= 1} |
{high watermark, integer() >= 0} |
{keepalive, boolean()} |
{linger, {boolean(), integer() >= 0}} |
{low _msgq watermark, integer() >= 1} |
{low watermark, integer() >= 0} |
{mode, list | binary} |
list |
binary |
{nodelay, boolean()} |

Ericsson AB. All Rights Reserved.: Kernel | 131

gen_tcp

{packet,
0|
1|
2|
4|
raw |
sunrm |
asnl |
cdr |
fcgi |
line |
tpkt |
http |
http _bin |
httph _bin} |

{packet _size, integer() >= 0} |

{priority, integer() >= 0} |

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

ValueBin :: binary()} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{send_timeout, integer() >= | infinity} |
{send timeout close, boolean()} |
{show_econnreset, boolean()} |
{sndbuf, integer() >= 0} |
{tos, integer() >= 0} |
{ipv6 v6only, boolean()}

option name() =
active |
buffer |
delay send |
deliver |
dontroute |
exit on close |
header |
high msgq watermark |
high watermark |
keepalive |
linger |
low msgq watermark |
low watermark |
mode |
nodelay |
packet |
packet size |
priority |
{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

132 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

ValueSpec ::
(ValueSize :: integer() >= 0) | (ValueBin :: binary())} |

recbuf |
reuseaddr |
send timeout |
send timeout close |
show_econnreset |
sndbuf |
tos |
ipv6e _veonly

connect option() =
{ip, inet:socket_address()} |
{fd, Fd :: integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
{tcp_module, module()} |
option()

listen option() =
{ip, inet:socket_address()} |
{fd, Fd :: integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
{backlog, B :: integer() >= 0} |
{tcp_module, module()} |
option()

socket ()

Asreturned by accept/ 1, 2 andconnect/ 3, 4.

Exports

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:

ListenSocket = socket ()

Returned by | i st en/ 2.

Timeout = timeout()

Socket = socket ()

Reason = closed | timeout | system limit | inet: posi x()
Accepts an incoming connection request on a listening socket. Socket must be a socket returned from | i st en/ 2.
Ti meout specifiesatime-out value in milliseconds. Defaultstoi nfi nity.

Returns:

« {ok, Socket} if aconnectionis established

e {error, closed} ifListenSocket isclosed

« {error, tinmeout} if noconnection isestablished within the specified time

« {error, systemlinit} ifal availableportsinthe Erlang emulator arein use

Ericsson AB. All Rights Reserved.: Kernel | 133

gen_tcp

A POSIX error valueif something else goeswrong, seei net (3) for possible error values

Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages (unless{ acti ve, fal se} isspecifiedinthe option list for the listening socket, in which case packets
areretrieved by callingr ecv/ 2):

{tcp, Socket, Data}

The accept call does not have to be issued from the socket owner process. Using version 5.5.3 and higher of
the emulator, multiple simultaneous accept calls can be issued from different processes, which alows for a pool
of acceptor processes handling incoming connections.

close(Socket) -> ok

Types:
Socket = socket ()
Closes a TCP socket.

Note that in most implementations of TCP, doing acl ose does not guarantee that any data sent is delivered to the
recipient before the close is detected at the remote side. If you want to guarantee delivery of the data to the recipient
there are two common ways to achieve this.

e Use gen_tcp: shutdown(Sock, wite) tosigna that no more datais to be sent and wait for the read
side of the socket to be closed.

» Usethe socket option { packet, N} (or something similar) to make it possible for the receiver to close the
connection when it knowns it has received al the data.

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}

connect (Address, Port, Options, Timeout) ->
{ok, Socket} | {error, Reason}

Types.
Address = inet:socket_address() | inet:hostnane()
Port = inet:port_nunber()
Options = [connect _option()]
Timeout = timeout()
Socket = socket ()
Reason = inet: posi x()

Connectsto aserver on TCPport Por t onthe host with IPaddressAddr ess. Argument Addr ess can beahostname
or an IP address.

The following options are available:
{ip, Address}
If the host has many network interfaces, this option specifies which one to use.
{ifaddr, Address}
Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.

134 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

{fd, integer() >= 0}

If a socket has somehow been connected without using gen_t cp, use this option to pass the file descriptor for
it. If {i p, Address} and/or {port, port_number ()} iscombined with this option, thef d is bound
to the specified interface and port before connecting. If these options are not specified, it is assumed that the f d
is aready bound appropriately.

i net
Sets up the socket for IPv4.
i net6
Sets up the socket for |Pv6.
| ocal
Sets up aUnix Domain Socket. See i net : | ocal _addr ess()
{port, Port}
Specifies which local port number to use.
{tcp_nodul e, nmodul e()}
Overrides which callback module is used. Defaultstoi net _t cp for IPv4dandi net 6_t cp for IPv6.
Opt
Seei net : set opt s/ 2.
Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages.
{tcp, Socket, Data}

If thesocketisin{acti ve, N} mode(seei net : set opt s/ 2 for details) and its message counter dropsto 0, the
following message is delivered to indicate that the socket has transitioned to passive ({ act i ve, fal se}) mode:

{tcp_passive, Socket}
If the socket is closed, the following message is delivered:
{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered (unless{ act i ve, fal se} isspecifiedinthe
option list for the socket, in which case packets are retrieved by calling r ecv/ 2):

{tcp_error, Socket, Reason}

The optional Ti meout parameter specifies atime-out in milliseconds. Defaultstoi nfinity.

The default values for options specified to connect can be affected by the Kernel configuration parameter
i net _default_connect_opti ons. For details, seei net (3) .

controlling process(Socket, Pid) -> ok | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 135

gen_tcp

Socket = socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet: posix()

Assignsanew controlling process Pi d to Socket . The controlling processisthe processthat receives messagesfrom
the socket. If called by any other process than the current controlling process, { er r or, not _owner} isreturned.
If the processidentified by Pi d isnot an existing local pid, { err or, badar g} isreturned.{error, badar g}
may also be returned in some cases when Socket isclosed during the execution of this function.

If the socket is set in active mode, this function will transfer any messages in the mailbox of the caller to the new
controlling process. If any other processisinteracting with the socket whilethe transfer is happening, the transfer may
not work correctly and messages may remain in the caller's mailbox. For instance changing the sockets active mode
before the transfere is complete may cause this.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types.
Port = inet: port_numnber ()
Options = [listen_option()]
ListenSocket = socket ()
Reason = system limit | inet: posix()
Sets up a socket to listen on port Por t on the local host.
If Port == 0, theunderlying OS assigns an available port number, usei net : port/ 1 to retrieveit.
The following options are available:
list
Received Packet isdelivered asalist.
bi nary
Received Packet isdelivered asabinary.
{ backl og, B}

B isaninteger >= 0. The backlog value defines the maximum length that the queue of pending connections can
grow to. Defaultsto 5.

{ip, Address}

If the host has many network interfaces, this option specifies which one to listen on.
{port, Port}

Specifies which local port number to use.
{fd, Fd}

If asocket has somehow been connected without using gen_t cp, usethisoption to passthe file descriptor for it.
{ifaddr, Address}

Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
inet6

Sets up the socket for 1Pv6.
i net

Sets up the socket for IPv4.

136 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

{tcp_nodul e, nodul e()}

Overrides which callback module isused. Defaultstoi net _t cp for IPv4dandi net 6_t cp for IPv6.
Opt

Seei net : set opt s/ 2.

The returned socket Li st enSocket should be used in calls to accept/ 1, 2 to accept incoming connection
requests.

The default values for options specified to | i st en can be affected by the Kernel configuration parameter
i net_default |isten_options.Fordetails, seei net (3) .

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}

Types.
Socket = socket ()
Length = integer() >= 0

Timeout = timeout()

Packet string() | binary() | HttpPacket

Reason = closed | inet: posix()

HttpPacket = term()

See the description of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS

Receives a packet from a socket in passive mode. A closed socket isindicated by returnvalue{ err or, cl osed}.

Argument Lengt h is only meaningful when the socket is in r aw mode and denotes the number of bytes to read.
If Lengt h is 0O, al available bytes are returned. If Lengt h > 0, exactly Lengt h bytes are returned, or an error;
possibly discarding less than Lengt h bytes of data when the socket is closed from the other side.

The optional Ti meout parameter specifies atime-out in milliseconds. Defaultstoi nfinity.

send(Socket, Packet) -> ok | {error, Reason}

Types.

Socket = socket ()

Packet = iodata()

Reason = closed | inet: posix()
Sends a packet on a socket.

Thereisno send call with atime-out option, use socket optionsend_t i neout if time-outsare desired. See section
Examples.

shutdown(Socket, How) -> ok | {error, Reason}
Types.

Socket = socket ()

How = read | write | read write

Reason = inet: posi x()
Closes a socket in one or two directions.

Ericsson AB. All Rights Reserved.: Kernel | 137

gen_tcp

How == wri t e means closing the socket for writing, reading from it is still possible.

If How == r ead or there is no outgoing data buffered in the Socket port, the socket is shut down immediately
and any error encountered isreturned in Reason.

If there is data buffered in the socket port, the attempt to shutdown the socket is postponed until that datais written to
the kernel socket send buffer. If any errors are encountered, the socket isclosed and{ er r or, cl osed} isreturned
onthenextrecv/ 2 orsend/ 2.

Option{exit_on_cl ose, fal se} isuseful if the peer has done a shutdown on the write side.

Examples

The following example illustrates use of option { act i ve, once} and multiple accepts by implementing a server
as a number of worker processes doing accept on a single listening socket. Function st ar t / 2 takes the number of
worker processes and the port number on which to listen for incoming connections. If LPor t is specified as 0, an
ephemeral port number is used, which iswhy the start function returns the actual port number allocated:

start(Num,LPort) ->
case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of
{ok, ListenSock} ->
start servers(Num,ListenSock),
{ok, Port} = inet:port(ListenSock),
Port;
{error,Reason} ->
{error,Reason}
end.

start servers(0,) ->
ok;

start _servers(Num,LS) ->
spawn (?MODULE, server, [LS]),
start servers(Num-1,LS).

server(LS) ->
case gen _tcp:accept(LS) of

{ok,S} ->
loop(S),
server(LS);
Other ->
io:format("accept returned ~w - goodbye!~n",[Other]),
ok
end.
loop(S) ->
inet:setopts(S, [{active,once}]),
receive

{tcp,S,Data} ->
Answer = process(Data), % Not implemented in this example
gen_tcp:send(S,Answer),
loop(S);

{tcp closed,S} ->
io:format("Socket ~w closed [~w]~n",[S,self()]),
ok

end.

Example of asimple client:

138 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

client(PortNo,Message) ->
{ok,Sock} = gen tcp:connect("localhost",PortNo, [{active, false},

{packet, 2}1),
gen_tcp:send(Sock,Message),

A = gen_tcp:recv(Sock,0),
gen_tcp:close(Sock),
A.

The send call does not accept a time-out option because time-outs on send is handled through socket option
send_ti meout . The behavior of a send operation with no receiver is mainly defined by the underlying TCP stack

and the network infrastructure. To write code that handles a hanging receiver that can eventually cause the sender to
hang on asend do like the following.

Consider a process that receives data from a client process to be forwarded to a server on the network. The process
is connected to the server through TCP/IP and does not get any acknowledge for each message it sends, but has to

rely on the send time-out option to detect that the other end is unresponsive. Option send_t i neout can be used
when connecting:

{ok,Sock} = gen tcp:connect(HostAddress, Port,
[{active, false},
{send timeout, 5000},
{packet,2}1),
loop(Sock), % See below

In the loop where requests are handled, send time-outs can now be detected:

loop(Sock) ->
receive
{Client, send data, Binary} ->
case gen _tcp:send(Sock, [Binary]) of
{error, timeout} ->
io:format("Send timeout, closing!~n",
(1,
handle send timeout(), % Not implemented here
Client ! {self(),{error sending, timeout}},
%% Usually, it's a good idea to give up in case of a
%% send timeout, as you never know how much actually
%% reached the server, maybe only a packet header?!
gen_tcp:close(Sock);
{error, OtherSendError} ->
io:format("Some other error on socket (~p), closing",
[0therSendError]),
Client ! {self(),{error sending, OtherSendError}},
gen_tcp:close(Sock);

ok ->
Client ! {self(), data sent},
loop (Sock)

end
end.

Usually it suffices to detect time-outs on receive, as most protocols include some sort of acknowledgment from the
server, but if the protocol is strictly one way, option send_t i meout comesin handy.

Ericsson AB. All Rights Reserved.: Kernel | 139

gen_udp

gen_udp

Erlang module

This module provides functions for communicating with sockets using the UDP protocol.

Data Types

option() =
{active, true | false | once | -32768..32767} |
{add_membership, {inet:ip_address(), inet:ip_address()}} |
{broadcast, boolean()} |
{buffer, integer() >= 0} |
{deliver, port | term} |
{dontroute, boolean()} |
{drop_membership, {inet:ip_address(), inet:ip_address()}} |
{header, integer() >= 0} |
{high msgq watermark, integer() >= 1} |
{low _msgq watermark, integer() >= 1} |
{mode, list | binary} |
list |
binary |
{multicast if, inet:ip_address()} |
{multicast loop, boolean()} |
{multicast ttl, integer() >= 0} |
{priority, integer() >= 0} |

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

ValueBin :: binary()} |
{read packets, integer() >= 0} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{sndbuf, integer() >= 0} |
{tos, integer() >= 0} |
{ipv6_v6only, boolean()}

option name() =
active |
broadcast |
buffer |
deliver |
dontroute |
header |
high msgq watermark |
low _msgq watermark |
mode |
multicast if |
multicast loop |
multicast ttl |
priority |
{raw,

140 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,
ValueSpec ::

(ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
read packets |
recbuf |
reuseaddr |
sndbuf |
tos |
ipv6e _veonly
socket()

Asreturned by open/ 1, 2.

Exports

close(Socket) -> ok

Types:
Socket = socket ()
Closes a UDP socket.

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet: posix()

Assignsanew controlling processPi d to Socket . The controlling processisthe process that receives messagesfrom
the socket. If called by any other process than the current controlling process, { error, not _owner} isreturned.
If the processidentified by Pi d isnot an existing local pid,{ er r or, badar g} isreturned.{error, badar g}
may also be returned in some cases when Socket is closed during the execution of this function.

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}

Types:

Port = inet: port_numnber()

Opts = [Option]

Option =
{ip, inet:socket_address()} |
{fd, integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
option()

Socket = socket ()

Reason = inet: posi x()

Associates a UDP port number (Por t) with the calling process.

The following options are available:

Ericsson AB. All Rights Reserved.: Kernel | 141

gen_udp

list
Received Packet isdelivered asalist.
bi nary
Received Packet isdelivered as abinary.
{ip, Address}
If the host has many network interfaces, this option specifies which one to use.
{ifaddr, Address}
Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
{fd, integer() >= 0}

If a socket has somehow been opened without using gen_udp, use this option to pass the file descriptor for it.
If Port isnotsettoO and/or {i p, i p_address()} iscombined with thisoption, the f d isbound to the
specified interface and port after it is being opened. If these options are not specified, it is assumed that the f d
is aready bound appropriately.

inet6

Sets up the socket for |Pv6.
i net

Sets up the socket for 1Pv4.
| ocal

Sets up aUnix Domain Socket. See i net: | ocal _addr ess()
{udp_nodul e, nodul e()}

Overrides which callback module is used. Defaultstoi net _udp for IPv4andi net 6_udp for IPv6.
{mul ticast_if, Address}

Setsthelocal device for amulticast socket.
{mul ticast_|oop, true | false}

When't r ue, sent multicast packets are looped back to the local sockets.
{multicast _ttl, Integer}

Optionmmul ti cast _ttl changesthetime-to-live (TTL) for outgoing multicast datagramsto control the scope
of the multicasts.

Datagramswith a TTL of 1 are not forwarded beyond the local network. Defaultsto 1.
{add_rmenbershi p, {MiltiAddress, InterfaceAddress}}

Joins a multicast group.
{drop_nenbership, {MiltiAddress, |nterfaceAddress}}

Leaves amulticast group.
Opt

Seei net : set opt s/ 2.

The returned socket Socket isused to send packets from this port with send/ 4. When UDP packets arrive at the
opened port, if the socket isin an active mode, the packets are delivered as messages to the controlling process:

{udp, Socket, IP, InPortNo, Packet}

142 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

If the socket is not in an active mode, data can be retrieved through ther ecv/ 2, 3 calls. Notice that arriving UDP
packets that are longer than the receive buffer option specifies can be truncated without warning.

When a socket in {active, N} mode(seei net: setopts/ 2 for details), transitions to passive ({ acti ve,
f al se}) mode, the controlling processis notified by a message of the following form:

{udp_passive, Socket}

| P and I nPor t No define the address from which Packet comes. Packet isalist of bytesif option | i st is
specified. Packet isabinary if option bi nary is specified.

Default value for the receive buffer optionis{r ecbuf, 8192}.
If Port == 0, theunderlying OS assignsafree UDP port, usei net : port/ 1 toretrieveit.

recv(Socket, Length) ->
{ok, {Address, Port, Packet}} | {error, Reason}

recv(Socket, Length, Timeout) ->
{ok, {Address, Port, Packet}} | {error, Reason}

Types:
Socket = socket ()
Length = integer() >= 0
Timeout = timeout()
Address = inet:ip_address() | inet:returned_non_ip_address()
Port = inet:port_nunber()
Packet = string() | binary()
Reason = not owner | inet: posix()

Receives a packet from a socket in passive mode. Optional parameter Ti neout specifies atime-out in milliseconds.
Defaultstoi nfinity.

send(Socket, Address, Port, Packet) -> ok | {error, Reason}

Types:
Socket = socket ()
Address = inet:socket_address() | inet:hostnane()

Port = inet: port_nunber()
Packet = iodata()
Reason = not owner | inet: posix()

Sends a packet to the specified address and port. Argument Addr ess can be ahostname or a socket address.

Ericsson AB. All Rights Reserved.: Kernel | 143

global

global

Erlang module

This module consists of the following services:

* Registration of global names
+ Global locks
* Maintenance of the fully connected network

These services are controlled through the process gl obal _nane_ser ver that exists on every node. The global
name server starts automatically when a node is started. With the term global is meant over a system consisting of
many Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this
module, the equivalent of ther egi st er/ 2 and wher ei s/ 1 BIFs (for local name registration) are provided, but
for a network of Erlang nodes. A registered name is an dlias for a process identifier (pid). The globa name server
monitors globally registered pids. If a process terminates, the name is also globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus,
the trandation of anameto apidisfast, asit isaways done locally. For any action resulting in a change to the global
name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For example, the specified resource can be a pid.
When aglobal lock is set, accessto the locked resource is denied for al resources other than the lock requester.

Both the registration and lock services are atomic. All nodes involved in these actions have the same view of the
information.

The global name server also performs the critical task of continuously monitoring changes in node configuration. If
a node that runs a globally registered process goes down, the name is globally unregistered. To this end, the global
name server subscribes to nodeup and nodedown messages sent from module net _ker nel . Relevant Kernel
application variables in this context are net _set upti me, net _ti ckti me, and di st _aut o_connect . See
asokernel (6).

