| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 7.3
March 14, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2016

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 |Installing the Binary Release

1 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

1.1 Installing the Binary Release

1.1.1 Windows
The system is delivered as a Windows Installer executable. Get it from http://www.erlang.org/download.html

Installing
The installation procedure is automated. Double-click the . exe fileicon and follow the instructions.

Verifying
» Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.

Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with ~G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

1.2 Building and Installing Erlang/OTP

1.2.1 Introduction

This document describes how to build and install Erlang/OTP-18. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
* https://github.com/erlang/otp

1.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.2 Building and Installing Erlang/OTP

Warning:

Please have alook at the Known platform issues chapter before you start.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Building

*+ GNU make

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, cl ang.
* Pel5

e GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

e ncurses,terncap,ortermnib -- The development headers and libraries are needed, often known as
ncur ses-devel . Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

* sed -- Stream Editor for basic text transformation.

Building in Git

* GNU aut oconf of at least version 2.59. Note that aut oconf isnot needed when building an unmodified
version of the released source.

Buildingon OS X
e Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
* Aninstall program that can take multiple file names.

1.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensourcetoolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require aworking crypto application and will aso be skipped if
OpenSSL ismissing. The publ i ¢_key application will available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

e Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface andpartsof i ¢ and or ber . At least version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

e X Windows -- Development headers and libraries are needed to build the Erlang/OTP application gs on Unix/
Linux.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href
href

1.2 Building and Installing Erlang/OTP

e wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets/wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation
e Xsltproc -- Acommand line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSLT/
xdtproc2.html.

« fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.

1.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp src 18.3.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the SERL_ TOP variable.

$ cd otp src 18.3
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring

Run the following commands to configure the build:

$./configure [options]

Note:
If you are building Erlang/OTP from git you will need to run . / ot p_bui | d aut oconf to generate the
configure scripts.

By default, Erlang/OTP release will beinstalledin/ usr/ | ocal / { bi n, | i b/ erl ang}. If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example, to
install in/ opt/ erl ang/ 18. 3/ {bi n, i b/ erl ang}, usethe- - prefix=/opt/erl ang/ 18. 3 option.

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href

1.2 Building and Installing Erlang/OTP

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh

Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ tests/test _server/index. htm
in your web browser and make sure that there are zero failed test cases.

Note:

Onbuildswithout cr ypt 0, ssl andssh thereisafailed test case for undefined functions. Verify that thefailed
test case log only shows calls to skipped applications.

Installing

Y ou are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation

Make sure you're in the top directory in the source tree.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

1.2 Building and Installing Erlang/OTP

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need afull Erlang/OTP-18.3 system in the $PATH.

$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:
e Adding thelocation of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

« Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOVE to $PATH, or by copying
thef op script to adirectory already in your $PATH.

Build the documentation.

$ make docs

Build I ssues

We have sometimes experienced problemswith Oracle'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at
* http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhendoingnake install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

$ make release docs RELEASE ROOT=<release dir>

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /|1 ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mnesia

« Browsing the html pages by loading thepage/ usr/ 1 ocal / |i b/ er| ang/ doc/ er | ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded from
* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp html 18.3.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the sameway, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 18.3.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP using make i nstal | .

* $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using make i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e« RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.2.5 Advanced configuration and build of Erlang/OTP

If youwant to tailor your Erlang/OTP build and install ation, please read on for detailed information about the individual
steps.

make and $ERL TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href
href
href

1.2 Building and Installing Erlang/OTP

$ cd lib/stdlib; env ERL _TOP=<Dir> make

where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring

The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
/fusr/local/{bin,Iib/erlang}.Tokeepthe same structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are:
e --prefix=PATH - Specify installation prefix.
« --{enabl e, di sabl e} -t hreads - Thread support. Thisis enabled by default if possible.

e --{enabl e, di sabl e} - snp-support - SMP support (enabled by default if ausable POSIX thread library
or native Windows threads is found)

e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)
« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

« --{enabl e, di sabl e}-f p-excepti ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling this
you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e-darw n-uni versal - Build universal binaries on darwin i386.
e --enabl e-darw n- 64bi t - Build 64-bit binaries on darwin

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc
e --enabl e-nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --wth-assuned-cache-1ine-size=SI| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use thisvalue in order to try to
avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false sharing.

o --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --Wth-javac=JAVAC- Specify Javacompiler to use

o --{with,w thout}-javac - Java compiler (without implies that the j i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

e --wth-ssl =PATH- Specify location of OpenSSL include and lib

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

--wi t h-ssl -i ncl =PATH - Location of OpenSSL i ncl ude directory, if different than specified by - -
wi t h- ssl =PATH

--w t h-ssl - r pat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma separated list of paths.