The name server also maintains a fully connected network. For example, if node N1 connects to node N2 (which is
already connected to N3), the global name servers on the nodes N1 and N3 ensure that also N1 and N3 are connected.
If thisis not desired, command-lineflag - connect _al | fal se canbeused (seeasoer!| (1)).Inthiscase, the
name registration service cannot be used, but the lock mechanism still works.

If the global name server fails to connect nodes (N1 and N3 in the example), a warning event is sent to the error
logger. The presence of such an event does not exclude the nodes to connect later (you can, for example, try command
rpc:call (N1, net_adm ping, [N2]) intheErlang shell), but it indicates a network problem.

If the fully connected network is not set up properly, try first to increase the value of net _set upti ne.

144 | Ericsson AB. All Rights Reserved.: Kernel

global

Data Types
id() = {Resourceld :: term(), LockRequesterId :: term()}

Exports

del lock(Id) -> true
del lock(Id, Nodes) -> true
Types.

Id = id()

Nodes = [node()]
Deletesthelock | d synchronously.

notify all name(Name, Pidl, Pid2) -> none
Types:
Name = term()
Pidl = Pid2 = pid()
Can be used as a name resolving function for r egi st er _name/ 3 andre_r egi st er _nane/ 3.

The function unregisters both pids and sends the message { gl obal _nane_conflict, Nane, O herPid}
to both processes.

random exit name(Name, Pidl, Pid2) -> pid()

Types:
Name = term()
Pidl = Pid2 = pid()

Can be used as a name resolving function for r egi st er _name/ 3 andr e_r egi st er _nane/ 3.

The function randomly selects one of the pids for registration and kills the other one.

random notify name(Name, Pidl, Pid2) -> pid()

Types.
Name = term()
Pidl = Pid2 = pid()

Can be used as aname resolving function for r egi st er _nane/ 3 andre_regi ster _nane/ 3.

Thefunction randomly selects one of the pidsfor registration, and sendsthe message{ gl obal _name_confli ct,
Nane} to the other pid.

re register name(Name, Pid) -> yes
re register name(Name, Pid, Resolve) -> yes
Types:

Name = term()

Pid = pid()

Resolve = net hod()

method() =

Ericsson AB. All Rights Reserved.: Kernel | 145

global

fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
pid() | none)
{Mbdul e, Funct i on} isaso alowed

Atomically changes the registered name Nane on all nodesto refer to Pi d.
Function Resol ve hasthe same behavior asinr egi st er _nane/ 2, 3.

register name(Name, Pid) -> yes | no
register name(Name, Pid, Resolve) -> yes | no
Types.

Name = term()

Pid = pid()

Resolve = net hod()

method() =
fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
pid() | none)
{Mbdul e, Funct i on} isaso allowed for backward compatibility, but its use is deprecated.

Globally associates name Nane with a pid, that is, globally notifies all nodes of a new global name in a network of
Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The
network isalso informed of any global namesin newly connected nodes. If any name clashes are discovered, function
Resol ve iscaled. Its purposeisto decide which pid is correct. If the function crashes, or returns anything other than
one of the pids, the nameis unregistered. This function is called once for each name clash.

If you plan to change code without restarting your system, you must use an external fun (fun
Modul e: Functi on/ Ari ty) asfunction Resol ve. If you use alocal fun, you can never replace the code for
the module that the fun belongs to.

Three predefined resolve functions exist: random exit _nane/3, random notify_ name/3, and
noti fy all _nane/ 3.If no Resol ve function is defined, r andom exi t _nane isused. This means that one
of the two registered processes is selected as correct while the other is killed.

Thisfunction is completely synchronous, that is, when this function returns, the name is either registered on all nodes
or none.

The function returnsyes if successful, no if it fails. For example, no isreturned if an attempt is made to register an
already registered process or to register a process with anamethat is already in use.

Releases up to and including Erlang/OTP R10 did not check if the process was already registered. The global name
table could therefore becomeinconsistent. Theold (buggy) behavior can be chosen by giving the Kernel application
variablegl obal _rmul ti _name_acti on thevaueal | ow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

registered names() -> [Name]
Types:

146 | Ericsson AB. All Rights Reserved.: Kernel

global

Name = term()
Returnsalist of all globally registered names.

send (Name, Msg) -> Pid

Types:
Name = Msg = term()
Pid = pid()

Sends message Ms g to the pid globally registered as Narme.
If Narre is not aglobally registered name, the calling function exits with reason { badar g, {Narme, Msg}}.

set lock(Id) -> boolean()
set lock(Id, Nodes) -> boolean()
set lock(Id, Nodes, Retries) -> boolean()
Types.
Id = id()
Nodes = [node()]
Retries = retries()
id() = {Resourceld :: term(), LockRequesterId :: term()}
retries() = integer() >= 0 | infinity
Sets alock on the specified nodes (or on all nodes if none are specified) on Resour cel d for LockRequest er | d.
If alock already existson Resour cel d for another requester than LockRequest er | d,andRet ri es isnot equal
to 0, the process sleeps for awhile and tries to execute the action later. When Ret r i es attempts have been made,

f al se isreturned, otherwisetrue. If Retries isinfinity, true iseventualy returned (unless the lock is
never released).

If novaluefor Ret ri es isspecified, i nfinity isused.
This function is completely synchronous.
If aprocess that holds alock dies, or the node goes down, the locks held by the process are del eted.

The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock,
both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock
one resource at atime. A deadlock can occur if some processes try to lock two or more resources. It is up to the
application to detect and rectify a deadlock.

Avoid the following values of Resour cel d, otherwise Erlang/OTP does not work properly:
- dist_ac

* gl obal

* mesia adjust _log wites

e mesia_table | ock

* pg2

Ericsson AB. All Rights Reserved.: Kernel | 147

global

sync() -> ok | {error, Reason :: term()}

Synchronizes the global name server with all nodes known to this node. These are the nodes that are returned from
er |l ang: nodes() . When this function returns, the global name server receives global information from all nodes.
This function can be called when new nodes are added to the network.

The only possible error reason Reason is{ " gl obal _groups definition error”, Error}.

trans(Id, Fun) -> Res | aborted
trans(Id, Fun, Nodes) -> Res | aborted
trans(Id, Fun, Nodes, Retries) -> Res | aborted
Types.

Id = id()

Fun = trans_fun()

Nodes = [node()]

Retries = retries()

Res = term()

retries() = integer() >= 0 | infinity

trans fun() = function() | {module(), atom()}

Setsalockonl d (usingset | ock/ 3). If thissucceeds, Fun() isevaluated and the result Res isreturned. Returns
abort ed if thelock attempt fails. If Ret ri es issettoi nfi ni ty, the transaction does not abort.

i nfinity isthedefault setting and is used if no valueis specified for Ret ri es.

unregister name(Name) -> term()
Types:
Name = term()
Removes the globally registered name Narre from the network of Erlang nodes.

whereis name(Name) -> pid() | undefined
Types:
Name = term()
Returns the pid with the globally registered name Name. Returnsundef i ned if the name is not globally registered.

See Also
gl obal _group(3),net_kernel (3)

148 | Ericsson AB. All Rights Reserved.: Kernel

global_group

global _group

Erlang module

This module makes it possible to partition the nodes of a system into global groups. Each global group hasits own
global namespace, see gl obal (3).

The main advantage of dividing systems into global groupsis that the background load decreases while the number
of nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter gl obal _gr oups defines the global groups (see also kernel (6) and
config(4)):
{global groups, [GroupTuple :: group tuple()]}

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

« An instance of the global group server, gl obal _gr oup, must be running on each node. The processes are
automatically started and synchronized when a node is started.

* All involved nodes must agree on the global group definition, otherwise the behavior of the system is undefined.
* All nodesin the system must belong to exactly one global group.

In the following descriptions, agroup node is a node belonging to the same global group as the local node.

Data Types

group_tuple() =
{GroupName :: group_narme(), [node()]} |

{GroupName :: group_nare(),
PublishType :: publish_type(),
[node()]}

A G oupTupl e without Publ i shType isthesameasa G oupTupl e with Publ i shType equal to nor mal .

group name() = atom()
publish type() = hidden | normal

A node started with command-lineflag - hi dden (seeer| (1))issaidtobeahidden node. A hidden node establishes
hidden connections to nodes not part of the same globa group, but normal (visible) connections to nodes part of the
same global group.

A globa group defined with Publ i shType equa to hi dden is said to be a hidden global group. All nodesin a
hidden global group are hidden nodes, whether they are started with command-line flag - hi dden or not.

name() = atom()
A registered name.
where() = {node, node()} | {group, group_nane()}

Exports

global groups() -> {GroupName, GroupNames} | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 149

global_group

GroupName = group_nane()
GroupNames = [GroupName]

Returns a tuple containing the name of the global group that the local node belongs to, and the list of all other known
group names. Returnsundef i ned if no global groups are defined.

info() -> [info_item)]
Types:
info item() =
{state, State :: sync_state()} |
{own_group name, GroupName :: group_nane()} |
{own_group nodes, Nodes :: [node()]} |
{synched nodes, Nodes :: [node)1} |
{sync_error, Nodes :: [node()]} |
{no_contact, Nodes :: [node()]} |
{other _groups, Groups :: [group_tuple()]} |
{monitoring, Pids :: [pid()]1}
sync_state() = no _conf | synced

Returns a list containing information about the global groups. Each list element is a tuple. The order of the tuples
is undefined.

{state, State}

If the local node is part of aglobal group, St at e isequal to synced. If no global groups are defined, St at e
isequal tono_conf .

{own_group_nane, G oupNane}

The name (atom) of the group that the local hode belongs to.
{own_group_nodes, Nodes}

A list of node names (atoms), the group nodes.
{synced_nodes, Nodes}

A list of node names, the group nodes currently synchronized with the local node.
{sync_error, Nodes}

A list of node names, the group nodes with which the local node has failed to synchronize.
{no_contact, Nodes}

A list of node names, the group nodes to which there are currently no connections.
{ot her _groups, G oups}

G oups isalist of tuples{ G oupNane, Nodes}, specifying the name and nodes of the other global groups.
{noni toring, Pids}

A list of pids, specifying the processes that have subscribed to nodeup and nodedown messages.

monitor nodes(Flag) -> ok
Types:
Flag = boolean()

Depending on FI ag, the calling process starts subscribing (Fl ag equal tot r ue) or stops subscribing (FI ag equal
tof al se) to node status change messages.

150 | Ericsson AB. All Rights Reserved.: Kernel

global_group

A process that has subscribed receives the messages{ nodeup, Node} and{ hodedown, Node} when agroup
node connects or disconnects, respectively.

own nodes() -> Nodes
Types:
Nodes = [Node :: node()]
Returns the names of all group nodes, regardless of their current status.

registered names(Where) -> Names

Types:
Where = where()
Names = [Name :: nane()]

Returns alist of all namesthat are globally registered on the specified node or in the specified global group.

send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
Types:
Where = where()
Name = nane()
Msg = term()
Searches for Nane, globally registered on the specified node or in the specified global group, or (if argument Wher e

is not provided) in any global group. The global groups are searched in the order that they appear in the value of
configuration parameter gl obal _gr oups.

If Narre isfound, message Ms g is sent to the corresponding pid. The pid is aso the return value of the function. If the
name is not found, the function returns { badar g, {Name, Msg}}.

sync() -> ok

Synchronizes the group nodes, that is, the globa name servers on the group nodes. Also checks the names globally
registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (seeasoerr or _| ogger (3) .

Returns {error, {'invalid global_groups definition', Bad}} if configuration parameter
gl obal _gr oups hasan invalid value Bad.

whereis name(Name) -> pid() | undefined
whereis name(Where, Name) -> pid() | undefined
Types.
Where = where()
Name = nane()
Searchesfor Nane, globally registered on the specified node or in the specified global group, or (if argument Wher e

is not provided) in any global group. The globa groups are searched in the order that they appear in the value of
configuration parameter gl obal _gr oups.

If Narre isfound, the corresponding pid is returned. If the nameis not found, the function returnsundef i ned.

Ericsson AB. All Rights Reserved.: Kernel | 151

global_group

Notes

» In the situation where a node has lost its connections to other nodes in its global group, but has connections to
nodes in other global groups, a request from another global group can produce an incorrect or misleading result.
For example, the isolated node can have inaccurate information about registered namesin its global group.

* Functionsend/ 2, 3 isnot secure.

» Distribution of applications is highly dependent of the global group definitions. It is not recommended that an
application is distributed over many global groups, as the registered names can be moved to another global group
at failover/takeover. Nothing prevents this to be done, but the application code must then handle the situation.

See Also
gl obal (3),erl (1)

152 | Ericsson AB. All Rights Reserved.: Kernel

heart

heart

Erlang module

This modules contains the interface to the heart process. heart sends periodic heartbeats to an external port
program, which is aso named heart. The purpose of the heart port program is to check that the Erlang
runtime system it is supervising is dtill running. If the port program has not received any heartbeats within
HEART _BEAT_TI MEQUT seconds (defaults to 60 seconds), the system can be rebooted.

An Erlang runtime system to be monitored by a heart program is to be started with command-lineflag - heart (see
asoerl (1)). Theheart processisthen started automatically:

% erl -heart ...

If the system is to be rebooted because of missing heartbeats, or a terminated Erlang runtime system, environment
variable HEART_COMVAND must be set before the system is started. If thisvariableisnot set, awarning text is printed
but the system does not reboot.

To reboot on Windows, HEART_COVMAND can be set to heart - shut down (included in the Erlang delivery) or
to any other suitable program that can activate a reboot.

The environment variable HEART _BEAT_TI MEQUT can be used to configure the heart time-outs; it can be set in the
operating system shell before Erlang is started or be specified at the command line:

% erl -heart -env HEART BEAT TIMEOUT 30 ...

The vaue (in seconds) must be in the range 10 < X <= 65535.

Notice that if the system clock is adjusted with more than HEART_BEAT_TI MEOUT seconds, hear t times out and
tries to reboot the system. This can occur, for example, if the system clock is adjusted automatically by use of the
Network Time Protocol (NTP).

If acrash occurs,aner | _crash. dunp isnot written unless environment variable ERL_ CRASH DUMP_SECONDS
iS sat:
% erl -heart -env ERL_CRASH DUMP SECONDS 10 ...

If aregular core dump is wanted, let heart know by setting the kill signal to abort using environment variable
HEART_KI LL_SI GNAL=SI GABRT. If unset, or not set to SI GABRT, the default behavior is a kill signal using
SI &KI LL:

% erl -heart -env HEART KILL SIGNAL SIGABRT ...

If heart should not kill the Erlang runtime system, this can be indicated using the environment variable
HEART _NO_KI LL=TRUE. Thiscan be useful if the command executed by heart takes care of this, for example as part
of aspecific cleanup sequence. If unset, or not set to TRUE, the default behaviour will be to kill as described above.

% erl -heart -env HEART NO KILL 1 ...

Furthermore, ERL_ CRASH DUMP_SECONDS has the following behavior on hear't :

Ericsson AB. All Rights Reserved.: Kernel | 153

heart

ERL_CRASH DUMP_SECONDS=0

Suppresses the writing of a crash dump file entirely, thus rebooting the runtime system immediately. Thisisthe
same as hot setting the environment variable.

ERL_CRASH_DUMP_SECONDS=- 1

Setting the environment variable to a negative value does not reboot the runtime system until the crash dump
fileis completly written.

ERL_CRASH_DUMP_SECONDS=S

heart waitsfor S seconds to let the crash dump file be written. After S seconds, hear t reboots the runtime
system, whether the crash dump file iswritten or not.

In the following descriptions, all functions fail with reason badar g if heart isnot started.

Data Types

heart option() = check schedulers

Exports

set cmd(Cmd) -> ok | {error, {bad cmd, Cmd}}
Types:
Cmd = string()

Sets a temporary reboot command. This command is used if a HEART _COVMAND other than the one specified with
the environment variable is to be used to reboot the system. The new Erlang runtime system uses (if it misbehaves)
environment variable HEART _COVMAND to reboot.

Limitations. Command string Cnd is sent to the heart program as an 1SO Latin-1 or UTF-8 encoded binary,
depending on the filename encoding mode of the emulator (seef i | e: nati ve_nanme_encodi ng/ 0). The size of
the encoded binary must be less than 2047 bytes.

clear cmd() -> ok
Clears the temporary boot command. If the system terminates, the normal HEART _COMMVAND is used to reboot.

get cmd() -> {ok, Cmd}
Types:
Cmd = string()
Gets the temporary reboot command. If the command is cleared, the empty string is returned.

set callback(Module, Function) ->
ok | {error, {bad callback, {Module, Function}}}

Types:
Module = Function = atom()

Thisvalidation callback will be executed before any heartbeat is sent to the port program. For the validation to succeed
it needs to return with the value ok.

An exception within the callback will be treated as a validation failure.
The callback will be removed if the system reboots.

154 | Ericsson AB. All Rights Reserved.: Kernel

heart

clear callback() -> ok
Removes the validation callback call before heartbeats.

get callback() -> {ok, {Module, Function}} | none
Types:
Module = Function = atom()

Get the validation callback. If the callback is cleared, none will be returned.

set options(Options) -> ok | {error, {bad options, Options}}
Types:
Options = [heart_option()]
Valid optionsset _opti ons are:
check _schedul ers

If enabled, asignal will be sent to each scheduler to check itsresponsiveness. The system check occurs before any
heartbeat sent to the port program. If any scheduler is not responsive enough the heart program will not receive
its heartbeat and thus eventually terminate the node.

Returns with the value ok if the options are valid.

get options() -> {ok, Options} | none
Types:
Options = [atom()]

Returns{ ok, Opti ons} whereOpti ons isalist of current options enabled for heart. If the callback is cleared,
none will be returned.

Ericsson AB. All Rights Reserved.: Kernel | 155

inet

inet

Erlang module

This module provides access to TCP/IP protocols.

See dlso ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for |P communication.

The following two Kernel configuration parameters affect the behavior of all sockets opened on an Erlang node:

e inet_default_connect options cancontainalist of default options used for all sockets returned when
doing connect .
e inet_default_listen_options cancontainalist of default optionsused whenissuingal i st en call.

When accept isissued, the values of the listening socket options are inherited. No such application variable is
therefore needed for accept .

Using the Kernel configuration parameters above, one can set default options for all TCP sockets on a node, but use
thiswith care. Optionssuch as{ del ay_send, t r ue} can be specified in thisway. The following is an example of
starting an Erlang node with all sockets using delayed send:

$ erl -sname test -kernel \
inet default connect options '[{delay send,true}]' \
inet default listen options '[{delay send,true}]’

Notice that default option { act i ve, true} cannot be changed, for internal reasons.

Addresses as inputs to functions can be either a string or a tuple. For example, the IP address 150.236.20.73 can be
passed to get host byaddr/ 1, either asstring " 150. 236. 20. 73" or astuple{ 150, 236, 20, 73}.

| Pv4 addr ess examples:

Address ip address()
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}

| Pv6 addr ess examples:

Address ip address()
HE | {0,0,0,0,0,0,
::192.168.42.2 {0,0,0,0,0,0,
::FFFF:192.168.42.2

{0,0,0,0,0,16#FFFF, (192 bsl 8) bor 168, (42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fel7:bf38

{16#3ffe, 16#b80,16#1f8d, 16#2,16#204, 16#acff,16#fel7,16#bf38}
fe80::204:acff:fel7:bf38

{16#fe80,0,0,0,0,16#204,16#acff,16#fel7,16#bf38}

Il}
192 bsl 8) bor 168, (42 bsl 8) bor 2}

Function par se_addr ess/ 1 can be useful:

1> inet:parse address("192.168.42.2").

{ok, {192,168,42,2}}

2> inet:parse address("::FFFF:192.168.42.2").
{ok,{0,0,0,0,0,65535,49320,10754}}

156 | Ericsson AB. All Rights Reserved.: Kernel

inet

Data Types

hostent () =
#hostent{h name = inet: hostname(),
h aliases = [inet: hostnanme()],
h addrtype = inet | inet6,
h length = integer() >= 0,
h addr list = [inet:ip_address() 1}

Therecord isdefined in the Kerndl includefile"i net . hrl ™.
Add the following directive to the module:

-include lib("kernel/include/inet.hrl").

hostname() = atom() | string()
ip address() = ip4_address() | ip6_address()
ip4 address() {0..255, 0..255, 0..255, 0..255}

ip6 address()
{0..65535,
.65535,
.65535,
.65535,
.65535,
.65535,
.65535,
.65535}

port number() = 0..65535
local address() = {local, File :: binary() | string()}

[cNoNoNoNoNONO]

This address family only works on Unix-like systems.

Fi | e isnormally afile pathname in alocal filesystem. It is limited in length by the operating system, traditionally
to 108 bytes.

A bi nary() ispassed asisto the operating system, but ast ri ng() isencoded according to the system filename
encoding mode.

Other addresses are possible, for example Linux implements "Abstract Addresses"’. See the documentation for Unix
Domain Sockets on your system, normally uni x in manual section 7.

In most API functions where you can use this address family the port number must be 0.
socket address() =
i p_address() | any | loopback | | ocal _address()

socket getopt() =

gen_sct p: opti on_name() |

gen_tcp: option_name() |

gen_udp: opti on_nane()
socket setopt() =

gen_sctp:option() | gen_tcp:option() | gen_udp: option()
returned non ip address() =

{local, binary()} | {unspec, <<>>} | {undefined, any()}

Addresses besides i p_address() ones that are returned from socket API functions. See in particular
| ocal _address(). Theunspec family corresponds to AF_UNSPEC and can occur if the other side has no

Ericsson AB. All Rights Reserved.: Kernel | 157

inet

socket address. The undef i ned family can only occur in the unlikely event of an address family that the VM does
not recognize.

posix() = exbadport | exbadseq | file: posix()

An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
See section POS X Error Codes.

socket ()
Seegen_t cp: type-socket andgen_udp: t ype- socket.
address_family() = inet | inet6 | local

Exports

close(Socket) -> ok
Types:

Socket = socket ()
Closes a socket of any type.

format error(Reason) -> string()
Types:
Reason = posix() | system limit
Returns a diagnostic error string. For possible POSIX values and corresponding strings, see section POS X Error
Codes.

get rc() ->
[{Par :: atom(), Val :: any()} |
{Par :: atom(), Vall :: any(), Val2 :: any()}]

Returnsthe state of the | net configuration database in form of alist of recorded configuration parameters. For more
information, see ERTS User's Guide: Inet Configuration.

Only actual parameterswith other than default valuesare returned, for example not directivesthat specify other sources
for configuration parameters nor directives that clear parameters.

getaddr(Host, Family) -> {ok, Address} | {error, posix()}
Types.

Host = i p_address() | hostnane()

Family = address_fam | y()

Address = i p_address()

Returns the IP address for Host as atuple of integers. Host can be an IP address, a single hostname, or a fully
qualified hostname.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types:

158 | Ericsson AB. All Rights Reserved.: Kernel

inet

Host = i p_address() | hostnane()
Family = address_fanily()
Addresses = [ip_address()]

Returnsalist of all 1P addressesfor Host . Host canbean IP address, asingle hostname, or afully qualified hostname.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}

Types.
Address = string() | ip_address()
Hostent = hostent ()

Returnsahost ent record for the host with the specified address.

gethostbyname (Hostname) -> {ok, Hostent} | {error, posix()}
Types:

Hostname = host nane()

Hostent = hostent ()

Returnsahost ent record for the host with the specified hostname.

If resolver optioni net 6 ist r ue, an IPv6 addressislooked up. If that fails, the |Pv4 addressislooked up and returned
on |Pv6-mapped |Pv4 format.

gethostbyname(Hostname, Family) ->
{ok, Hostent} | {error, posix()}

Types:
Hostname = host nane()
Family = address_fanily()
Hostent = hostent ()

Returnsahost ent record for the host with the specified name, restricted to the specified address family.

gethostname() -> {ok, Hostname}
Types.
Hostname = string()

Returns the local hostname. Never fails.

getifaddrs() -> {ok, Iflist} | {error, posix()}
Types:
Iflist = [{Ifname, [Ifopt]}]
Ifname = string()
Ifopt =
{flags, [Flagl} |
{addr, Addr} |
{netmask, Netmask} |
{broadaddr, Broadaddr} |
{dstaddr, Dstaddr} |
{hwaddr, Hwaddr}

Flag =

Ericsson AB. All Rights Reserved.: Kernel | 159

inet

up | broadcast | loopback | pointtopoint | running | multicast
Addr = Netmask = Broadaddr = Dstaddr = i p_address()
Hwaddr = [byte()]
Returnsalist of 2-tuples containing interface names and theinterface addresses. | f nane isaUnicode string. Hvaddr
is hardware dependent, for example, on Ethernet interfaces it is the 6-byte Ethernet address (MAC address (EUI-48
address)).
Thetuples{ addr, Addr },{ net mask, _},and{br oadaddr, } arerepeatedintheresultlistif theinterface has

multiple addresses. If you come across an interface with multiple { f | ag, _} or { hwaddr, _} tuples, you have a
strange interface or possibly abug in thisfunction. Thetuple{ f | ag, _} ismandatory, all others are optional.

Do not rely too much on the order of FI ag atomsor | f opt tuples. There are however some rules:

e Immediately after { addr, _} follows{ net mask, _}.

* Immediately thereafter follows { br oadaddr, } if flag br oadcast isnot set and flag poi ntt opoi nt is
Set.

e Any{netnmask, },{broadaddr, },or{dstaddr, } tuplesthat follow an{addr, } tuple concerns
that address.

Thetuple{ hwaddr, _} isnot returned on Solaris, as the hardware address historically belongsto the link layer and
only the superuser can read such addresses.

On Windows, the datais fetched from different OS API functions, so the Net mask and Br oadaddr values can
be calculated, just as some Fl ag values. Report flagrant bugs.

getopts(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket ()

Options = [socket _getopt ()]

OptionValues = [socket setopt()]

Gets one or more options for a socket. For alist of available options, see set opt s/ 2.

Thenumber of elementsinthereturned Opt i onVal ues list doesnot hecessarily correspond to the number of options
asked for. If the operating system fails to support an option, it isleft out in the returned list. An error tupleis returned
only when getting options for the socket isimpossible (that is, the socket is closed or the buffer sizein araw request
istoo large). This behavior is kept for backward compatibility reasons.

A raw option request RawOpt Req = {raw, Protocol, OptionNum Val ueSpec} can be used to get
information about socket options not (explicitly) supported by the emulator. The use of raw socket options makes the
code non-portable, but allows the Erlang programmer to take advantage of unusual features present on the current
platform.

RawOpt Req consists of tag r awfollowed by the protocol level, the option number, and either abinary or the size, in
bytes, of the buffer in which the option valueisto be stored. A binary isto be used when the underlying get sockopt
requires input in the argument field. In this case, the binary size is to correspond to the required buffer size of the
return value. The supplied valuesin aRawOpt Req correspond to the second, third, and fourth/fifth parametersto the
get sockopt call inthe C socket API. The value stored in the buffer is returned as a binary Val ueBi n, where all
values are coded in the native endianess.

Asking for and inspecting raw socket options require low-level information about the current operating system and
TCP stack.

160 | Ericsson AB. All Rights Reserved.: Kernel

inet

Example:

Consider a Linux machine where option TCP_I NFO can be used to collect TCP statistics for a socket. Assume you
areinterested in fieldt cpi _sacked of struct tcp_i nf o filled in when asking for TCP_I NFO. To be able to
access thisinformation, you need to know the following:

e Thenumeric value of protocol level | PPROTO_TCP

e Thenumeric vaue of option TCP_I NFO

e Thesizeofstruct tcp_info

* Thesize and offset of the specific field

By inspecting the headers or writing a small C program, it is found that | PPROTO _TCP is6, TCP_I NFOis 11, the

structure sizeis 92 (bytes), the offset of t cpi _sacked is 28 bytes, and the value is a 32-bit integer. The following
code can be used to retrieve the value:

get tcpi sacked(Sock) ->

{ok, [{raw, , ,Info}]} = inet:getopts(Sock, [{raw,6,11,92}]),
<< :28/binary,TcpiSacked:32/native, /binary>> = Info,
TcpiSacked.

Preferably, you would check the machine type, the operating system, and the Kernel version before executing anything
similar to this code.

getstat(Socket) -> {ok, OptionValues} | {error, posix()}
getstat(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types.
Socket = socket ()
Options = [stat _option()]
OptionValues = [{stat_option(), integer()}]
stat option() =
recv_cnt
recv_max
recv_avg
recv_oct
recv_dvi
send _cnt
send_max
send avg
send oct
send pend

Gets one or more statistic options for a socket.

get st at (Socket) is equivaent to get stat (Socket, [recv_avg, recv_cnt, recv_dvi,
recv_max, recv_oct, send_avg, send_cnt, send_dvi, send_max, send_oct]).

The following options are available:
recv_avg

Average size of packets, in bytes, received by the socket.
recv_cnt

Number of packets received by the socket.

Ericsson AB. All Rights Reserved.: Kernel | 161

inet

recv_dvi

Average packet size deviation, in bytes, received by the socket.
recv_max

Size of the largest packet, in bytes, received by the socket.
recv_oct

Number of bytes received by the socket.
send_avg

Average size of packets, in bytes, sent from the socket.
send_cnt

Number of packets sent from the socket.
send_dvi

Average packet size deviation, in bytes, sent from the socket.
send_max

Size of the largest packet, in bytes, sent from the socket.
send_oct

Number of bytes sent from the socket.

ntoa(IpAddress) -> Address | {error, einval}
Types.

Address = string()

IpAddress = i p_address()

Parsesani p_addr ess() andreturnsan IPv4 or IPv6 address string.

parse_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()

IPAddress = i p_address()

Parses an IPv4 or 1Pv6 address string and returnsan i p4_addr ess() ori p6_addr ess() . Accepts a shortened
IPv4 address string.

parse ipv4 address(Address) -> {ok, IPv4Address} | {error, einval}
Types.

Address = string()

IPv4Address = i p_address()

Parses an |Pv4 address string and returnsan i p4_addr ess() . Accepts a shortened |Pv4 address string.
parse ipv4strict address(Address) ->

{ok, IPv4Address} | {error, einval}
Types:

162 | Ericsson AB. All Rights Reserved.: Kernel

inet

Address = string()
IPv4Address = i p_address()

Parses an |Pv4 address string containing four fields, that is, not shortened, and returnsani p4_addr ess() .

parse ipv6 address(Address) -> {ok, IPvb6Address} | {error, einval}
Types:

Address = string()

IPv6Address = i p_address()

Parsesan |Pv6 address string and returnsani p6_addr ess() . If an1Pv4 address string is specified, an |Pv4-mapped
IPv6 addressiis returned.

parse ipv6strict address(Address) ->
{ok, IPv6Address} | {error, einval}

Types:
Address = string()
IPv6Address = i p_address()

Parses an |Pv6 address string and returnsan i p6_addr ess() . Does not accept | Pv4 addresses.

parse strict address(Address) -> {ok, IPAddress} | {error, einval}
Types.

Address = string()

IPAddress = i p_address()

Parses an IPv4 or |Pv6 address string and returns an i p4_addr ess() ori p6_address() . Does not accept a
shortened | Pv4 address string.

peername(Socket :: socket()) ->
{ok,
{i p_address(), port_nunber()} |
returned_non_i p_address() } |
{error, posix()}

Returns the address and port for the other end of a connection.

Notice that for SCTP sockets, this function returns only one of the peer addresses of the socket. Function
peer nanes/ 1, 2 returnsal.

peernames (Socket :: socket()) ->
{ok,
[{i p_address(), port_nunber()} |
returned_non_i p_address()]} |
{error, posix()}

Equivalent to peer nanes(Socket, 0).

Notice that the behavior of this function for an SCTP one-to-many style socket is not defined by the SCTP Sockets
APl Extensions.

peernames (Socket, Assoc) ->

Ericsson AB. All Rights Reserved.: Kernel | 163

href
href

inet

{ok, [{Address, Port}]} | {error, posix()}
Types.
Socket = socket ()
Assoc = #sctp assoc change{} | gen_sctp:assoc_id()
Address = i p_address()
Port = integer() >= 0
Returns alist of all address/port number pairs for the other end of an association Assoc of a socket.

Thisfunction can return multiple addresses for multihomed sockets, such as SCTP sockets. For other socketsit returns
aone-element list.

Notice that parameter Assoc is by the SCTP Sockets APl Extensions defined to be ignored for one-to-one style
sockets. What the special value 0 means, hence its behavior for one-to-many style sockets, is unfortunately undefined.

port(Socket) -> {ok, Port} | {error, any()}
Types.

Socket = socket ()

Port = port_nunber ()

Returns the local port number for a socket.

setopts(Socket, Options) -> ok | {error, posix()}
Types:

Socket = socket ()

Options = [socket _setopt ()]

Sets one or more options for a socket.
The following options are available:
{active, true | false | once | N}

If thevalueist r ue, whichisthe default, everything received from the socket is sent as messagesto the receiving
process.

If the value is fal se (passive mode), the process must explicitly receive incoming data by calling
gen_tcp:recv/ 2, 3,gen_udp: recv/ 2, 3,orgen_sct p: recv/ 1, 2 (depending on thetype of socket).

If thevalueisonce ({acti ve, once}), onedatamessage from the socket is sent to the process. To receive
one more message, set opt s/ 2 must be called again with option { act i ve, once}.

If thevalueisaninteger Nintherange-32768 to 32767 (inclusive), the valueis added to the socket's count of data
messages sent to the controlling process. A socket's default message count is 0. If a negative value is specified,
and its magnitude is equal to or greater than the socket's current message count, the socket's message count is set
to 0. Once the socket's message count reaches 0, either because of sending received data messagesto the process
or by being explicitly set, the processisthen notified by a special message, specific to the type of socket, that the
socket has entered passive mode. Once the socket enters passive mode, to receive more messages set opt s/ 2
must be called again to set the socket back into an active mode.

Whenusing { acti ve, once} or{active, N}, thesocket changesbehavior automatically when datais
received. This can be confusing in combination with connection-oriented sockets (that is, gen_t cp), asasocket
with{acti ve, fal se} behavior reportsclosingdifferently than asocket with{acti ve, true} behavior.
To simplify programming, a socket where the peer closed, and this is detected whilein {acti ve, fal se}
mode, still generates message {t cp_cl osed, Socket} when set to {active, once}, {active,
true}, or {active, N} mode. It is therefore safe to assume that message {t cp_cl osed, Socket },

164 | Ericsson AB. All Rights Reserved.: Kernel

href

inet

possibly followed by socket port termination (depending on optionexi t _on_cl ose) eventually appearswhen
asocket changes back and forth between{ acti ve, true} and{active, fal se} mode. However, when
peer closing is detected it isal up to the underlying TCP/IP stack and protocol.

Noticethat { acti ve, true} mode provides no flow control; afast sender can easily overflow the receiver
with incoming messages. Thesameistruefor{ acti ve, N} mode, whilethe message count isgreater than zero.

Use active mode only if your high-level protocol provides its own flow control (for example, acknowledging
received messages) or the amount of dataexchangedissmall.{act i ve, fal se} mode, useof the{acti ve,
once} mode, or { acti ve, N} mode with values of N appropriate for the application provides flow control.
The other side cannot send faster than the receiver can read.

{broadcast, Bool ean} (UDP sockets)
Enables/disables permission to send broadcasts.
{buffer, Size}

The size of the user-level software buffer used by the driver. Not to be confused with options sndbuf
and r ecbuf , which correspond to the Kernel socket buffers. It is recommended to have val (buf fer)
>= max(val (sndbuf), val (recbuf)) to avoid performance issues because of unnecessary copying.
val (buff er) isautomaticaly set to the above maximum when valuessndbuf orr ecbuf areset. However,
as the sizes set for sndbuf and r ecbuf usually become larger, you are encouraged to use get opt s/ 2 to
analyze the behavior of your operating system.

Note that this is also the maximum amount of data that can be received from a single recv call. If you are using
higher than normal MTU consider setting buffer higher.

{del ay_send, Bool ean}

Normally, when an Erlang process sends to a socket, the driver tries to send the data immediately. If that fails,
the driver uses any means available to queue up the message to be sent whenever the operating system saysit can
handle it. Setting { del ay_send, true} makes all messages queue up. The messages sent to the network
are then larger but fewer. The option affects the scheduling of send requests versus Erlang processes instead of
changing any real property of the socket. The option isimplementation-specific. Defaultsto f al se.

{deliver, port | ternt

When{active, true},dataisdeliveredontheformport :{S, {data, [Hl,..Hsz | Data]}}
orterm:{tcp, S, [Hl..Hsz | Data]}.

{dontroute, Bool ean}

Enables/disables routing bypass for outgoing messages.
{exit_on_cl ose, Bool ean}

Thisoptionissettot r ue by default.

Theonly reasonto setittof al se isif you want to continue sending data to the socket after acloseis detected,
for example, if the peer usesgen_t cp: shut down/ 2 to shut down the write side.

{header, Size}

This option is only meaningful if option bi nar y was specified when the socket was created. If option header

isspecified, thefirst Si ze number bytes of datareceived from the socket are elements of alist, and the remaining
data is a binary specified as the tail of the same list. For example, if Si ze == 2, the data received matches
[Bytel, Byt e2| Bi nary] .

{hi gh_nsgq_wat ermark, Size}

The socket message queue is set to a busy state when the amount of data on the message queue reaches this
limit. Notice that this limit only concerns data that has not yet reached the ERTS internal socket implementation.
Defaultsto 8 kB.

Ericsson AB. All Rights Reserved.: Kernel | 165

inet

Senders of datato the socket are suspended if either the socket message queue is busy or the socket itself isbusy.
For more information, see options| ow_nsgq_wat er mar k, hi gh_wat er mar k, and| ow_wat er mar k.

Notice that distribution sockets disable the use of hi gh_nsgq_wat er mar k and | ow_nsgqg_wat er mar k.
Instead use the distribution buffer busy limit, which is asimilar feature.

{hi gh_wat ermark, Size} (TCP/IP sockets)

The socket is set to a busy state when the amount of data queued internally by the ERTS socket implementation
reachesthis limit. Defaultsto 8 kB.

Senders of datato the socket are suspended if either the socket message queue is busy or the socket itself is busy.

For more information, see options |ow watermark, high_nsgg _waternmark, and
| ow_nmsqg_wat er mar k.

{i pv6_v6only, Bool ean}

Restricts the socket to use only 1Pv6, prohibiting any IPv4 connections. Thisis only applicable for 1Pv6 sockets
(optioni net 6).