--with-Iibaton c_ops=PATH - Use the | i bat oni ¢c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try using
thel i bat omi c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops.

--di sabl e-snp-requi re-nati ve-at om cs - By default confi gur e will fal if an SMP runtime
systemisabout to be built, and no implementation for native atomic memory accesses can befound. If thishappens,
you are encouraged to find a native atomic implementation that can be used, e.g., using | i bat om c¢_ops, but
by passing - - di sabl e- snp-requi re-nati ve-at om cs you can build using afallback implementation
based on mutexes or spinlocks. Performance of the SMP runtime system will however suffer immensely without
an implementation for native atomic memory accesses.

--enable-static-{nifs,drivers} - To alow usage of nifs and drivers on OSs that do not support
dynamic linking of libraries it is possible to statically link nifs and drivers with the main Erlang VM binary.
This is done by passing a comma separated list to the archives that you want to staticaly link. e.g. - - enabl e-
static-nifs=/honme/ $USER/ ny_ni f. a. The path has to be absolute and the name of the archive has to
bethe sameasthemodule, i.e. my_ni f inthe example above. Thisisalso truefor drivers, but then it isthe driver
name that has to be the same as the filename. You also have to define STATI C_ERLANG { NI F, DRI VER}
when compiling the .o files for the nif/driver. If your nif/driver depends on some other dynamic library, you now
have to link that to the Erlang VM binary. Thisis easily achieved by passing L1 BS=- 1 | i bnane to configure.

- -wi t hout - $app - By default al applicationsin Erlang/OTPwill beincluded in arelease. If thisis not wanted
it ispossible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - - wi t hout -
wx. There is no automatic dependency handling between applications. If you disable an application that another
application depends on, you also have to disable the dependant application.

--enabl e- getti neof day- as- os-systemti me - Force usage of get t i neof day() for OS system
time.

--enabl e- pr ef er - el apsed- nmonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-during-suspend - Do not prefer an OS
monotonic time source with elapsed time during suspend.

--w t h-cl ock-resol uti on=hi gh| | ow- Trytofindclock sourcesfor OS systemtime, and OS monotonic
time with higher or lower resolution than chosen by default. Note that both aternatives may have a negative
impact on the performance and scalability compared to the default clock sources chosen.

- -di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.
--enabl e-di rty-schedul ers - Enable the experimental dirty schedulers functionality. Note that the
dirty schedulersfunctionality is experimental, and not supported. Thisfunctionality will be subject to backward
incompatible changes. Note that you should not enable the dirty scheduler functionality on production systems.
It isonly provided for testing.

If you or your system has special reguirements please read the Makef i | e for additional configuration information.

Atomic Memory Oper ations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-hit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href

1.2 Building and Installing Erlang/OTP

operationsusingthe _at omi ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's __sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.
e TheAPI provided by Windows.
* Theimplementation based onthegcc __at omi ¢_* builtins.

» |f none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat om ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat omi ¢_ops library isinstalled using the- - wi t h-1 i bat omi ¢_ops=PATH
confi gur e switch.

e Asalast resort, the implementation solely based onthegcc ___sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing anake cl ean.

Within Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

The conf i gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOP directory. The
conf i gur e scripts aso have to be regenerated when aconf i gure. i n oracl ocal . n% file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Note:

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the released source.

Other useful information can be found at our GitHub wiki:
e http://wiki.github.com/erlang/otp
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.2 Building and Installing Erlang/OTP

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat_nanespace -undefined suppress. Youalsoinclude-f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have X code 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build thewx application, you will need to get wxWidgets-3.0 (WxW dget s- 3. 0. 0. tar. bz2 from
http://sour cefor ge.net/pr oj ectswxwindows/files/3.0.0/) or get it from github with bug fixes:

$ git clone --branch WX 3 06 BRANCH git@github.com:wxWidgets/wxWidgets.git

Be aware that the wxWidgets-3.0 is a new release of wxWidgets, it is not as mature as the old releases and the OS
X port still lags behind the other ports.

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full

Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_buil d renpbve_prebuilt_fil es fromthe SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href

1.2 Building and Installing Erlang/OTP

Warning:

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing nake cl ean../otp_build save_boot st rap will
be invoked automatically when make isinvoked from $ERL_TOP with either the cl ean target, or the default
target. It is also automatically invoked if . / ot p_bui | d renove prebuilt fil es isinvoked.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ ert s/ emul at or .

In this directory execute:

$ make debug FLAVOR=$FLAVOR

where $FLAVCR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles are installed along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.

$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt , gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be setto | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

$./configure --prefix=/opt/local
make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: **x**
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

A A A

Install using ther el ease target. Instead of doing make i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All installation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

./configure

make

make RELEASE RO0T=/home/me/0TP release
cd /home/me/0TP

./Install -minimal /home/me/O0TP

mkdir -p /home/me/bin

cd /home/me/bin

ln -s /home/me/0TP/bin/erl erl

ln -s /home/me/0TP/bin/erlc erlc

ln -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as follows in the directory where it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

 -m ni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.

e -cross For cross compilation. Informs the install script that it is run on the build machine.

e <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Testinstall using EXTRA_PREFI X. The content of the EXTRA_PREFI Xvariablewill prefix all installation paths
when doing make i nst al | . Notethat EXTRA_PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA _PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

1.2 Building and Installing Erlang/OTP

Symboalic Linksin --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr/ 1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el at i ve| absol ut e asargumentsto nake during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Running
Using HiPE
HiPE supports the following system configurations:
e Xx86: All 32-bit and 64-bit mode processors should work.
e Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.
NPTL glibcisstrongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating

stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

e Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-hit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

e FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.
e OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.
o PowerPC: All 32-bit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.
e Linux (Yellow Dog) and OS X 10.4 are supported.
* SPARC: All UltraSPARC processors running 32-bit user code should work.
e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.
e Linux (Aurora) is supported.
« ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linux issupported.
HiPE is automatically enabled on the following systems:

e X86in 32-bit mode: Linux, Solaris, FreeBSD
e X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

 ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).

or

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

1> c(Module, [native|OtherOptions]).

Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

To add hipe options, write like this from the Erlang shell:

1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).

Usehi pe: hel p_opti ons/ 0 to print out the available options.

1> hipe:help options().

Running with GS
The gs application requires the GUI toolkit Tcl/Tk to run. At least version 8.4 is required.

1.2.6 Known platform issues

Suselinux 9.1 isshipped with apatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3-43 and
is not affected.

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had a bug which caused kqueue/pol | /sel ect tofail to detect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

e http://www.freebsd.or g/cgi/cvsweb.cgi/sr c/sys/kern/sys pipe.c

« http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September /006790.html

get cwd() on Solaris9 can cause an emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er| (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-
threads the only workaround available isto enable async-threads and increase the stack size of the async-threads.
Oracle has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

* https://getupdates.or acle.com/readme/112874-40
* https://getupdates.or acle.com/readme/114432-29

sed on Solaris seem to have some problems. For example on Solaris 8, the BSD sed and XPG4 sed should be
avoided. Make sure/ bi n/ sed or/ usr/ bi n/ sed isused on the Solaris platform.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href
href
href
href

1.2 Building and Installing Erlang/OTP

1.2.7 Daily Build and Test

e Solaris8, 9
* Sparc32
e Sparctd
e Solaris 10
e Sparc32
e Sparctd
e x86
e SuSE Linux/GNU 9.4, 10.1
e x86
e SUSE Linux/GNU 10.0, 10.1, 11.0
e x86
* Xx86 64

e 0penSuSE 11.4 (Celadon)
e x86_64 (vagrind)

e Fedora7
« PowerPC

* Fedoral6
e X86 64

e Gentoo Linux/GNU 1.12.11.1
e x86

e Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.04, 12.04
e Xx86 64

« MontaVistaLinux/GNU 4.0.1
 PowerPC

e FreeBSD 10.0
e x86

e OpenBSD 5.4
* Xx86 64

* 0OSX 10.5.8 (Leopard), 10.7.5 (Lion), 10.9.1 (Mavericks)
e Xx86
* Windows XP SP3, 2003, Vista, 7

e Xx86
« Windows7
e x86 64

We aso have the following "Daily Cross Builds':

e SUSE Linux/GNU 10.1 x86 -> SuSE Linux/GNU 10.1 x86_64
e SUSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests':
e SUSE Linux/GNU 10.1 x86_64

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

1.2.8 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ | i b/ */ AUTHORS and
$ERL_TOP/ er t s/ AUTHORS, not in the individual source files.