On most platforms this option must be set on the socket before associating it to an address. It is therefore only
reasonableto specify it when creating the socket and not to useit when calling function (set opt s/ 2) containing
this description.

The behavior of a socket with thisoption set tot r ue isthe only portable one. The original ideawhen IPv6 was
new of using IPv6 for all traffic is now not recommended by FreeBSD (you canuse{i pv6_véonl vy, f al se}
to override the recommended system default value), forbidden by OpenBSD (the supported GENERIC kernel),
and impossible on Windows (which has separate |Pv4 and |Pv6 protocol stacks). Most Linux distros still have
a system default value of f al se. This policy shift among operating systems to separate |Pv6 from IPv4 traffic
has evolved, asit gradually proved hard and complicated to get adual stack implementation correct and secure.

On some platforms, the only allowed valuefor thisoptionist r ue, for example, OpenBSD and Windows. Trying
to set thisoptionto f al se, when creating the socket, failsin this case.

Setting this option on platforms where it does not exist isignored. Getting this option with get opt s/ 2 returns
no value, that is, the returned list does not containan{i pv6_v6only, } tuple. On Windows, the option does
not exist, but it is emulated as a read-only option with valuet r ue.

Therefore, setting thisoptiontot r ue when creating asocket never fails, except possibly on aplatformwhereyou
have customized thekernel to only allow f al se, which can bedoable (but awkward) on, for example, OpenBSD.

If you read back the option value using get opt s/ 2 and get no value, the option does not exist in the host
operating system. The behavior of both an 1Pv6 and an IPv4 socket listening on the same port, and for an IPv6
socket getting | Pv4 traffic is then no longer predictable.

{keepal i ve, Bool ean} (TCP/IP sockets)

Enables/disables periodic transmission on a connected socket when no other data is exchanged. If the other end
does not respond, the connection is considered broken and an error message is sent to the controlling process.
Defaultsto di sabl ed.

{l'inger, {true|false, Seconds}}

Determines the time-out, in seconds, for flushing unsent datain thecl ose/ 1 socket call. If the first component
of thevalue tupleisf al se, the second isignored. This meansthat cl ose/ 1 returnsimmediately, not waiting
for data to be flushed. Otherwise, the second component is the flushing time-out, in seconds.

{l ow_nmsgq_wat er mar k, Si ze}

If the socket message queueisin abusy state, the socket message queueis set in anot busy state when the amount
of data queued in the message queue falls below this limit. Notice that this limit only concerns data that has not
yet reached the ERTS internal socket implementation. Defaults to 4 kB.

166 | Ericsson AB. All Rights Reserved.: Kernel

inet

Sendersthat are suspended because of either abusy message queue or abusy socket are resumed when the socket
message queue and the socket are not busy.

For more information, see options hi gh_nmsgq_wat er mar k, hi gh_wat er mar k, and | ow_wat er mar k.

Notice that distribution sockets disable the use of hi gh_nsgq_wat er mar k and | ow_nsgqg_wat er mar k.
Instead they use the distribution buffer busy limit, which is asimilar feature.

{I ow wat er mar k, Size} (TCP/IP sockets)

If the socket isin abusy state, the socket is set in anot busy state when the amount of data queued internally by
the ERTS socket implementation falls below this limit. Defaultsto 4 kB.

Senders that are suspended because of a busy message queue or a busy socket are resumed when the socket
message queue and the socket are not busy.

For more information, see options high_watermark, high_nsgq_waternmark, and
| ow_nmsgq_wat er mar k.

{node, Mode :: binary | list}
Received Packet isdelivered as defined by Mode.
{netns, Nanespace :: file:filenane_all ()}

Sets a network namespace for the socket. Parameter Nanespace is a filename defining the namespace, for
example, "/ var/ run/ net ns/ exanpl e", typicaly created by command i p netns add exanpl e.
This option must be used in a function call that creates a socket, that is, gen_t cp: connect/ 3, 4,
gen_tcp:listen/2,gen_udp: open/ 1, 2,0orgen_sctp:open/0, 1, 2.

This option uses the Linux-specific syscall set ns(), such asin Linux kernel 3.0 or later, and therefore only
exists when the runtime system is compiled for such an operating system.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having
capability CAP_SYS_ADM N according to the documentation for set ns(2) . However, during testing also
CAP_SYS PTRACE and CAP_DAC_ READ_SEARCH have proven to be necessary.

Example:
setcap cap_sys admin,cap sys ptrace,cap dac read search+epi beam.smp

Notice that the filesystem containing the virtual machine executable (beam snp in the example) must be local,
mounted without flag noset ui d, support extended attributes, and the kernel must support file capabilities. All
this runs out of the box on at least Ubuntu 12.04 LTS, except that SCTP sockets appear to not support network
namespaces.

Nanespace isafilenameand isencoded and decoded as discussed in modul efile, with the following exceptions:

e Emulator flag +f nu isignored.

e getopt s/ 2 for thisoption returns abinary for the filename if the stored filename cannot be decoded. This
is only to occur if you set the option using a binary that cannot be decoded with the emulator's filename
encoding: fil e: nati ve_name_encodi ng/ 0.

{bind _to _device, Ifnane :: binary()}

Binds a socket to a specific network interface. This option must be used in a function call that

creates a socket, that is, gen_t cp: connect/ 3, 4, gen_tcp:listen/ 2, gen_udp: open/ 1, 2, or

gen_sctp: open/0, 1, 2.

Unlikeget i f addr s/ 0, Ifnameisencoded abinary. Inthe unlikely case that a system isusing non-7-bit-ASCI|

charactersin network device names, specia care has to be taken when encoding this argument.

This option uses the Linux-specific socket option SO_BI NDTODEVI CE, such asin Linux kernel 2.0.30 or later,
and therefore only exists when the runtime system is compiled for such an operating system.

Ericsson AB. All Rights Reserved.: Kernel | 167

inet

Before Linux 3.8, this socket option could be set, but could not retrieved with get opt s/ 2. Since Linux 3.8,
itisreadable.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having capability
CAP_NET_RAW

The primary use case for this option is to bind socketsinto Linux VRF instances.
l'ist

Received Packet isdelivered asalist.
bi nary

Received Packet isdelivered asabinary.
{nodel ay, Bool ean} (TCP/IP sockets)

If Bool ean == t rue, option TCP_NODELAY isturned onfor the socket, which meansthat also small amounts
of dataare sent immediately.

{packet, Packet Type} (TCP/IP sockets)
Defines the type of packets to use for a socket. Possible values:
raw | O
No packaging is done.
1] 2] 4
Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes.

The header length can be one, two, or four bytes, and containing an unsigned integer in big-endian byte
order. Each send operation generates the header, and the header is stripped off on each receive operation.

The 4-byte header islimited to 2Gb.
asnl | cdr | sunrm| fcgi | tpkt | line

These packet types only have effect on receiving. When sending a packet, it is the responsibility of the
application to supply acorrect header. On receiving, however, one message is sent to the controlling process
for each complete packet received, and, similarly, each call togen_t cp: recv/ 2, 3 returns one complete
packet. The header is not stripped off.

The meanings of the packet types are as follows:

e asnl-ASN.1BER

* sunrm- Sun's RPC encoding

+ cdr - CORBA (GIOP 1.1)

« fcgi -FastCGI

+ tpkt - TPKT format [RFC1006]

* |ine -Linemode, apacketisaline-terminated with newline, lines longer than the receive buffer are
truncated

http | http_bin
The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket
described in erl ang: decode_packet/3 in ERTS. A socket in passive mode returns { ok,

Ht t pPacket } fromgen_t cp: r ecv while an active socket sends messages like{ htt p, Socket,
Ht t pPacket }.

168 | Ericsson AB. All Rights Reserved.: Kernel

href

inet

httph | httph_bin

These two types are often not needed, as the socket automatically switches from htt p/htt p_bi n to
ht t ph/ht t ph_bi n internally after the first line is read. However, there can be occasions when they are
useful, such as parsing trailers from chunked encoding.

{packet _si ze, | nteger} (TCP/IP sockets)

Setsthe maximum allowed length of the packet body. If the packet header indicatesthat thelength of the packet is
longer than the maximum allowed length, the packet is considered invalid. The same occursiif the packet header
istoo large for the socket receive buffer.

For line-oriented protocols(l i ne, ht t p*), optionpacket _si ze also guaranteesthat lines up to theindicated
length are accepted and not considered invalid because of internal buffer limitations.

{l'ine_delimter, Char} (TCP/IP sockets)

Sets the line delimiting character for line-oriented protocols (I i ne). Defaultsto $\ n.
{raw, Protocol, OptionNum Val ueBi n}

See below.
{read_packets, |nteger} (UDP sockets)

Sets the maximum number of UDP packets to read without intervention from the socket when datais available.
When this many packets have been read and delivered to the destination process, new packets are not read until
a new notification of available data has arrived. Defaults to 5. If this parameter is set too high, the system can
become unresponsive because of UDP packet flooding.

{recbuf, Size}

The minimum size of the receive buffer to use for the socket. Y ou are encouraged to use get opt s/ 2 toretrieve
the size set by your operating system.

{reuseaddr, Bool ean}

Allows or disallows local reuse of port numbers. By default, reuse is disallowed.
{send_tineout, |nteger}

Only allowed for connection-oriented sockets.

Specifies alongest timeto wait for a send operation to be accepted by the underlying TCP stack. When the limit
is exceeded, the send operation returns{ er r or , t i meout } . How much of a packet that got sent is unknown;
the socket is therefore to be closed whenever a time-out has occurred (see send_t i meout _cl ose below).
Defaultstoi nfinity.

{send_ti meout cl ose, Bool ean}
Only allowed for connection-oriented sockets.

Used together with send_t i meout to specify whether the socket is to be automatically closed when the send
operation returns { er r or , t i meout } . The recommended setting ist r ue, which automatically closes the
socket. Defaultsto f al se because of backward compatibility.

{show_econnreset, Bool ean} (TCP/IP sockets)

When this option is set to f al se, which is default, an RST received from the TCP peer is treated as a normal
close (asthough an FIN was sent). A callertogen_t cp: recv/ 2 gets{error, cl osed}. Inactive mode,
the controlling processreceivesa{t cp_cl ose, Socket} message, indicating that the peer has closed the
connection.

Setting this option to t r ue alows you to distinguish between a connection that was closed normally, and
one that was aborted (intentionally or unintentionally) by the TCP peer. A call to gen_t cp: recv/ 2 returns

Ericsson AB. All Rights Reserved.: Kernel | 169

inet

{error, econnreset}. In active mode, the controlling process receives a{tcp_error, Socket,

econnr eset } messagebeforetheusua {t cp_cl osed, Socket }, asisthecasefor any other socket error.
Callstogen_tcp: send/ 2 dsoreturns{error, econnreset} whenitis detected that a TCP peer has
sent an RST.

A connected socket returned from gen_t cp: accept/ 1 inherits the show_econnr eset setting from the
listening socket.

{sndbuf, Size}

The minimum size of the send buffer to use for the socket. Y ou are encouraged to use get opt s/ 2, to retrieve
the size set by your operating system.
{priority, Integer}

Setsthe SO PRI ORI TY socket level option on platforms where this is implemented. The behavior and allowed
range varies between different systems. The option is ignored on platforms where it is not implemented. Use
with caution.

{tos, Integer}

Sets| P_TOS | P level options on platforms where thisisimplemented. The behavior and allowed range varies
between different systems. The option isignored on platforms where it is not implemented. Use with caution.

{tcl ass, Integer}

Sets| PV6_TCLASS | P leve options on platforms where thisisimplemented. The behavior and allowed range
varies between different systems. The option is ignored on platforms where it is not implemented. Use with
caution.

In addition to these options, raw option specifications can be used. The raw options are specified as a tuple of arity
four, beginning with tag r aw, followed by the protocol level, the option number, and the option value specified as
a binary. This corresponds to the second, third, and fourth arguments to the set sockopt call in the C socket API.
The option value must be coded in the native endianess of the platform and, if a structure is required, must follow the
structure alignment conventions on the specific platform.

Using raw socket options requires detailed knowledge about the current operating system and TCP stack.
Example:

This example concerns the use of raw options. Consider aLinux system where you want to set option TCP_LI NGER2
on protocol level | PPROTO_TCP in the stack. Y ou know that on this particular system it defaultsto 60 (seconds), but
you want to lower it to 30 for aparticular socket. Option TCP_LI NGER2 isnot explicitly supported by i net , but you
know that the protocol level translates to number 6, the option number to number 8, and the value isto be specified as
a 32-bit integer. Y ou can use this code line to set the option for the socket named Sock:

inet:setopts(Sock, [{raw,6,8,<<30:32/native>>}]),

As many options are silently discarded by the stack if they are specified out of range; it can be a good idea to check
that araw option is accepted. The following code placesthe value in variable TcpLi nger 2:

{ok, [{raw,6,8,<<TcpLinger2:32/native>>}]}=inet:getopts(Sock, [{raw,6,8,4}1),

Code such as these examplesis inherently non-portable, even different versions of the same OS on the same platform
can respond differently to this kind of option manipulation. Use with care.

Noticethat the default optionsfor TCP/I P sockets can be changed with the Kernel configuration parameters mentioned
in the beginning of this manua page.

sockname(Socket :: socket()) ->
{ok,

170 | Ericsson AB. All Rights Reserved.: Kernel

inet

{i p_address(), port_nunber()} |
returned_non_i p_address() } |
{error, posix()}

Returns the local address and port number for a socket.

Notice that for SCTP sockets this function returns only one of the socket addresses. Function socknanes/ 1, 2
returns all.

socknames (Socket :: socket()) ->
{ok,
[{i p_address(), port_nunmber()} |
returned_non_i p_address() 1} |
{error, posix()}

Equivalent to socknanes(Socket, 0).

socknames (Socket, Assoc) ->
{ok, [{Address, Port}]} | {error, posix()}

Types:
Socket = socket ()
Assoc = #sctp _assoc _change{} | gen_sctp:assoc_id()
Address = i p_address()
Port = integer() >= 0
Returns alist of all local address/port number pairs for a socket for the specified association Assoc.

Thisfunction can return multiple addresses for multihomed sockets, such as SCTP sockets. For other socketsit returns
aone-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. For one-to-many style sockets, the special value O is defined to mean that the returned addresses must be
without any particular association. How different SCTP implementations interprets this varies somewhat.

POSIX Error Codes

e e2bi g -Toolong argument list

* eacces - Permission denied

e eaddri nuse - Addressaready in use

e eaddrnot avai | - Cannot assign requested address
e eadv - Advertise error

« eaf nosupport - Addressfamily not supported by protocol family
e eagai n - Resource temporarily unavailable

e ealign-EALIGN

e eal ready - Operation already in progress

* ebade - Bad exchange descriptor

e ebadf - Bad file number

» ebadf d - Filedescriptor in bad state

e ebadnsg - Not adata message

e ebadr - Bad reguest descriptor

e ebadr pc - Bad RPC structure

Ericsson AB. All Rights Reserved.: Kernel | 171

href

inet

* ebadr gc - Bad request code

e ebadslt -Invaliddot

« ebfont -Badfont file format

e ebusy - Filebusy

e echil d-Nochildren

» echr ng - Channel number out of range

e econm- Communication error on send

e econnabort ed - Software caused connection abort
» econnr ef used - Connection refused

e econnreset - Connection reset by peer

» edeadl k - Resource deadlock avoided

» edeadl ock - Resource deadlock avoided

* edest addr r eq - Destination address required
e edirty - Mounting adirty fswithout force

e edom- Math argument out of range

e edot dot - Cross mount point

e edquot - Disk quota exceeded

» eduppkg - Duplicate package name

e eexi st -Fileadready exists

+ efault -Badaddressin system call argument
« efbig-Filetoolarge

* ehost down - Host isdown

e ehost unr each - Host is unreachable

e ei dr m- Identifier removed

e einit -Initidization error

e ei nprogress - Operation now in progress

e eintr -Interrupted system call

e einval -Invaidargument

e eio-l/Oeror

e ei sconn - Socket is already connected

e eisdir -lllegal operation on adirectory

e ei snam- Isanamed file

el 2hlt -Leve 2 hated

e el 2nsync - Leve 2 not synchronized

el 3hlt -Level 3hated

el 3rst -Level 3reset

e« elbin-ELBIN

« el i bacc - Cannot access a needed shared library
* el i bbad - Accessing a corrupted shared library
* el ibexec - Cannot exec a shared library directly
* el i bmax - Attempting to link in more shared libraries than system limit
e elibscn-.libsectionina. out corrupted

e el nrng - Link number out of range

172 | Ericsson AB. All Rights Reserved.: Kernel

inet

el oop - Too many levels of symbolic links
enfi | e - Too many open files

enm i nk - Too many links

ensgsi ze - Messagetoo long

enul t i hop - Multihop attempted

enanet ool ong - Filename too long
enavai | - Unavailable

enet - ENET

enet down - Network is down

enet r eset - Network dropped connection on reset
enet unr each - Network is unreachable
enfi | e - Filetable overflow

enoano - Anode table overflow

enobuf s - No buffer space available
enocsi - No CSl structure available
enodat a - No data available

enodev - No such device

enoent - No such file or directory
enoexec - Exec format error

enol ck - No locks available

enol i nk - Link has been severed
enonem- Not enough memory

enomnsg - No message of desired type
enonet - Machineisnot on the network
enopkg - Package not installed

enopr ot oopt - Bad protocol option
enospc - No space left on device

enosr - Out of stream resources or not a stream device
enosym- Unresolved symbol name
enosys - Function not implemented

enot bl k - Block device required

enot conn - Socket is not connected

enot di r - Not adirectory

enot enpt y - Directory not empty

enot nam- Not anamed file

enot sock - Socket operation on non-socket
enot sup - Operation not supported

enot t y - Inappropriate devicefori oct |
enot uni g - Name not unique on network
enxi o - No such device or address

eopnot supp - Operation not supported on socket
eper m- Not owner

epf nosupport - Protocol family not supported

Ericsson AB. All Rights Reserved.: Kernel | 173

inet

174

epi pe - Broken pipe

epr ocl i m- Too many processes
eprocunavai | - Bad procedure for program
epr ogm smat ch - Wrong program version
eprogunavai | - RPC program unavailable
epr ot o - Protocol error

epr ot onosupport - Protocol not supported
epr ot ot ype - Wrong protocol type for socket
er ange - Math result unrepresentable

er ef used - EREFUSED

er enthg - Remote address changed

er endev - Remote device

er enot e - Pathname hit remote filesystem

er enot ei o - Remote I/O error

er enot er el ease - EREMOTERELEASE
er of s - Read-only filesystem

er pcm smat ch - Wrong RPC version

err enot e - Object isremote

eshut down - Cannot send after socket shutdown
esockt nosupport - Socket type not supported
espi pe - Invalid seek

esr ch - No such process

esrmmt - Srmount error

est al e - Staleremote file handle

esuccess - Error 0

eti me - Timer expired

et i nedout - Connection timed out

et oonmanyr ef s - Too many references

et xt bsy - Text file or pseudo-device busy
eucl ean - Structure needs cleaning

eunat ch - Protocol driver not attached

euser s - Too many users

ever si on - Version mismatch

ewoul dbl ock - Operation would block
exdev - Cross-domain link

exful | - Message tablesfull

nxdomai n - Hostname or domain hame cannot be found

| Ericsson AB. All Rights Reserved.: Kernel

inet_res

inet_res

Erlang module

This module performs DNS name resolving to recursive name servers.

See dlso ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for IP communication, and how to enable this DNS client by defining' dns' as alookup method. The DNS
client then acts as a backend for the resolving functionsini net .

This DNS client can resolve DNS records even if it is not used for normal name resolving in the node.
Thisis not afull-fledged resolver, only a DNS client that relies on asking trusted recursive name servers.

Name Resolving

UDP queries are used unless resolver option usevc ist r ue, which forces TCP queries. If the query istoo large for
UDP, TCPisused instead. For regular DNS queries, 512 bytesisthe size limit.

When EDNS is enabled (resolver option edns is set to the EDNS version (that is, O instead of f al se), resolver
option udp_payl oad_si ze setsthelimit. If a name server replies with the TC bit set (truncation), indicating that
the answer isincomplete, the query isretried to that name server using TCP. Resolver option udp_payl oad_si ze
also sets the advertised size for the maximum allowed reply size, if EDNS is enabled, otherwise the name server uses
the limit 512 bytes. If the reply islarger, it gets truncated, forcing a TCP requery.

For UDP queries, resolver options ti meout and retry control retransmission. Each name server in the
nameser ver s lististried with atime-out of t i meout /r et r y. Then al name servers are tried again, doubling the
time-out, for atotal of r et ry times.

For queries not using the sear ch ligt, if the query to al naneser ver s resultsin { er r or, nxdomai n} or an
empty answer, the same query istried for al t _naneser vers.

Resolver Types

The following data types concern the resolver:

Data Types

res option() =
{alt_nameservers, [nameserver()]} |
{edns, 0 | false} |
{inet6, boolean()} |
{nameservers, [nanmeserver()]} |
{recurse, boolean()} |
{retry, integer()} |
{timeout, integer()} |
{udp_payload size, integer()} |
{usevc, boolean()}

nameserver() = {inet:ip_address(), Port :: 1..65535}

res error() =
formerr |
gfmterror |
servfail |
nxdomain |
notimp |

Ericsson AB. All Rights Reserved.: Kernel | 175

inet_res

refused |
badvers |
timeout

DNS Types

The following data types concern the DNS client:

Data Types
dns name() = string()
A string with no adjacent dots.

rr_type() =
a |
aaaa |
cname |
gid |
hinfo |
ns |
mb |
md |
mg |
mf |
minfo |
mx |
naptr |
null |
ptr |
soa |
spf |
srv |
txt |
uid |
uinfo |
unspec |
wks

dns class() = in | chaos | hs | any

dns msg() = term()

This is the start of a hiearchy of opague data structures that can be examined with access functionsini net _dns,
which return listsof { Fi el d, Val ue} tuples. The arity 2 functions only return the value for a specified field.

176 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

dns _msg() = DnsMsg

inet dns:msg(DnsMsg) ->

[{header, dns header()}

| {qdlist, dns query()}

| {anlist, dns rr()}

| {nslist, dns rr()}

| {arlist, dns rr()} 1
inet dns:msg(DnsMsg, header) -> dns header() % for example
inet dns:msg(DnsMsg, Field) -> Value

dns_header() = DnsHeader

inet dns:header(DnsHeader) ->
[{id, integer()}

| {qr, boolean()}

| {opcode, 'query' | iquery | status | integer()}
| {aa, boolean()}

| {tc, boolean()}

| {rd, boolean()}

| {ra, boolean()}

| {pr, boolean()}

| {rcode, integer(0..16)}]

inet dns:header(DnsHeader, Field) -> Value

query type() = axfr | mailb | maila | any | rr_type()

dns_query() = DnsQuery

inet dns:dns_query(DnsQuery) ->
[{domain, dns name()}
| {type, query type()}
| {class, dns class()} 1
inet dns:dns_query(DnsQuery, Field) -> Value

dns rr() = DnsRr

inet dns:rr(DnsRr) -> DnsRrFields | DnsRrOptFields
DnsRrFields = [{domain, dns name()}

| {type, rr_type()}

| {class, dns class()}

| {ttl, integer()}

| {data, dns data()} 1
DnsRrOptFields = [{domain, dns name()}
{type, opt}
{udp_payload size, integer()}
{ext _rcode, integer()}
{version, integer()}
{z, integer()}
{data, dns data()} 1
inet dns:rr(DnsRr, Field) -> Value

There is an information function for the types above:

inet dns:record type(dns msg()) -> msg;
inet dns:record type(dns header()) -> header;

inet dns:record type(dns rr()) -> rr;

(
(
inet dns:record type(dns query()) -> dns query;
(
(

inet dns:record type

) -> undefined.

So, inet_dns: (inet_dns:record_type(X))(X) converts any of
{Fi el d, Val ue} list.
dns data() =

dns_nanme() |

i net:ip4_address() |

these data structures

into a

Ericsson AB. All Rights Reserved.: Kernel | 177

inet_res

i net:ip6_address() |

{MName :: dns_nane()
RName :: dns_nane()
Serial :: integer(

)I
Refresh :: integer(),
Retry :: integer(),

Expiry :: integer(),

Minimum :: integer()} |

{inet:ip4_address(), Proto :: integer(), BitMap :: binary()} |
{CpuString :: string(), 0sString :: string()} |

{RM :: dns_name(), EM :: dns_nane()} |

{Prio :: integer(), dns_nane()} |
{Prio :: integer(),

Weight :: integer(),

Port :: integer(),

dns_name() } |
{Order :: integer(),

Preference :: integer(),
Flags :: string(),
Services :: string(),

Regexp :: string(),
dns_name() } |
[string()] |
binary()

Regexp isastring with characters encoded in the UTF-8 coding standard.

Exports

getbyname(Name, Type) -> {ok, Hostent} | {error, Reason}
getbyname(Name, Type, Timeout) -> {ok, Hostent} | {error, Reason}

Types:
Name = dns_name()
Type = rr_type()
Timeout = timeout()
Hostent = inet: hostent()
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type for the specified host, of classi n. Returns, on success, ahost ent ()
record with dns_dat a() elementsin the addresslist field.

This function uses resolver option sear ch that isalist of domain names. If the name to resolve contains no dots, it
is prepended to each domain name in the search list, and they are tried in order. If the name contains dots, it is first
tried as an absolute name and if that fails, the search list is used. If the name has a trailing dot, it is supposed to be
an absolute name and the search list is not used.

gethostbyaddr(Address) -> {ok, Hostent} | {error, Reason}
gethostbyaddr(Address, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

178 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

Address = inet:ip_address()

Timeout = timeout()

Hostent = inet: hostent ()

Reason = inet:posix() | res_error()

Backend functionsused by i net : get host byaddr/ 1.

gethostbyname(Name) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family) -> {ok, Hostent} | {error, Reason}

gethostbyname (Name, Family, Timeout) ->
{ok, Hostent} | {error, Reason}

Types:
Name = dns_name()
Hostent = inet: hostent()
Timeout = timeout()
Family = inet:address_famly()
Reason = inet:posix() | res_error()

Backend functionsused by i net : get host bynane/ 1, 2.
This function uses resolver option sear ch just like get bynane/ 2, 3.

If resolver optioni net 6 ist r ue, anIPv6 addressislooked up. If that fails, the |Pv4 addressislooked up and returned
on |Pv6-mapped | Pv4 format.

lookup (Name, Class, Type) -> [dns_data()]
lookup(Name, Class, Type, Opts) -> [dns_data()]
lookup (Name, Class, Type, Opts, Timeout) -> [dns_data()]
Types:
Name = dns_nane() | inet:ip_address()
Class = dns_cl ass()
Type = rr_type()
Opts = [res_option() | verbose]
Timeout = timeout()
Resolves the DNS data for the record of the specified type and class for the specified name. On success, filters out
the answer records with the correct Cl ass and Type, and returns a list of their data fields. So, a lookup for type

any gives an empty answer, as the answer records have specific types that are not any. An empty answer or afailed
lookup returns an empty list.

Callsr esol ve/ * with the same arguments and filters the result, so Opt s is described for those functions.

resolve(Name, Class, Type) -> {ok, dns_nsg()} | Error
resolve(Name, Class, Type, Opts) -> {ok, dns_nsg()} | Error

resolve(Name, Class, Type, Opts, Timeout) ->
{ok, dns_nsg()} | Error

Types:

Ericsson AB. All Rights Reserved.: Kernel | 179

inet_res

Name = dns_nane() | inet:ip_address()

Class = dns_cl ass()

Type = rr_type()

Opts = [Opt]

Opt = res_option() | verbose | atom()

Timeout = timeout()

Error = {error, Reason} | {error, {Reason, dns_msg() }}
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name. The returned dns_nsg() can be
examined using access functionsini net _db, as described in section in DNS Types.

If Name is an i p_addr ess(), the domain name to query for is generated as the standard reverse ". | N-
ADDR. ARPA. " name for an IPv4 address, or the" . | P6. ARPA. " name for an IPv6 address. In this case, you most
probably wanttouseCl ass = i nand Type = ptr, butitisnot done automatically.

Opt s overrides the corresponding resolver options. If option naneservers is specified, it is assumed that
it is the complete list of name serves, so resolver option al t _naneser ves is ignored. However, if option
al t _naneser ves isalso specified to this function, it is used.

Option ver bose (or rather { ver bose, t rue}) causes diagnostics printout through i o: f or mat / 2 of queries,
replies retransmissions, and so on, similar to from utilities, such asdi g and nsl ookup.

If Opt is any atom, it is interpreted as { Opt, t rue} unless the atom string starts with "no", making the
interpretation { Opt , f al se}. For example, usevc isan diasfor { usevc, t rue} and nousevc isan dias for
{usevc, fal se}.

Optioni net 6 has no effect on thisfunction. You probably want to use Type = a | aaaa instead.

Example

This access functions example shows how | ookup/ 3 can be implemented using r esol ve/ 3 from outside the
module;

example lookup(Name, Class, Type) ->
case inet res:resolve(Name, Class, Type) of
{ok,Msg} ->
[inet dns:rr(RR, data)
|| RR <- inet dns:msg(Msg, anlist),
inet dns:rr(RR, type) =:= Type,
inet dns:rr(RR, class) =:= Class];
{error, } ->
[1

end.

Legacy Functions
These are deprecated because the annoying double meaning of the name servers/time-out argument, and because they
have no decent place for aresolver options|list.

Exports

nslookup(Name, Class, Type) -> {ok, dns_nsg()} | {error, Reason}

nslookup(Name, Class, Type, Timeout) ->
{ok, dns_msg()} | {error, Reason}

nslookup (Name, Class, Type, Nameservers) ->

180 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

{ok, dns_msg()} | {error, Reason}

Types.

Name = dns_nane() | inet:ip_address()
Class = dns_cl ass()

Type = rr_type()

Timeout = timeout()

Nameservers = [naneserver()]

Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name.

nnslookup(Name, Class, Type, Nameservers) ->

{ok, dns_nsg()} | {error, Reason}

nnslookup(Name, Class, Type, Nameservers, Timeout) ->

{ok, dns_msg()} | {error, Reason}

Types:

Name = dns_nane() | inet:ip_address()
Class = dns_cl ass()

Type = rr_type()

Timeout = timeout()

Nameservers = [naneserver ()]

Reason = inet: posi x()

Resolves a DNS record of the specified type and class for the specified name.

Ericsson AB. All Rights Reserved.: Kernel | 181

init

init

Erlang module

This moduleis moved to the ERTS application.

182 | Ericsson AB. All Rights Reserved.: Kernel

net_ adm

net adm

Erlang module

This module contains various network utility functions.

Exports

dns _hostname(Host) -> {ok, Name} | {error, Host}

Types:
Host = atom() | string()
Name = string()

Returnsthe official name of Host ,or { error, Host} if nosuch nameisfound. Seeasoi net (3).

host file() -> Hosts | {error, Reason}
Types.
Hosts = [Host :: atom()]
Reason =
file:posix() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}
Readsfile. host s. er | ang, see section Files. Returnsthe hostsin thisfileasalist. Returns{ err or, Reason}
if the file cannot be read or the Erlang terms on the file cannot be interpreted.

localhost() -> Name
Types:
Name = string()

Returns the name of the local host. If Erlang was started with command-line flag - nanme, Nane isthe fully qualified
name.

names() -> {ok, [{Name, Port}1} | {error, Reason}
names (Host) -> {ok, [{Name, Port}1} | {error, Reason}

Types.
Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0

Reason = address | file: posix()

Similar toepnd - nanes, seeerts: epnd(1) . Host defaultstotheloca host. Returns the names and associated
port numbers of the Erlang nodesthat epnd registered at the specified host. Returns{ er r or , addr ess} if epnd
is not operational.

Example:

Ericsson AB. All Rights Reserved.: Kernel | 183

net adm

(arne@dunn)1> net _adm:names().
{ok, [{"arne",40262}1}

ping(Node) -> pong | pang
Types:
Node = atom()
Sets up a connection to Node. Returns pong if it is successful, otherwise pang.

world() -> [node()]
world(Arg) -> [node()]
Types:
Arg = verbosity()
verbosity() = silent | verbose

Calsnanmes(Host) for al hosts that are specified in the Erlang host file . host s. er | ang, collects the replies,
and then evaluates pi ng(Node) on all those nodes. Returnsthe list of all nodes that are successfully pinged.

Ar g defaultsto si | ent . If Arg == ver bose, the function writes information about which nodes it is pinging
tost dout .

This function can be useful when anode is started, and the names of the other network nodes are not initially known.

Returns{error, Reason} ifhost _file() retuns{error, Reason}.

world list(Hosts) -> [node()]
world list(Hosts, Arg) -> [node()]
Types.

Hosts = [atom()]

Arg = verbosity()

verbosity() = silent | verbose

Sameaswor | d/ 0, 1, but the hosts are specified as argument instead of being read from . host s. er | ang.

Files

File. host s. er | ang consists of a number of host names written as Erlang terms. It is looked for in the current
work directory, the user's home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

Theformat of file. host s. er | ang must be one host name per line. The host names must be within quotes.

Example:

'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffinl.eua.ericsson.se'.
~ (new line)

184 | Ericsson AB. All Rights Reserved.: Kernel

net kernel

net kernel

Erlang module

The net kernel is a system process, registered as net _ker nel , which must be operational for distributed Erlang to
work. The purpose of this processisto implement parts of the BIFsspawn/ 4 and spawn_I| i nk/ 4, and to provide
monitoring of the network.

An Erlang node is started using command-line flag - nane or - snane:

$ erl -sname foobar

Itisalso possibleto call net _kernel : start ([foobar]) directly from the normal Erlang shell prompt:

1> net kernel:start([foobar, shortnames]).
{ok,<0.64.0>}
(foobar@gringotts)2>

If the node is started with command-line flag - snane, the node name is f oobar @Host , where Host is the short
name of the host (not the fully qualified domain name). If started with flag - name, the node nameisf oobar @ost ,
where Host isthefully qualified domain name. For more information, seeer | .

Normally, connections are established automatically when another node is referenced. This functionality can be
disabled by setting Kernel configuration parameter di st _aut o_connect tof al se, see ker nel (6) . In this
case, connections must be established explicitly by calling connect _node/ 1.

Which nodes that are allowed to communicate with each other is handled by the magic cookie system, see section
Distributed Erlang in the Erlang Reference Manual.

Starting adistributed node without also specifying - pr ot o_di st i net _t | s will exposethenodeto attacksthat
may give the attacker complete access to the node and in extension the cluster. When using un-secure distributed
nodes, make sure that the network is configured to keep potential attackers out. See the Using SS for Erlang
Distribution User's Guide for details on how to setup a secure distributed node.

Exports

allow(Nodes) -> ok | error
Types:

Nodes = [node()]
Permits access to the specified set of nodes.

Beforethefirst call toal | ow 1, any node with the correct cookie can be connected. When al | ow/ 1 iscalled, alist
of allowed nodes is established. Any access attempts made from (or to) nodes not in that list will be rejected.

Subsequent callsto al | ow/ 1 will add the specified nodes to the list of allowed nodes. It is not possible to remove
nodes from the list.

Returnser r or if any element in Nodes is not an atom.

Ericsson AB. All Rights Reserved.: Kernel | 185

net kernel

connect node(Node) -> boolean() | ignored
Types.
Node = node()

Establishes a connection to Node. Returnst r ue if successful, f al se if not, andi gnor ed if the local node is not
aive.

get net ticktime() -> Res
Types:
Res = NetTicktime | {ongoing change to, NetTicktime} | ignored
NetTicktime = integer() >=1
Getsnet _ti ckti me (seeker nel (6)).
Defined return values (Res):
Net Ti ckti me
net ticktimeisNetTi ckti ne seconds.
{ongoi ng_change_to, NetTi ckti ne}
net _kernel iscurrently changingnet ti ckti me toNet Ti ckti ne seconds.
i gnor ed
Thelocal nodeisnot dive.

getopts(Node, Options) ->
{ok, OptionValues} | {error, Reason} | ignored

Types:
Node = node()
Options = [inet:socket getopt()]
OptionValues = [inet:socket setopt()]
Reason = inet:posix() | noconnection

Get one or more options for the distribution socket connected to Node.

If Node isaconnected nodethereturnvalueisthe sameasfromi net : get opt s(Sock, Opti ons) whereSock
isthe distribution socket for Node.

Returnsi gnor ed if thelocal nodeisnot diveor { error, noconnecti on} if Node isnot connected.

monitor nodes(Flag) -> ok | Error
monitor nodes(Flag, Options) -> ok | Error
Types.
Flag = boolean()
Options = [Option]
Option = {node type, NodeType} | nodedown reason
NodeType = visible | hidden | all
Error = error | {error, term()}
The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered

to all subscribing processes when a new node is connected, and a nodedown message is delivered when anode is
disconnected.

186 | Ericsson AB. All Rights Reserved.: Kernel

net kernel

If Fl ag istrue, anew subscription is started. If FI ag isf al se, al previous subscriptions started with the same
Opt i ons are stopped. Two option lists are considered the same if they contain the same set of options.

Asfrom Kernel version 2.11.4, and ERTS version 5.5.4, the following is guaranteed:

* nodeup messages are delivered before delivery of any message from the remote node passed through the newly
established connection.

* nodedown messages are not delivered until all messages from the remote node that have been passed through
the connection have been delivered.

Notice that thisis not guaranteed for Kernel versions before 2.11.4.

As from Kernel version 2.11.4, subscriptions can also be made before the net _ker nel server is started, that is,
net _kernel : moni t or _nodes/[1, 2] doesnotreturni gnor ed.

Asfrom Kernel version 2.13, and ERTS version 5.7, the following is guaranteed:

e nodeup messages are delivered after the corresponding node appearsin resultsfrom er | ang: nodes/ X.

e nodedown messages are delivered after the corresponding node has disappeared in results from
erl ang: nodes/ X.

Notice that thisis not guaranteed for Kernel versions before 2.13.
The format of the node status change messages depends on Opt i ons. If Opti ons is[], which is the default, the
format isasfollows:

{nodeup, Node} | {nodedown, Node}
Node = node()

If Optionsisnot[],theformatisasfollows:

{nodeup, Node, InfoList} | {nodedown, Node, InfolList}
Node = node()
InfoList = [{Tag, Val}]

I nf oLi st isalist of tuples. Its contents depends on Opt i ons, see below.