1.2.9 Copyright and License
Copyright Ericsson AB 1998-2015. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. Seethe
License for the specific language governing permissions and limitations under the License.

1.3 Cross Compiling Erlang/OTP

Table of Contents

Introduction
e otp_build Versus configure/make
e Cross Configuration
* What can be Cross Compiled?
e Compatibility
e Patches
Build and Install Procedure
* Building With configure/make Directly
» Building a Bootstrap System
e CrossBuilding the System
* Installing
« Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
Building and Installing the Documentation
Testing the cross compiled system
Currently Used Configuration Variables
» Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
e Cross System Root Locations
e Optional Feature, and Bug Tests
Copyright and License

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 17

1.3 Cross Compiling Erlang/OTP

1.3.1 Introduction

This document describes how to cross compile Erlang/OTP-18. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TCP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and nmake directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
--enabl e- dynani c-ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64- saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables before invoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneoudly configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileis highly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er| - xconp. conf. t enpl at e,anduseitinconfi gure. i n. Other filesthat might need
to be updated are;

e $ERL_TOP/ xconp/ erl - xconp-vars. sh

e $ERL _TOP/erl-build-tool -vars. sh

e S$ERL TOP/erts/aclocal.m

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

*+ S$ERL_TOP/ xconp/ README. md
« S$ERL_TOP/ xconp/ erl - xconmp- *. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly
D

Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System

2

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
meke boot st rap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_ TOP/
ert s/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href
href

1.3 Cross Compiling Erlang/OTP

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Note:

You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
Y ou can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Deter mined by configure

(4)

$ make install DESTDIR=<TEMPORARY PREFIX>

make install will instal at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - pref i x, - - exec-prefi x,--1ibdir,--bindir, etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/

I ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine asit should be executed from on the target machine.

When meke i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
®)

$ make release RELEASE ROOT=<RELEASE DIR>

make rel ease will copy what you have built for the target machine to <RELEASE_DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ 1 ocal /i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Cross Compiling Erlang/OTP

before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$

./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

-m ni mal Creates an installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat nake i nstal | uses.

- sasl Createsan installation that also starts up thesasl application.
- cr oss For cross compilation. Informs the install script that it is run on the build machine.

<ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sas! is passed as argument you will be prompted.

Y ou can now either do:

(6)

or:

()

Decide where the installation should be located on the target machine, run the | nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

Package the installation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE_INSTALL DIR ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON_TARGET>

Building With the otp_build Script

(8)

$ cd $ERL_TOP

9)

$

./otp build configure --xcomp-conf=<FILE> [Other Config Args]

alternatively:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

1.3 Cross Compiling Erlang/OTP

$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)

$./otp build boot -a

ot p_build boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)
$./otp build release -a <RELEASE DIR>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $ERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

1.3.4 Testing the cross compiled system

$ make release tests

or

$./otp build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto. / ot p_bui | d in (9).

$ cd $ERL TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire $ERL_TOP/
rel ease/ t est s folder to the cross host system.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop

The configure should be skipped and all tests should hopefully pass. For more details about how to use ts run er |
-s ts help -s init stop

1.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

e« erl_xconp_buil d- Thebuild system used. Thisvaluewill be passed as- - bui | d=$er| _xconp_bui |l d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$er| _xconp_build. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

e erl_xconmp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

- erl_xconp_configure_ fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variables in this section can also be used when native compiling.
e CC- Ccompiler.

e CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

 CFLAG_RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

* CPP - C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

1.3 Cross Compiling Erlang/OTP

e LD-Linker.
e LDFLAGS - Linker flags.
e LI BS- Libraries.

Dynamic Erlang Driver Linking

Note:
Either set all or none of the DED_LD* variables.

e« DED_LD- Linker for Dynamically loaded Erlang Drivers.

 DED LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
librarieswhen linking with DED_LD.

Large File Support

Note:
Either set al or none of the LFS_* variables.

e LFS _CFLAGS - Largefile support C compiler flags.
e LFS _LDFLAGS - Largefile support linker flags.
e LFS LI BS- Largefilesupport libraries.