Also,when Opt i onLi st == [],only visible nodes, that is, nodesthat appear intheresult of er | ang: nodes/ 0,
are monitored.

Opt i on can be any of the following:

{node_type, NodeType}
Valid valuesfor NodeType:
visible

Subscribe to node status change messages for visible nodes only. The tuple { node_t ype, Vi si bl e}
isincludedin | nf oLi st .

hi dden

Subscribe to node status change messages for hidden nodes only. Thetuple{ node_t ype, hi dden} is
included in | nf oLi st .

al |

Subscribe to node status change messages for both visible and hidden nodes. The tuple { node_t ype,
vi si bl e | hidden} isincludedinl nf oLi st .

nodedown_r eason
Thetuple{ nodedown_r eason, Reason} isincludedin| nf oLi st in nodedown messages.

Reason can be any of the following:

Ericsson AB. All Rights Reserved.: Kernel | 187

net kernel

connection_setup_failed
The connection setup failed (after nodeup messages were sent).
no_net wor k
No network isavailable.
net kernel _term nated
Thenet _ker nel processterminated.
shut down
Unspecified connection shutdown.
connecti on_cl osed
The connection was closed.
di sconnect
The connection was disconnected (forced from the current node).
net tick_timeout
Net tick time-out.
send _net _tick failed
Failed to send net tick over the connection.
get _status failed
Status information retrieval from the Por t holding the connection failed.

set net ticktime(NetTicktime) -> Res
set net ticktime(NetTicktime, TransitionPeriod) -> Res
Types:
NetTicktime = integer() >=1
TransitionPeriod = integer() >= 0
Res =
unchanged |
change initiated |
{ongoing change to, NewNetTicktime}
NewNetTicktime = integer() >=1
Setsnet _ticktine (seekernel (6))toNet Ti ckti me seconds. Tr ansi ti onPer i od defaultsto 60.
Some definitions:
Minimum transition traffic interval (MI'TI)
m ni mum(Net Ti ckti nme, Previ ousNet Ti cktine)*1000 di v 4 milliseconds.
Transition period

The time of the least number of consecutive MT Tl sto cover Tr ansi ti onPer i od seconds following the call
toset _net ticktinme/2 (thatis, ((TransitionPeriod*1000 - 1) div MTI + 1)*MITI
milliseconds).

If Net Ti ckti me < Previ ousNet Ti ckti me,thenet _ti ckti ne changeisdone at the end of the transition
period; otherwise at the beginning. During the transition period, net _ker nel ensuresthat there is outgoing traffic
on all connections at least every MI'TI millisecond.

188 | Ericsson AB. All Rights Reserved.: Kernel

net kernel

The net _ti ckti nme changes must be initiated on all nodes in the network (with the same Net Ti ckti ne)
before the end of any transition period on any node; otherwise connections can erroneously be disconnected.

Returns one of the following:
unchanged

net tickti nme aready hasthevalue of Net Ti ckt i me and isleft unchanged.
change_initiated

net _ker nel initiated the change of net _ti ckti ne to Net Ti ckt i ne seconds.
{ongoi ng_change_t o, NewNet Ti ckti ne}

The request is ignored because net _ker nel is busy changing net _ti ckti ne to NewNet Ti ckti e
seconds.

setopts(Node, Options) -> ok | {error, Reason} | ignored
Types:

Node = node() | new

Options = [inet:socket setopt()]

Reason = inet:posix() | noconnection

Set one or more options for distribution sockets. Argument Node can be either one node name or the atom new to
affect the distribution sockets of all future connected nodes.

Thereturnvalueisthesameasfromi net : setopt s/ 2or{error, noconnecti on} if Node isnot aconnected
node or new.

If Node isnewthe Opt i ons will then also be added to kernel configration parametersinet_dist_listen_optionsand
inet_dist_connect_options.

Returnsi gnor ed if thelocal nodeisnot aive.

start([Name]) -> {ok, pid()} | {error, Reason}
start([Name, NameTypel) -> {ok, pid()} | {error, Reason}
start([Name, NameType, Ticktime]) -> {ok, pid()} | {error, Reason}
Types:

Name = atom()

NameType = shortnanes | |ongnanes

Reason = {already_started, pid()} | term)

Turns a non-distributed node into a distributed node by starting net _ker nel and other necessary processes.

Notice that the argument is alist with exactly one, two, or three arguments. Nanme Ty pe defaultstol ongnanes and
Ti ckti me to 15000.

stop() -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 189

net kernel

Reason = not allowed | not found

Turns adistributed node into a non-distributed node. For other nodes in the network, thisis the same asthe node going
down. Only possible when the net kernel was started using st art/ 1, otherwise{error, not_all owed} is
returned. Returns{ error, not _f ound} if thelocal nodeisnot alive.

190 | Ericsson AB. All Rights Reserved.: Kernel

(01

0S

Erlang module

The functions in this module are operating system-specific. Careless use of these functions results in programs that
will only run on a specific platform. On the other hand, with careful use, these functions can be of help in enabling
aprogram to run on most platforms.

Data Types

os_command() = atom() | io_lib:chars()

os_command opts() = #{max size => integer() >= 0 | infinity}
Optionsfor os: cnd/ 2

mex_si ze

The maximum size of the datareturned by theos: cnd call. Seetheos: cnd/ 2 documentation for more details.

Exports

cmd (Command) -> string()
cmd (Command, Options) -> string()

Types.
Command = os_conmand()
Options = os_conmand_opt s()

Executes Conmrand in a command shell of the target OS, captures the standard output of the command, and returns
this result as a string.

Examples:

LsOut = os:cmd("1s"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

Noticethat in some cases, standard output of acommand when called from another program (for example, os: cnd/ 1)
can differ, compared with the standard output of the command when called directly from an OS command shell.

os: cnd/ 2 wasadded in kernel-5.5 (OTP-20.2.1). It makesit possible to pass an options map as the second argument
in order to control the behaviour of os: cnd. The possible options are;

max_si ze

The maximum size of the data returned by the os: cnd call. This option is a safety feature that should be used
when the command executed can return avery large, possibly infinite, result.

> os:cmd("cat /dev/zero", #{ max size => 20 }).
[¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

find _executable(Name) -> Filename | false

find executable(Name, Path) -> Filename | false
Types:

Ericsson AB. All Rights Reserved.: Kernel | 191

0s

Name = Path = Filename = string()

These two functions look up an executable program, with the specified name and a search path, in the same way as
theunderlying OS. f i nd_execut abl e/ 1 usesthe current execution path (that is, the environment variable PATH
on Unix and Windows).

Pat h, if specified, is to conform to the syntax of execution paths on the OS. Returns the absolute filename of the
executable program Nane, or f al se if the programis not found.

getenv() -> [string()]

Returns a list of al environment variables. Each environment variable is expressed as a single string on the format
"Var Nanme=Val ue" , where Var Nane is the name of the variable and Val ue itsvalue.

If Unicodefilenameencodingisin effect (seetheer | manual page), the strings can contain characterswith codepoints
> 255,

getenv(VarName) -> Value | false
Types:
VarName = Value = string()

Returnsthe Val ue of the environment variable Var Nane, or f al se if the environment variable is undefined.

If Unicode filename encoding is in effect (seethe er | manual page), the strings Var Nane and Val ue can contain
characters with codepoints > 255.

getenv(VarName, DefaultValue) -> Value
Types:
VarName = DefaultValue = Value = string()

Returns the Val ue of the environment variable Var Nane, or Def aul t Val ue if the environment variable is
undefined.

If Unicode filename encoding is in effect (seethe er | manual page), the strings Var Nane and Val ue can contain
characters with codepoints > 255.

getpid() -> Value
Types:
Value = string()
Returns the process identifier of the current Erlang emulator in the format most commonly used by the OS
environment. Returns Val ue as a string containing the (usualy) numerical identifier for a process. On Unix,

this is typically the return value of the get pi d() system call. On Windows, the process id as returned by the
Get Current Processl d() system cal isused.

putenv(VarName, Value) -> true
Types:
VarName = Value = string()
Setsanew Val ue for environment variable Var Nane.

If Unicode filename encoding is in effect (seethe er | manual page), the strings Var Nane and Val ue can contain
characters with codepoints > 255.

192 | Ericsson AB. All Rights Reserved.: Kernel

(01

On Unix platforms, the environment is set using UTF-8 encoding if Unicode filename trandation is in effect. On
Windows, the environment is set using wide character interfaces.

set signal(Signal, Option) -> ok
Types:
Signal =
sighup |
sigquit |
sigabrt |
sigalrm |
sigterm |
sigusrl |
sigusr2 |
sigchld |
sigstop |
sigtstp
Option = default | handle | ignore
Enables or disables OS signals.
Each signal my be set to one of the following options:

i gnore
Thissignal will be ignored.
def aul t
Thissignal will use the default signal handler for the operating system.
handl e
Thissignal will notify er I _si gnal _ser ver whenitisreceived by the Erlang runtime system.

system time() -> integer()
Returns the current OSsystemtimein nat i ve time unit.

| Thistimeis not amonotonically increasing time.

system time(Unit) -> integer()
Types:
Unit = erlang:tine_unit()
Returns the current OS system time converted into the Uni t passed as argument.

Cdlingos: system tine(Unit) isequivalenttoerl ang: convert tinme_unit(os:systemtine(),
native, Unit).

Thistimeis not amonotonically increasing time. |

timestamp() -> Timestamp
Types:

Ericsson AB. All Rights Reserved.: Kernel | 193

0s

Timestamp = erl ang:ti nestanp()
Timestamp = { MegaSecs, Secs, MicroSecs}

Returns the current OS system time in the same format aser | ang: t i nest anp/ 0. The tuple can be used together
with function cal endar: now to_universal tine/1 or cal endar:now to local tinme/l to get
calendar time. Using the calendar time, together with the M cr oSecs part of the return tuple from this function,
allows you to log time stamps in high resolution and consistent with the time in the rest of the OS.

Example of code formatting a string in format "DD Mon YYYY HH:MM:SS.mmmmmm", where DD is the day of
month, Monisthetextual monthname, YY Y'Y istheyear, HH:MM:SSisthetime, and mmmmmm isthe microseconds
in six positions:
-module(print_time).
-export([format utc timestamp/0]).
format utc timestamp() ->
TS = { , ,Micro} = os:timestamp(),
{{Year,Month,Day}, {Hour,Minute,Second}} =
calendar:now _to universal time(TS),
Mstr = element(Month, {"Jan","Feb","Mar","Apr", "May","Jun","Jul",
IIAugII) "Sep" , IIOCtII , IINOVII , IIDeCII}) ,
io lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w",
[Day,Mstr,Year,Hour,Minute,Second,Micro]).

This module can be used as follows:

1> io:format("~s~n", [print time:format utc timestamp()]).
29 Apr 2009 9:55:30.051711

OS system time can also beretreived by system ti me/ 0 andsystem ti e/ 1.

perf counter() -> Counter
Types:
Counter = integer()

Returns the current performance counter value in per f _count er time unit. This is a highly optimized call that
might not be traceable.

perf counter(Unit) -> integer()
Types:
Unit = erlang:tine_unit()
Returns a performance counter that can be used as a very fast and high resolution timestamp. This counter is read
directly from the hardware or operating system with the same guarantees. This means that two consecutive callsto the

function are not guaranteed to be monotonic, though it most likely will be. The performance counter will be converted
to the resolution passed as an argument.

1> T1 = os:perf counter(1000),receive after 10000 -> ok end,T2 = os:perf counter(1000).
176525861

2> T2 - T1.

10004

type() -> {Osfamily, Osname}
Types.

194 | Ericsson AB. All Rights Reserved.: Kernel

(01

Osfamily = unix | win32
Osname = atom()
Returnsthe Gsf am | y and, in some cases, the Csnane of the current OS.

On Unix, Gsnane has the same value as uname - s returns, but in lower case. For example, on Solaris 1 and 2,
itissunos.

On Windows, Gsnane isnt .

Think twice before using this function. Use module f i | enane if you want to inspect or build filenames in a
portable way. Avoid matching on atom Gsnane.

unsetenv(VarName) -> true
Types.

VarName = string()
Deletes the environment variable Var Name.

If Unicode filename encoding is in effect (see the er | manual page), the string Var Nane can contain characters
with codepoints > 255.

version() -> VersionString | {Major, Minor, Release}

Types.
VersionString
Major = Minor

string()
Release = integer() >= 0

Returns the OS version. On most systems, this function returns a tuple, but a string is returned instead if the system
has versions that cannot be expressed as three numbers.

|Think twice before using this function. If you still need to useit, alwayscal | os: type() first. |

Ericsson AB. All Rights Reserved.: Kernel | 195

pg2

Pg2

Erlang module

This module implements process groups. Each message can be sent to one, some, or al group members.

A group of processes can be accessed by a common name. For example, if thereisagroup named f oobar , there can
be a set of processes (which can be located on different nodes) that are all members of the group f oobar . There are
no special functions for sending a message to the group. Instead, client functions are to be written with the functions
get _nenbers/ 1 andget | ocal _nenbers/ 1 to determine which processes are members of the group. Then
the message can be sent to one or more group members.

If amember terminates, it is automatically removed from the group.

This module is used by module di sk_| og for managing distributed disk logs. The disk log names are used as
group names, which means that some action can be needed to avoid name clashes.

Data Types
name() = any()
The name of a process group.

Exports

create(Name :: name()) -> ok
Creates a new, empty process group. The group is globally visible on all nodes. If the group exists, nothing happens.

delete(Name :: nane()) -> ok
Deletes a process group.

get closest pid(Name) -> pid() | {error, Reason}
Types:
Name = nane()
Reason = {no process, Name} | {no such group, Name}

A useful dispatch function that can be used from client functions. It returns a process on the local node, if such a
process exists. Otherwise, it selects one randomly.

get local members(Name) ->
[pid()]1 | {error, {no such group, Name}}

Types:
Name = nane()

Returns all processes running on the local node in the group Nane. This function is to be used from within a client
function that accesses the group. It is therefore optimized for speed.

196 | Ericsson AB. All Rights Reserved.: Kernel

pg2

get members(Name) -> [pid()] | {error, {no such group, Name}}
Types.
Name = nane()

Returns all processes in the group Nane. This function is to be used from within a client function that accesses the
group. It is therefore optimized for speed.

join(Name, Pid :: pid()) -> ok | {error, {no such group, Name}}
Types.
Name = nane()

Joins the process Pi d to the group Nare. A process can join a group many times and must then leave the group the
same number of times.

leave(Name, Pid :: pid()) -> ok | {error, {no such group, Name}}
Types:
Name = nane()
Makes the process Pi d leave the group Nan®e. If the processis not a member of the group, ok is returned.

start() -> {ok, pid()} | {error, any()}
start_link() -> {ok, pid()} | {error, any()}

Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is started dynamically if it
is needed. This is useful during development, but in a target system the server is to be started explicitly. Use the
configuration parametersfor ker nel (6) for this.

which groups() -> [Name :: nane()]
Returnsalist of all known groups.

See Also
kernel (6)

Ericsson AB. All Rights Reserved.: Kernel | 197

rpc

rpc

Erlang module

This module contains services similar to Remote Procedure Calls. It also contains broadcast facilities and parallel
evaluators. A remote procedure call isamethod to call afunction on aremote node and collect the answer. It isused for
collecting information on aremote node, or for running a function with some specific side effects on the remote node.

Data Types

key ()
Asreturned by async_cal | / 4.

Exports

abcast(Name, Msg) -> abcast

Types:
Name = atom()
Msg = term()

Equivalent toabcast ([node() | nodes()], Nane, MsgQ).

abcast(Nodes, Name, Msg) -> abcast
Types:

Nodes = [node()]

Name = atom()

Msg = term()

Broadcasts the message Ms g asynchronously to the registered process Name on the specified nodes.

async_call(Node, Module, Function, Args) -> Key
Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Key = key()
Implements call streams with promises, atype of RPC that does not suspend the caller until the result is finished.

Instead, akey is returned, which can be used later to collect the value. The key can be viewed as a promise to deliver
the answer.

In this case, the key Key is returned, which can be used in a subsequent call toyi el d/ 1 ornb_yi el d/ 1, 2 to
retrieve the value of evaluating appl y(Modul e, Function, Args) onnodeNode.

yi el d/ Landnb_yi el d/ 1, 2 must be called by the same process from which this function was made otherwise
they will never yield correctly.

198 | Ericsson AB. All Rights Reserved.: Kernel

rpc

block call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types.

Node = node()

Module = module()

Function = atom()

Args = [term()]

Res = Reason = term()

Sameascal | / 4, but the RPC server at Node does not create a separate process to handle the call. Thus, thisfunction
can be used if the intention of the call is to block the RPC server from any other incoming requests until the request
has been handled. The function can also be used for efficiency reasons when very small fast functions are evaluated,
for example, BIFs that are guaranteed not to suspend.

block call(Node, Module, Function, Args, Timeout) ->
Res | {badrpc, Reason}

Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = timeout()

Sameasbl ock_cal | / 4, but with atime-out value in the same manner ascal | / 5.

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types.
Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Evaluates appl y(Modul e, Function, Args) on node Node and returns the corresponding value Res, or
{badr pc, Reason} if thecal fails.

call(Node, Module, Function, Args, Timeout) ->
Res | {badrpc, Reason}

Types:

Ericsson AB. All Rights Reserved.: Kernel | 199

rpc

Node = node()

Module = module()
Function = atom()
Args = [term()]

Res = Reason = term()
Timeout = timeout()

Evaluates appl y(Modul e, Function, Args) onnode Node and returns the corresponding value Res, or
{badr pc, Reason} if thecall fails. Ti meout isatime-out value in milliseconds. If the call times out, Reason
isti meout.

If thereply arrives after the call times out, no message contaminates the call er's message queue, asthisfunction spawns
off amiddleman processto act as (avoid) destination for such an orphan reply. This feature also makes this function
more expensivethan cal | / 4 at the caller's end.

cast(Node, Module, Function, Args) -> true
Types:

Node = node()

Module = module()

Function = atom()

Args = [term()]

Evaluatesappl y(Mbdul e, Functi on, Args) onnodeNode. Noresponseisdelivered and the calling process
is not suspended until the evaluation is complete, asisthe casewithcal | / 4, 5.

eval everywhere(Module, Function, Args) -> abcast
Types:
Module = module()
Function = atom()
Args = [term()]
Equivalenttoeval _ever ywher e([node()| nodes()], Modul e, Function, Args).

eval everywhere(Nodes, Module, Function, Args) -> abcast
Types:
Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
Evauatesappl y(Modul e, Functi on, Args) onthe specified nodes. No answers are collected.

multi server call(Name, Msg) -> {Replies, BadNodes}
Types:

200 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Name = atom()

Msg = term()

Replies = [Reply :: term()]

BadNodes = [node()]
Equivalenttormul ti _server _cal | ([node()| nodes()], Nane, Msg).

multi server call(Nodes, Name, Msg) -> {Replies, BadNodes}
Types:

Nodes = [node()]

Name = atom()

Msg = term()

Replies = [Reply :: term()]

BadNodes = [nhode()]
Can be used when interacting with servers called Nanre on the specified nodes. It is assumed that the servers receive
messages in the format { Fr om Msg} and reply using From ! {Nane, Node, Repl y}, where Node isthe
name of the node where the server islocated. The function returns{ Repl i es, BadNodes}, whereRepl i es is
alist of al Repl y values, and BadNodes is one of the following:
« Aligt of the nodes that do not exist
e Aligt of the nodes where the server does not exist
e A list of the nodes where the server terminatd before sending any reply.

multicall(Module, Function, Args) -> {ResL, BadNodes}
Types.

Module = module()

Function = atom()

Args = ResL = [term()]

BadNodes = [node()]

Equivalenttonul ti cal | ([node()| nodes()], Module, Function, Args, infinity).

multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
Types.

Nodes = [node()]

Module = module()

Function = atom()

Args = ResL = [term()]

BadNodes = [node()]

Equivalenttormul ti cal | (Nodes, Modul e, Function, Args, infinity).

multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 201

rpc

Module = module()
Function = atom()
Args = [term()]
Timeout = timeout()
ResL = [term()]
BadNodes = [node()]

Equivalenttorul ti cal | ([node() | nodes()], Modul e, Function, Args, Tineout).

multicall(Nodes, Module, Function, Args, Timeout) ->
{ResL, BadNodes}

Types:

Nodes = [node()]

Module = module()

Function = atom()

Args = [term()]

Timeout = timeout()

ResL = [term()]

BadNodes = [node()]
In contrast to an RPC, amulticall isan RPC that is sent concurrently from one client to multiple servers. Thisis useful
for collecting information from a set of nodes, or for calling a function on a set of nodes to achieve some side effects.

It is semantically the same asiteratively making a series of RPCson all the nodes, but the multicall isfaster, as all the
requests are sent at the same time and are collected one by one as they come back.

The function evaluates appl y(Modul e, Function, Args) on the specified nodes and collects the answers.
It returns { ResL, BadNodes}, where BadNodes is a list of the nodes that terminated or timed out during
computation, and ResL isalist of thereturn values. Ti meout isatime (integer) in milliseconds, ori nfinity.

The following example is useful when new object codeisto beloaded on all nodesin the network, and indicates some
side effects that RPCs can produce;

%% Find object code for module Mod
{Mod, Bin, File} = code:get object code(Mod),

%% and load it on all nodes including this one
{ResL, } = rpc:multicall(code, load binary, [Mod, File, Bin]),

%% and then maybe check the ResL list.

nb yield(Key) -> {value, Val} | timeout
Types.

Key = key()

Val = (Res :: term()) | {badrpc, Reason :: term()}
Equivalenttonb_yi el d(Key, 0).

nb yield(Key, Timeout) -> {value, Val} | timeout
Types:

202 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Key = key()
Timeout = timeout()
Val = (Res :: term()) | {badrpc, Reason :: term()}

Non-blocking version of yi el d/ 1. It returns the tuple { val ue, Val } when the computation is finished, or
ti meout when Ti meout milliseconds has elapsed.

This function must be called by the same process from which async_cal | / 4 was made otherwise it will only
returnt i meout .

parallel eval(FuncCalls) -> ResL
Types:
FuncCalls = [{Module, Function, Args}]
Module = module()
Function = atom()
Args = ResL = [term()]

Evaluates, for every tuplein FuncCal | s, appl y(Modul e, Function, Args) onsomenodein the network.
Returnsthelist of return values, in the same order asin FuncCal | s.

pinfo(Pid) -> [{Item, Info}] | undefined
Types:

Pid = pid()

Item = atom()

Info = term()

Location transparent version of the BIF er | ang: process_i nf o/ 1 in ERTS.

pinfo(Pid, Item) -> {Item, Info} | undefined | []
pinfo(Pid, ItemList) -> [{Item, Info}] | undefined | []
Types.

Pid = pid()

Item = atom()

ItemList = [Item]

Info = term()

Location transparent version of the BIF er | ang: process_i nf o/ 2 in ERTS.

pmap(FuncSpec, ExtraArgs, Listl) -> List2
Types:

Ericsson AB. All Rights Reserved.: Kernel | 203

rpc

FuncSpec = {Module, Function}
Module = module()

Function = atom()

ExtraArgs = [term()]

Listl = [Elem :: term()]
List2 = [term()]

Evaluatesappl y(Modul e, Function, [El enj ExtraArgs]) foreveryelementEl eminLi st 1,inparallé.
Returnsthelist of return values, in the same order asin Li st 1.

sbcast(Name, Msg) -> {GoodNodes, BadNodes}

Types:
Name = atom()
Msg = term()

GoodNodes = BadNodes = [node()]
Equivalenttosbcast ([node() | nodes()], Nane, Msg).

sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}

Types:
Name = atom()
Msg = term()

Nodes = GoodNodes = BadNodes = [node()]

Broadcasts the message Ms g synchronously to the registered process Narre on the specified nodes.
Returns{ GoodNodes, BadNodes} ,whereGoodNodes isthelist of nodesthat have Nane asaregistered process.

The function is synchronous in the sense that it is known that all servers have received the message when the call
returns. It is not possible to know that the servers have processed the message.

Any further messages sent to the servers, after thisfunction hasreturned, arereceived by all serversafter this message.

server_call(Node, Name, ReplyWrapper, Msg) ->
Reply | {error, Reason}

Types:
Node node()
Name = atom()
ReplyWrapper = Msg = Reply = term()
Reason = nodedown

Can be used when interacting with aserver called Nanme on node Node. It isassumed that the server receives messages
in the format { From Msg} and repliesusing From ! { Repl yW apper, Node, Reply}. Thisfunction
makes such a server call and ensures that the entire call is packed into an atomic transaction, which either succeeds
or fails. It never hangs, unless the server itself hangs.

The function returns the answer Repl y as produced by the server Narne, or { err or, Reason}.

yield(Key) -> Res | {badrpc, Reason}
Types:

204 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Key
Res

key()
Reason = term()

Returnsthe promised answer from apreviousasync_cal | / 4. If theanswer isavailable, it isreturned immediately.
Otherwise, the calling process is suspended until the answer arrives from Node.

This function must be called by the same process from whichasync_cal | / 4 was made otherwise it will never
return.

Ericsson AB. All Rights Reserved.: Kernel | 205

seq_trace

seq_trace

Erlang module

Sequentia tracing makes it possible to trace all messages resulting from one initial message. Sequential tracing
is independent of the ordinary tracing in Erlang, which is controlled by the er | ang: t race/ 3 BIF. For more
information about what sequential tracing is and how it can be used, see section Sequential Tracing.

seq_t r ace provides functions that control all aspects of sequential tracing. There are functions for activation,
deactivation, inspection, and for collection of the trace outpuit.

Data Types
token() = {integer(), boolean(), term(), term(), term()}
An opague term (atuple) representing a trace token.

Exports

set token(Token) -> PreviousToken | ok
Types:
Token = PreviousToken = [] | token()

Sets the trace token for the calling process to Token. If Token == [] then tracing is disabled, otherwise
Token should be an Erlang term returned fromget _t oken/ 0 or set _t oken/ 1.set _t oken/ 1 can beused to
temporarily exclude message passing from the trace by setting the trace token to empty like this:

0ldToken = seq trace:set token([]), % set to empty and save
% old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq trace:set token(0ldToken), % activate the trace token again

Returns the previous value of the trace token.

set token(Component, Val) -> {Component, OldVal}
Types:
Component = conponent ()

Val = Oldval = val ue()
component() = label | serial | flag()
flag() =

send |

'receive’' |

print |

timestamp |

monotonic_timestamp |

strict monotonic timestamp

value() =
(Integer :: integer() >= 0) |
{Previous :: integer() >= 0, Current :: integer() >= 0} |

206 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

(Bool :: boolean())
Setsthe individual Conponent of the trace token to Val . Returns the previous value of the component.
set _token(l abel, Integer)

Thel abel component isan integer which identifiesall events belonging to the same sequential trace. If severa
sequential traces can be active simultaneoudly, | abel isused to identify the separate traces. Default is 0.

set _token(serial, Serial Value)

Serial Val ue = {Previous, Current}.Theserial component containscounterswhich enablesthe
traced messagesto be sorted, should never be set explicitly by the user asthese countersare updated automatically.
Defaultis{ 0, 0}.

set _token(send, Bool)

A tracetokenflag (t rue | fal se) which enables/disables tracing on message sending. Default isf al se.
set _token('receive', Bool)

A tracetokenflag (t rue | fal se)which enablegdisablestracing on message reception. Default isf al se.
set _token(print, Bool)

A tracetokenflag(t rue | f al se)whichenables/disablestracingonexplicitcallstoseq_trace: print/ 1.
Default isf al se.

set _token(ti mestanp, Bool)

A tracetokenflag (t rue | f al se)which enables/disables atimestamp to be generated for each traced event.
Defaultisf al se.

set _token(strict_nonotonic_tinmestanp, Bool)

A trace token flag (true | fal se) which enables/disables a strict monotonic timestamp to be
generated for each traced event. Default is f al se. Timestamps will consist of Erlang monotonic time
and a monatonically increasing integer. The time-stamp has the same format and value as produced by
{erl ang: nonot oni c_ti ne(nanosecond), erl ang: uni que_i nteger ([nonotonic])}.

set _token(nonotonic_tinestanp, Bool)

A tracetokenflag (t rue | fal se) which enables/disables a strict monotonic timestamp to be generated for
each traced event. Default isf al se. Timestampswill use Erlang monotonic time. The time-stamp has the same
format and value as produced by er | ang: nonot oni c_t i ne(nanosecond) .

If multiple timestamp flags are passed, t i mest anp has precedence over stri ct _nonot oni c_ti nmest anp
which in turn has precedence over nonot oni c_t i mest anp. All timestamp flags are remembered, so if two are
passed and the one with highest precedence later is disabled the other one will become active.

get token() -> [] | token()

Returns the value of the trace token for the calling process. If [] isreturned, it means that tracing is not active. Any
other valuereturned isthevalue of an activetrace token. Thevaluereturned can beused asinput totheset _t oken/ 1
function.

get token(Component) -> {Component, Val}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 207

seq_trace

Component = conponent ()
Val = val ue()
component() = label | serial | flag()

flag() =
send |
'receive’' |
print |
timestamp |
monotonic timestamp |
strict monotonic timestamp

value() =
(Integer :: integer() >= 0) |
{Previous :: integer() >= 0, Current :: integer() >= 0} |

(Bool :: boolean())

Returns the value of the trace token component Conponent . See set_token/2 for possible values of Conponent
and Val .

print(TraceInfo) -> ok
Types.
TraceInfo = term()

Puts the Erlang term Tr acel nf o into the sequential trace output if the calling process currently is executing within
asequential trace and the pr i nt flag of the trace token is set.

print(Label, TraceInfo) -> ok
Types.
Label = integer()
TraceInfo = term()

Same as pri nt/ 1 with the additiona condition that Tr acel nf o is output only if Label is egua to the label
component of the trace token.

reset trace() -> true

Setsthe trace token to empty for all processes on the local node. The processinternal counters used to create the serial
of the trace token is set to 0. The trace token is set to empty for all messages in message queues. Together this will
effectively stop all ongoing sequential tracing in the local node.

set system tracer(Tracer) -> OldTracer

Types.
Tracer = OldTracer = tracer()
tracer() =
(Pid :: pid()) |
port() |
(TracerModule :: {module(), term()}) |
false

Sets the system tracer. The system tracer can be either a process, port or tracer module denoted by Tr acer . Returns
the previous value (which can bef al se if no system tracer is active).

Failure: { badar g, |Info}} if Pi disnotanexistinglocal pid.

208 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

get system tracer() -> Tracer

Types.
Tracer = tracer()
tracer() =
(Pid :: pid()) |
port() |
(TracerModule :: {module(), term()}) |
false

Returnsthe pid, port identifier or tracer module of the current system tracer or f al se if no system tracer is activated.

Trace Messages Sent to the System Tracer

The format of the messages is one of the following, depending on if flag t i mest anp of the trace token is set to
trueorfal se:

{seq trace, Label, SeqTraceInfo, TimeStamp}
or

{seq_trace, Label, SeqTraceInfo}

Where:
Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
Seconds = Milliseconds = Microseconds = int()

SeqTr acel nf o can have the following formats:
{send, Serial, From To, Message}

Used when a process Fr omwith itstrace token flag pri nt settot r ue has sent amessage.
{'receive', Serial, From To, Message}

Used when a process To receives a message with atrace token that hasflag' r ecei ve' settot r ue.
{print, Serial, From _, Info}

Used when a process Fr omhas called seq_trace: pri nt (Label, Tracel nfo) and has atrace token
withflagpri nt settotrue,and!| abel settolLabel .

Seri al isatuple{ Previ ousSerial, ThisSerial},where

« Integer Previ ousSeri al denotes the seria counter passed in the last received message that carried a trace
token. If the processis the first in a new sequential trace, Pr evi ousSer i al isset to the value of the process
internal "trace clock".

* Integer Thi sSeri al isthe serial counter that a process sets on outgoing messages. It is based on the process
interna "trace clock™, which isincremented by one before it is attached to the trace token in the message.

Sequential Tracing

Sequential tracing is away to trace a sequence of messages sent between different local or remote processes, where
the sequenceisinitiated by a single message. In short, it works as follows:

Each process has a trace token, which can be empty or not empty. When not empty, the trace token can be seen as
thetuple{ Label , Fl ags, Serial, Front.Thetracetokenispassedinvisibly with each message.

To start a sequential trace, the user must explicitly set the trace token in the process that will send the first message
in a sequence.

Ericsson AB. All Rights Reserved.: Kernel | 209

seq_trace

The trace token of a process is set each time the process matches a message in a receive statement, according to the
trace token carried by the received message, empty or not.

On each Erlang node, a process can be set as the system tracer. This process will receive trace messages each time a
message with atrace token is sent or received (if thetracetokenflagsend or ' r ecei ve' isset). The system tracer
can then print each trace event, write it to afile, or whatever suitable.

The system tracer only receives those trace events that occur locally within the Erlang node. To get the whole
picture of a sequential trace, involving processes on many Erlang nodes, the output from the system tracer on each
involved node must be merged (offline).

The following sections describe sequential tracing and its most fundamental concepts.

Trace Token

Each process has a current trace token. Initially, the token is empty. When the process sends a message to another
process, a copy of the current token is sent "invisibly" along with the message.

The current token of a processis set in one of the following two ways:

e Explicitly by the process itself, through acall toseq_trace: set _token/ 1, 2
* When amessageis received

In both cases, the current token is set. In particular, if the token of a received message is empty, the current token of
the processiis set to empty.

A trace token contains alabel and a set of flags. Both the label and the flags are set in both alternatives above.

Serial

The trace token contains a component called seri al . It consists of two integers, Previ ous and Current.
The purpose is to uniquely identify each traced event within a trace sequence, as well as to order the messages
chronologically and in the different branches, if any.

The algorithm for updating Ser i al can be described as follows:

Let each process have two counters, pr ev_cnt and curr _cnt, both are set to O when a process is created. The
counters are updated at the following occasions:

* When the processisabout to send a message and the trace token isnot empty.

Let the serial of thetracetoken bet prev andt curr.

curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt

The trace token with t pr ev andt cur r isthen passed aong with the message.

e Whentheprocesscallsseq trace: print(Label, Info),Label matchesthelabe part of thetrace
token and thetracetoken print flagist r ue.

The algorithm is the same as for send above.
* When amessageisreceived and contains a non-empty trace token.

The process trace token is set to the trace token from the message.
Let the serial of thetracetokenbet prev andt curr.

210 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

if (curr_cnt < tcurr)
curr_cnt := tcurr
prev_cnt := tcurr

curr _cnt of aprocessisincremented each time the processisinvolved in a sequentia trace. The counter can reach
its limit (27 bits) if aprocessis very long-lived and is involved in much sequential tracing. If the counter overflows,
the serial for ordering of the trace events cannot be used. To prevent the counter from overflowing in the middle of a
sequential trace, functionseq_trace: reset _trace/ 0 canbecaledtoresetprev_cnt andcurr_cnt of al
processes in the Erlang node. This function also sets all trace tokens in processes and their message queues to empty,
and thus stops all ongoing sequentia tracing.

Performance Considerations

The performance degradation for a system that is enabled for sequential tracing is negligible as long as no tracing
is activated. When tracing is activated, there is an extra cost for each traced message, but all other messages are
unaffected.

Ports
Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port, this must be done manually in the code of the port
controlling process. The port controlling processes have to check the appropriate sequential trace settings (as obtained
fromseq_trace: get _t oken/ 1) andinclude trace information in the message data sent to their respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace-specific information, and set
appropriate sequentia trace flagsthrough callstoseq_t race: set _t oken/ 2.

Distribution

Sequential tracing between nodes is performed transparently. This applies to C-nodes built with Er | _| nt er f ace
too. A C-node built with Er | _I nt er f ace only maintains one trace token, which means that the C-node appears as
one process from the sequential tracing point of view.

Example of Use
This example gives arough idea of how the new primitives can be used and what kind of output it produces.
Assume that you have an initiating processwith Pi d == <0. 30. 0> likethis:

-module(seqgex) .
-compile(export all).

loop(Port) ->
receive
{Port,Message} ->
seq trace:set token(label,17),
seq trace:set token('receive',true),
seq trace:set token(print,true),
seq trace:print(17,"**** Trace Started ****x"),
call server ! {self(),the message};
{ack,Ack} ->
ok
end,
loop(Port).

And aregistered processcal | _server withPi d == <0. 31. 0> likethis:

Ericsson AB. All Rights Reserved.: Kernel | 211

seq_trace

loop() ->
receive
{PortController,Message} ->

Ack = {received, Message},
seq_trace:print(17,"We are here now"),
PortController ! {ack,Ack}

end,

loop().

A possible output from the system'ssequent i al _t racer canbelikethis:

17:<0.30.0> Info {0,1} WITH

k*k*kk Trgce Started *xxx!

17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the message}

17:<0.31.0> Info {2,3} WITH

"We are here now"

17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received, the message}}

The implementation of a system tracer process that produces this printout can look like this:

tracer() ->
receive
{seq trace,Label,TraceInfo} ->
print trace(Label,TraceInfo,false);
{seq trace,Label,TraceInfo,Ts} ->
print trace(Label,TracelInfo,Ts);
Other -> ignore
end,
tracer().

print trace(Label,TraceInfo,false) ->
io:format("~p:", [Labell),
print trace(TraceInfo);

print trace(Label,TraceInfo,Ts) ->
io:format("~p ~p:",[Label,Ts]),
print trace(TraceInfo).

print trace({print,Serial,From, ,Info}) ->
io:format("~p Info ~p WITH~n~p~n", [From,Serial,Infol);
print trace({'receive',Serial,From,To,Message}) ->
io:format("~p Received ~p FROM ~p WITH~n~p~n",
[To,Serial,From,Messagel);
print trace({send,Serial,From,To,Message}) ->
io:format("~p Sent ~p TO ~p WITH~n~p~n",
[From,Serial,To,Messagel]).

The codethat creates aprocessthat runsthistracer function and setsthat process asthe system tracer can look like this:

start() ->
Pid = spawn(?MODULE, tracer,[1]),
seq_trace:set system tracer(Pid), % set Pid as the system tracer
ok.