Other Tools

e RANLIB-ranli b archiveindex tool.
e« AR-ar archiving tool.

 CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

« erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

« erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

e« erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

e« erl_xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian” format. If no, it has "regular" endianness.

e erl_xconp_clock gettinme_cpu_tine-yes|no.Defaultstono. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

e erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both 1Pv4 and 1Pv6.

 erl_xconp_gethrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

 erl_xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

e« erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

e erl_xconmp_linux_clock gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

e erl_xconmp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically less than 2.6).

* erl_xconp_linux_usabl e_si gal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

e erl_xconp_linux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

1.4 How to Build Erlang/OTP on Windows

 erl_xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

e erl_xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

« erl_xconp_posi x_memnal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_mnenal i gn implementation that accepts larger than
page size alignment.

* erl_xconp_ose_| dfl ags_pass1l - Linker flags for the OSE module (pass 1)

e erl_xconp_ose_| dfl ags_pass2 - Linker flags for the OSE module (pass 2)
 erl_xconp_ose_OSERQOOT - OSE installation root directory

e erl_xconp_ose_ STRI P- Strip utility shipped with the OSE distribution

e erl_xconp_ose_ LM POST_LI NK- OSE postlink tool

 erl_xconp_ose_LM SET_CONF - Setsthe configuration for an OSE load module

e erl_xconp_ose_ LM ELF_SI ZE - Prints the section size information for an OSE |oad module
e erl_xconp_ose LM LCF - OSE load module linker configuration file

e erl_xconp_ose BEAM LM CONF - Beam OSE load module configuration file

e erl_xconp_ose EPMD LM CONF - EPMD OSE load module configuration file

e erl_xconp_ose RUN ERL LM CONF - runerlim OSE load module configuration file

1.3.6 Copyright and License
Copyright Ericsson AB 2009-2014. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.4 How to Build Erlang/OTP on Windows

Table of Contents

e Introduction

e Short Version

* Frequently Asked Questions

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

* Development

e UsingGIT

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

e Copyright and License

1.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are till a preferred aternative if one does not have Microsoft’ s development tools and/or don’t want
toinstal Cygwin, MSYS or MSY S2.

Theinstructions apply to versions of Windows supporting the Cygwin emulated gnuish environment or the MSY S or
MSY S2 ditto. We've built on the following platforms: Windows 2012, Windows 7, Windows 8 and Windows 10. It's
probably possible to build on older platforms too, but you might not be able to install the appropriate Microsoft SDK,
Visual Studio or OpenSSL, in which case you will need to go back to earlier compilers etc.

The procedure described uses either Cygwin, MSY S or MSY S2 as a build environment. Y ou run the bash shell in
Cygwin/MSY SIMSY S2 and use the gnu make/configure/autoconf etc to do the build. The emulator C-source code
is, however, mostly compiled with Microsoft Visual C++™, producing a native Windows binary. This is the same
procedure as we use to build the pre-built binaries. Why we use VC++ and not gcc is explained further in the FAQ
section.

If you are not familiar with Cygwin, MSY S, MSY S2 or a Unix environment, you'll probably need to read up a bit on
how that works. There are plenty of documentation about this online.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are still named win32. Some occurances of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_18. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions to our JIRA
and patches to our git project to let them find their way into the next version of Erlang. If making changes to
the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so
that your changes don't break other platforms. That of course goes for C-code too; system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $ERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory isfor common code.

We've used this build procedure for a couple of releases, and it hasworked fine for us. Still, there might be all sorts of
troubles on different machinesand with different setups. We'll try to give hintswherever we've encountered difficulties,
but please share your experiences by using the erlang-questions mailing list. We cannot, of course, help everyone
with al their issues, so please try to solve such issues and submit solutions/workarounds.

Lets go then! We'll start with a short version of the setup procedure, followed by some FAQ, and then we'll go into
more details of the setup.