With afunction liket est / 0, the whole example can be started:

test() ->
P = spawn(?MODULE, loop, [port]),
register(call _server, spawn(?MODULE, loop, [1)),
start(),
P ! {port,message}.

212 | Ericsson AB. All Rights Reserved.: Kernel

user

user

Erlang module

user isaserver that responds to all messages defined in the I/O interface. The codein user . er| can be used as
amodel for building alternative I/O servers.

Ericsson AB. All Rights Reserved.: Kernel | 213

wrap_log_reader

wrap_log _reader

Erlang module

Thismodule makesit possibleto read internally formatted wrap disk logs, seedi sk_| og(3) .wap_| og_r eader
does not interferewith di sk_| og activities; there is however abug in thisversion of thewr ap_| og_r eader , see
section Known Limitations.

A wrap disk log file consists of many files, called index files. A log file can be opened and closed. Also, asingleindex
file can be opened separately. If anon-existent or non-internally formatted file is opened, an error message isreturned.
If thefileis corrupt, no attempt is made to repair it, but an error message is returned.

If alog is configured to be distributed, it is possible that all items are not logged on all nodes. wr ap_| og_r eader
only reads the log on the called node; it is up to the user to be sure that all items are read.

Data Types
continuation()
Continuation returned by open/ 1, 2 or chunk/ 1, 2.

Exports

chunk(Continuation) -> chunk_ret ()
chunk(Continuation, N) -> chunk_ret()
Types:

Continuation = continuation()

N = infinity | integer() >=1

chunk ret() =

{Continuation2, Terms :: [term()]} |
{Continuation2,
Terms :: [term()],

Badbytes :: integer() >= 0} |
{Continuation2, eof} |
{error, Reason :: term()}

Enables to efficiently read the terms that are appended to alog. Minimises disk 1/O by reading 64 kilobyte chunks
from thefile.

Thefirst timechunk() iscaled, aninitia continuation returned from open/ 1 or open/ 2 must be provided.

When chunk/ 3 iscalled, N control s the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfi nity, which meansthat all the terms contained in the 8K chunk are read. If less than N terms are returned,
this does not necessarily mean that end of file is reached.

Returnsatuple{ Cont i nuati on2, Ternms},whereTer s isalist of termsfoundinthelog. Cont i nuati on2
is yet another continuation that must be passed on to any subsequent calls to chunk() . With a series of calls to
chunk() , itisthen possible to extract all terms from alog.

Returns atuple{ Cont i nuati on2, Terns, Badbyt es} if thelogisopenedinread only mode and the read
chunk is corrupt. Badbyt es indicates the number of non-Erlang terms found in the chunk. Notice that the log is
not repaired.

Returns{ Cont i nuati on2, eof} whentheendof thelogisreached,and{ error, Reason} if anerror occurs.

214 | Ericsson AB. All Rights Reserved.: Kernel

wrap_log_reader

The returned continuation either is or is not valid in the next call to this function. This is because the log can wrap
and delete the file into which the continuation points. To ensure this does not occur, the log can be blocked during
the search.

close(Continuation) -> ok | {error, Reason}
Types:

Continuation = continuation()

Reason = fil e: posi x()

Closesalog file properly.

open(Filename) -> open_ret()
open(Filename, N) -> open_ret()
Types:
Filename = string() | atom()
N = integer()

open ret() =
{ok, Continuation :: continuation()} |
{error, Reason :: tuple()}

Fi | ename specifies the name of thefile to be read.

N specifies the index of the file to be read. If Nis omitted, the whole wrap log file is read; if it is specified, only the
specified index fileis read.

Returns{ ok, Conti nuati on} if thelog/index file is opened successfully. Cont i nuat i on isto be used when
chunking or closing thefile.

Returns{error, Reason} foral errors.

Known Limitations

This version of wr ap_| og_r eader does not detect if di sk_| og wraps to a new index file between a cdl to
wrap_| og_reader: open() and the first cal to wrap_| og_r eader: chunk() . If this occurs, the call to
chunk() readsthelast logged itemsin the log file, as the opened index file was truncated by di sk_I og.

See Also
di sk_1 og(3)

Ericsson AB. All Rights Reserved.: Kernel | 215

zlib

zlib

Erlang module

This moduleis moved to the ERTS application.

216 | Ericsson AB. All Rights Reserved.: Kernel

app

app

Name

The application resour ce file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Appl i cat i on. app for each application Appl i cati on in
the system.

The fileisread by the application controller when an application is loaded/started. It is also used by the functionsin
syst ool s, for example when generating start scripts.
File Syntax

The application resource file is to be called Appl i cat i on. app, where Appl i cat i on is the application name.
Thefileisto belocated in directory ebi n for the application.

The file must contain a single Erlang term, which is called an application specification:

{application, Application,

[{description, Description},
{id, Id},

{vsn, Vsn},
{modules, Modules},
{maxP, MaxP},

{maxT, MaxT},
{registered, Names},

{included applications, Apps},
{applications, Apps},

{env, Env},

{mod, Start},

{start phases, Phases},

{runtime dependencies, RTDeps}]}.

Value Default
Application atom() -
Description string() "
Id string() "
Vsn string() "
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] [
Apps [Appl] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()

Application
Application name.

For the application controller, all keys are optional. The respective default values are used for any omitted keys.
Thefunctionsin syst ool s require more information. If they are used, the following keys are mandatory:
e description

Ericsson AB. All Rights Reserved.: Kernel | 217

app

* vsn
* nodul es
e registered
e applications
The other keys areignored by syst ool s.
description

A one-line description of the application.
id

Product identification, or similar.
vsn

Version of the application.
nodul es

All modules introduced by this application. syst ool s usesthislist when generating start scripts and tar files.
A module can only be defined in one application.

max P

Deprecated - isignored

Maximum number of processes alowed in the application.
maxT

Maximum time, in milliseconds, that the application is allowed to run. After the specified time, the application
terminates automatically.

regi stered

All names of registered processes started in this application. syst ool s uses this list to detect name clashes
between different applications.

i ncl uded_applications

All applicationsincluded by this application. When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed that the top-most supervisor of the
included application is started by a supervisor of this application.

applications

All applications that must be started before this application is allowed to be started. syst ool s usesthislist to
generate correct start scripts. Defaults to the empty list, but notice that all applications have dependencies to (at
least) Kernel and STDLIB.

env

Configuration parameters used by the application. The value of a configuration parameter isretrieved by calling
appl i cation: get_env/ 1, 2. Thevauesin the application resource file can be overridden by valuesin a
configuration file (seeconfi g(4)) or by command-lineflags (seeerts: erl (1)).

nod
Specifies the application callback module and a start argument, seeappl i cati on(3).

Key nod is necessary for an application implemented as a supervision tree, otherwise the application controller
does not know how to start it. mod can be omitted for applications without processes, typically code libraries,
for example, STDLIB.

218 | Ericsson AB. All Rights Reserved.: Kernel

app

start_phases

A list of start phases and corresponding start arguments for the application. If this key
is present, the application master, in addition to the usual cal to Mdul e:start/2, aso
calls Modul e: start _phase(Phase, Type, PhaseArgs) for each stat phase defined by key
st art _phases. Only after thisextended start procedure, appl i cati on: start (Appl i cati on) returns.

Start phases can be used to synchronize startup of an application and its included applications. In this case, key
nmod must be specified as follows:
{mod, {application starter, [Module,StartArgs]}}

The application master then calls Modul e: start/ 2 for the primary application, followed by calls to
Modul e: st art _phase/ 3 for each start phase (as defined for the primary application), both for the primary
application and for each of itsincluded applications, for which the start phase is defined.

Thisimplies that for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. For more information, see OTP Design Principles.

runti me_dependenci es

A list of application versions that the application depends on. An example of such an application version is
"kernel - 3. 0". Application versions specified as runtime dependencies are minimum requirements. That is,
alarger application version than the one specified in the dependency satisfies the requirement. For information
about how to compare application versions, see section Versions in the System Principles User's Guide.

Notice that the application version specifies a source code version. One more, indirect, requirement is that the
installed binary application of the specified version is built so that it is compatible with the rest of the system.

Some dependencies can only be required in specific runtime scenarios. When such optional dependencies exist,
these are specified and documented in the corresponding "App" documentation of the specific application.

Therunti me_dependenci es key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. Thisis actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

See Also
application(3),systool s(3)

Ericsson AB. All Rights Reserved.: Kernel | 219

config

config

Name

A configuration file contains values for configuration parameters for the applications in the system. The er |
command-lineargument - conf i g Narre tellsthe systemto usedatain the system configurationfileNane. confi g.

Configuration parameter values in the configuration file override the values in the application resource files (see
app(4) . Thevauesin the configuration file can be overridden by command-lineflags (seeerts:erl (1).

The value of a configuration parameter is retrieved by callingappl i cati on: get _env/ 1, 2.

File Syntax

The configuration fileisto be called Nane. conf i g, where Nane isany name.

File. conf i g contains asingle Erlang term and has the following syntax:
[{Applicationl, [{Parll, Valll}, ...1},

{ApplicationN, [{ParN1l, ValN1}, ...1}].

Application = aton()
Application name.

Par = atom()
Name of a configuration parameter.
Val = ternm()

Value of a configuration parameter.

sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys. confi g. This file is to be located in $ROOT/ r el eases/ Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn isthe release version.

Release handling relies on this assumption. When installing anew release version, thenew sys. conf i g isread and
used to update the application configurations.

Thismeansthat specifying another . conf i g file, or more. conf i g files, leadsto inconsistent update of application
configurations. Thereis, however, asyntax for sys. conf i g that allows pointing out other . conf i g files:

[{Application, [{Par, Val}l} | File].

File = string()
Name of another . confi g file. Extension . conf i g can be omitted. It is recommended to use absolute paths.
A relative path is relative the current working directory of the emulator.

When traversing the contents of sys. conf i g and afilename is encountered, its contents are read and merged with
the result so far. When an application configuration tuple { Appl i cat i on, Env} isfound, it is merged with the
result so far. Merging means that new parameters are added and existing parameter values overwritten.

Example:

220 | Ericsson AB. All Rights Reserved.: Kernel

config

sys.config:

[{myapp, [{parl,vall}, {par2,val2}]},
"/home/user/myconfig"].

myconfig.config:

[{myapp, [{par2,val3}, {par3,vald}]}].
Thisyields the following environment for myapp:

[{parl,vall}, {par2,val3},{par3,vald}]

The behavior if afile specified in sys. conf i g does not exist, or is erroneous, is backwards compatible. Starting
the runtime system will fail. Installing a new release version will not fail, but an error message is returned and the
erroneous file isignored.

See Also
app(4),erts:erl (1), OTP Design Principles

Ericsson AB. All Rights Reserved.: Kernel | 221

	Kernel
	Reference Manual
	kernel
	application
	ensure_all_started/1
	ensure_all_started/2
	ensure_started/1
	ensure_started/2
	get_all_env/0
	get_all_env/1
	get_all_key/0
	get_all_key/1
	get_application/0
	get_application/1
	get_env/1
	get_env/2
	get_env/3
	get_key/1
	get_key/2
	load/1
	load/2
	loaded_applications/0
	permit/2
	set_env/3
	set_env/4
	start/1
	start/2
	start_type/0
	stop/1
	takeover/2
	unload/1
	unset_env/2
	unset_env/3
	which_applications/0
	which_applications/1
	Module:start/2
	Module:start_phase/3
	Module:prep_stop/1
	Module:stop/1
	Module:config_change/3

	auth
	cookie/0
	cookie/1
	is_auth/1
	node_cookie/1
	node_cookie/2

	code
	set_path/1
	get_path/0
	add_path/1
	add_pathz/1
	add_patha/1
	add_paths/1
	add_pathsz/1
	add_pathsa/1
	del_path/1
	replace_path/2
	load_file/1
	load_abs/1
	ensure_loaded/1
	load_binary/3
	atomic_load/1
	prepare_loading/1
	finish_loading/1
	ensure_modules_loaded/1
	delete/1
	purge/1
	soft_purge/1
	is_loaded/1
	all_loaded/0
	which/1
	get_object_code/1
	root_dir/0
	lib_dir/0
	lib_dir/1
	lib_dir/2
	compiler_dir/0
	priv_dir/1
	objfile_extension/0
	stick_dir/1
	unstick_dir/1
	is_sticky/1
	where_is_file/1
	clash/0
	module_status/1
	modified_modules/0
	is_module_native/1
	get_mode/0

	disk_log
	accessible_logs/0
	alog/2
	balog/2
	alog_terms/2
	balog_terms/2
	block/1
	block/2
	change_header/2
	change_notify/3
	change_size/2
	chunk/2
	chunk/3
	bchunk/2
	bchunk/3
	chunk_info/1
	chunk_step/3
	close/1
	format_error/1
	inc_wrap_file/1
	info/1
	lclose/1
	lclose/2
	log/2
	blog/2
	log_terms/2
	blog_terms/2
	open/1
	pid2name/1
	reopen/2
	reopen/3
	breopen/3
	sync/1
	truncate/1
	truncate/2
	btruncate/2
	unblock/1

	erl_boot_server
	add_slave/1
	delete_slave/1
	start/1
	start_link/1
	which_slaves/0

	erl_ddll
	demonitor/1
	format_error/1
	info/0
	info/1
	info/2
	load/2
	load_driver/2
	loaded_drivers/0
	monitor/2
	reload/2
	reload_driver/2
	try_load/3
	try_unload/2
	unload/1
	unload_driver/1

	erl_prim_loader
	erlang
	error_handler
	raise_undef_exception/3
	undefined_function/3
	undefined_lambda/3

	error_logger
	add_report_handler/1
	add_report_handler/2
	delete_report_handler/1
	error_msg/1
	error_msg/2
	format/2
	error_report/1
	error_report/2
	get_format_depth/0
	info_msg/1
	info_msg/2
	info_report/1
	info_report/2
	logfile/1
	logfile/1
	logfile/1
	tty/1
	warning_map/0
	warning_msg/1
	warning_msg/2
	warning_report/1
	warning_report/2

	file
	advise/4
	allocate/3
	change_group/2
	change_mode/2
	change_owner/2
	change_owner/3
	change_time/2
	change_time/3
	close/1
	consult/1
	copy/2
	copy/3
	datasync/1
	del_dir/1
	delete/1
	eval/1
	eval/2
	format_error/1
	get_cwd/0
	get_cwd/1
	list_dir/1
	list_dir_all/1
	make_dir/1
	make_link/2
	make_symlink/2
	native_name_encoding/0
	open/2
	path_consult/2
	path_eval/2
	path_open/3
	path_script/2
	path_script/3
	pid2name/1
	position/2
	pread/2
	pread/3
	pwrite/2
	pwrite/3
	read/2
	read_file/1
	read_file_info/1
	read_file_info/2
	read_line/1
	read_link/1
	read_link_all/1
	read_link_info/1
	read_link_info/2
	rename/2
	script/1
	script/2
	sendfile/2
	sendfile/5
	set_cwd/1
	sync/1
	truncate/1
	write/2
	write_file/2
	write_file/3
	write_file_info/2
	write_file_info/3

	gen_sctp
	abort/2
	close/1
	connect/4
	connect/5
	connect_init/4
	connect_init/5
	controlling_process/2
	eof/2
	error_string/1
	listen/2
	listen/2
	open/0
	open/1
	open/1
	open/2
	peeloff/2
	recv/1
	recv/2
	send/3
	send/4

	gen_tcp
	accept/1
	accept/2
	close/1
	connect/3
	connect/4
	controlling_process/2
	listen/2
	recv/2
	recv/3
	send/2
	shutdown/2

	gen_udp
	close/1
	controlling_process/2
	open/1
	open/2
	recv/2
	recv/3
	send/4

	global
	del_lock/1
	del_lock/2
	notify_all_name/3
	random_exit_name/3
	random_notify_name/3
	re_register_name/2
	re_register_name/3
	register_name/2
	register_name/3
	registered_names/0
	send/2
	set_lock/1
	set_lock/2
	set_lock/3
	sync/0
	trans/2
	trans/3
	trans/4
	unregister_name/1
	whereis_name/1

	global_group
	global_groups/0
	info/0
	monitor_nodes/1
	own_nodes/0
	registered_names/1
	send/2
	send/3
	sync/0
	whereis_name/1
	whereis_name/2

	heart
	set_cmd/1
	clear_cmd/0
	get_cmd/0
	set_callback/2
	clear_callback/0
	get_callback/0
	set_options/1
	get_options/0

	inet
	close/1
	format_error/1
	get_rc/0
	getaddr/2
	getaddrs/2
	gethostbyaddr/1
	gethostbyname/1
	gethostbyname/2
	gethostname/0
	getifaddrs/0
	getopts/2
	getstat/1
	getstat/2
	ntoa/1
	parse_address/1
	parse_ipv4_address/1
	parse_ipv4strict_address/1
	parse_ipv6_address/1
	parse_ipv6strict_address/1
	parse_strict_address/1
	peername/1
	peernames/1
	peernames/2
	port/1
	setopts/2
	sockname/1
	socknames/1
	socknames/2

	inet_res
	getbyname/2
	getbyname/3
	gethostbyaddr/1
	gethostbyaddr/2
	gethostbyname/1
	gethostbyname/2
	gethostbyname/3
	lookup/3
	lookup/4
	lookup/5
	resolve/3
	resolve/4
	resolve/5
	nslookup/3
	nslookup/4
	nslookup/4
	nnslookup/4
	nnslookup/5

	init
	net_adm
	dns_hostname/1
	host_file/0
	localhost/0
	names/0
	names/1
	ping/1
	world/0
	world/1
	world_list/1
	world_list/2

	net_kernel
	allow/1
	connect_node/1
	get_net_ticktime/0
	getopts/2
	monitor_nodes/1
	monitor_nodes/2
	set_net_ticktime/1
	set_net_ticktime/2
	setopts/2
	start/1
	start/1
	start/1
	stop/0

	os
	cmd/1
	cmd/2
	find_executable/1
	find_executable/2
	getenv/0
	getenv/1
	getenv/2
	getpid/0
	putenv/2
	set_signal/2
	system_time/0
	system_time/1
	timestamp/0
	perf_counter/0
	perf_counter/1
	type/0
	unsetenv/1
	version/0

	pg2
	create/1
	delete/1
	get_closest_pid/1
	get_local_members/1
	get_members/1
	join/2
	leave/2
	start/0
	start_link/0
	which_groups/0

	rpc
	abcast/2
	abcast/3
	async_call/4
	block_call/4
	block_call/5
	call/4
	call/5
	cast/4
	eval_everywhere/3
	eval_everywhere/4
	multi_server_call/2
	multi_server_call/3
	multicall/3
	multicall/4
	multicall/4
	multicall/5
	nb_yield/1
	nb_yield/2
	parallel_eval/1
	pinfo/1
	pinfo/2
	pinfo/2
	pmap/3
	sbcast/2
	sbcast/3
	server_call/4
	yield/1

	seq_trace
	set_token/1
	set_token/2
	get_token/0
	get_token/1
	print/1
	print/2
	reset_trace/0
	set_system_tracer/1
	get_system_tracer/0

	user
	wrap_log_reader
	chunk/1
	chunk/2
	close/1
	open/1
	open/2

	zlib
	app
	config