1.4.2 Short Version

Thisisthe short story though, for the experienced and impatient:
e Get and install complete Cygwin (latest), complete MinGW with MSY S or complete MSY S2

e Instal Visua Studio 12.0 (2013)

e Install Microsofts Windows SDK 8.1

e Getandingtal Sun'sJDK 1.6.0 or later

e Getandinstal NSIS2.01 or later (up to 2.46 tried and working)

o Get, build and install OpenSSL 0.9.8r or later (up to 1.0.2d tried & working) with static libs.

e GettheErlang sourcedistribution (from http://www.er lang.or g/download.html) and unpack with Cygwin's/
MSYSYMSYS2'st ar .

e Set ERL_TOPR to where you unpacked the source distribution

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href
href
href

1.4 How to Build Erlang/OTP on Windows

« $ cd $ERL_TOP

e Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_ TOP, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_18 toot p_w n32_18 onthelast row):

$ eval "./otp build env_win32 x64°
$./otp build autoconf

$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 18 /S

Voilal St art->Prograns->Erl ang OTP 18- >Er| ang starts the Erlang Windows shell.

1.4.3 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 8.1 == Visual studio 2013).

Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actualy it'sbeen possiblein late R11-releasesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: OK, you need V C++, but now you've started to demand a quite recent (and expensive) version of Visual Studio.
Why?

A: Wdll, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and all the tools you need are there. The included debugger (WinDbg) is also quite usable. That's
what | used when porting Erlang to 64bit Windows. Another reason to use later Microsoft compilersis DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
V C++ version. So we should aim to use the latest freely available SDK and compiler.

Q: Can/will | build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are still some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam emu. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC. That particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: Cygwin, MSY S or MSY S2 is the environment, which closely resembles the environment found on any Unix
machine. It's almost like you had a virtual Unix machine inside Windows. Configure, given certain parameters,
then creates makefiles that are used by the environment's gnu-make to built the system. Most of the actual
compilers etc are not, however, Cygwin/MSY SIMSY S2 tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ wi n32/
nsys_t ool s. They al do conversion of parameters and switches common in the Unix environment to fit the
native Windows tools. Most notableis of course the paths, which in Cygwin/MSY SIMSY S2 are Unix-like paths
with "forward slashes' (/) and no drive letters. The Cygwin specific command cygpat h isused for most of the
path conversions in a Cygwin environment. Other tools are used (when needed) in the corresponding MSY S and
MSY S2 environment. Luckily most compilers accept forward slashes instead of backslashes as path separators,
but one till have to get the drive letters etc right, though. The wrapper scripts are not general in the sense that, for
example, cc.sh would understand and transl ate every possible gcc option and pass correct options to cl.exe. The
principle is that the scripts are powerful enough to allow building of Erlang/OTP, no more, no less. They might
need extensions to cope with changes during the development of Erlang, and that's one of the reasons we made
them into shell-scripts and not Perl-scripts. We believe they are easier to understand and change that way.

IN$SERL_TOPR, thereisascriptcalledot p_bui | d. That script handlesthe hassle of giving al theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin/MSY SIMSY S2.

Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat really ethical ?

A: No, not really, but see this as a step in the right direction.
Q: Can | build something that looks exactly asthe commercial release?

A: Yes, we use the exact same build procedure.
Q: Which version of Cygwin/MSY S/IMSY S2 and other tools do you use then?

A: For Cygwin, MSY Sand MSY S2 alike, we try to use the latest rel eases available when building. What versions
you use shouldn't really matter. We try to include workarounds for the bugs we've found in different Cygwin/
MSY SIMSY S2 releases. Please help us add workarounds for new Cygwin/MSY S/IMSY S2-related bugs as soon
as you encounter them. Also please do submit bug reports to the appropriate Cygwin, MSY S and/or MSY S2
developers. The GCC we used for 18 wasversion 4.8.1 (MinGW 32bit) and 4.8.5 (MSY S2 64bhit). We used VC++
12.0(i.e. Visual studio 2013), Sun's JDK 1.6.0_45 (32bit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32
OpenSSL 1.0.2d. Please read the next section for details on what you need.

Q: Can you help me setup X in Cygwin/MSY SIMSY S2?

A: No, unfortunately we haven't got timeto help with Cygwin/MSY SIMSY S2 related user problems, please read
related websites, newsgroups and mailing lists.

1.4.4 Tools you Need and Their Environment

Y ou need sometoolsto beableto build Erlang/OTP on Windows. Most notably you'll need Cygwin, MSY Sor MSY S2,
Visual Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system and
OpenSSL. Well, here's some information about the different tools:

Cygwin, the very latest is usually best. Get all the devel opment tools and of course all the basic ditto. Make sure
to get jar and also make sure not to install a Cygwin'ish Java, since the Cygwin jar command is used but Sun's
Java compiler and virtual machine.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

1.4 How to Build Erlang/OTP on Windows

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
Cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Get the installer from the website and use it to install Cygwin. Be sure to have fair privileges. If you're on an NT
domain you should consider running nkpasswd - d and nmkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

When you start your first bash shell, you will get an awful prompt. You might also have a PATH environment
variable that contains backslashes and such. Edit SHOVE/ . pr of i | e and SHOVE/ . bashr ¢ to set fair prompts
and acorrect PATH. Alsodoanexport SHELL in. profi | e. For some non-obvious reason the environment
variable $SHELL is not exported in bash. Also note that . profi | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . pr of i | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). You can for example do like
thisattheend of . profil e:

ENV=$HOME/ . bashrc
export ENV
. $ENV

Y ou might also want to setup X-windows (XFree86). That might be as easy as running startx from the command
prompt and it might be much harder. Use Google to find help.

If you don't use X-windows, you might want to setup the Windows console window by selecting properties in
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especialy setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear.

There are afew other shells available, but in all examples below we assume that you use bash.
e Alternatively you download MinGW and MSY S. You'll find the latest installer at:
URL: http://sour cefor ge.net/pr oj ects/mingwi/files/I nstaller /mingw-get-inst/
Make sureto install the basic dev tools, but avoid the MinGW autoconf and install the msys one instead.
To be able to build the 64bit VM, you will aso need the 64bit MinGW compiler from:
URL: http://sour cefor ge.net/pr oj ects/mingw-w64/files/latest/downl oad ?sour ce=files

Wevetried up to 1.0, but the latest version should do. Make sure you download the m ngw w64- bi n_i 686-
m ngw_<sormet hi ng>. zi p, not alinux version. Y ou unzip the package on top of your MinGW installation
(c:\' M nGW and that'siit.

e A third alternative is to download and install MSY S2 from:
URL: https://msys2.github.io/

When you've followed the instructions there, you also need to install these packages: autoconf, make, perl, and
tar. You do so by running the following in the msys console;

pacman -S msys/autoconf msys/make msys/perl msys/tar

You also need agcc. If you installed the 64 bit MSY S2 you run:

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

1.4 How to Build Erlang/OTP on Windows

mingw64/mingw-w64-x86 64-gcc

And for 32 bit MSY S2:

pacman -S mingw32/mingw-w64-i686-gcc
pacman -S mingw-w64-1686-editrights

Visual Studio 2013 (Visual Studio 12.0). Download and run the web installer from:

https://www.visualstudio.com/

Microsofts Windows SDK version 8.1 (corresponding to VC++ 12.0 and Visual Studio 2013). You'll find it here:

URL: https://msdn.microsoft.com/en-us/windows/desktop/bg162891.aspx

To help setup the environment, there is a bat file, %°ROGRAMFI LES% M r osoft Vi sual Studio
12. 0\ VC\ vcvarsal | . bat, that set's the appropriate environment for a Windows command prompt.
This is not appropriate for bash, so you'll need to convert it to bash-style environments by editing your
. bash_profil e.Inmy case, where the SDK isinstalled in the default directory and YPROGRAMFI LESY%is
C.\ Program Fi |l es, the commands for setting up a 32bit build environment (on a 64bit or 32bit machine)
look like this (in Cygwin):

Some common paths
C DRV=/cygdrive/c
PRG_FLS=$C DRV/Program\ Files

nsis

NSIS BIN=$PRG_FLS/NSIS

java

JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

##
MS SDK
##

CYGWIN=nowinsymlinks

VISUAL_STUDIO ROOT=$PRG_FLS/Microsoft\ Visual\ Studio\ 12.0

WIN VISUAL STUDIO ROOT="C:\\Program Files\\Microsoft Visual Studio 12.0"
SDK=$PRG_FLS/Windows\ Kits/8.1

WIN SDK="C:\\Program Files\\Windows Kits\\8.1"

PATH="$NSIS BIN:\

$VISUAL STUDIO ROOT/VC/bin:\

$VISUAL_STUDIO ROOT/VC/vcpackages:\

$VISUAL STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\

$SDK/bin/x86

/usr/local/bin:/usr/bin:/bin:\
/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS:\
/cygdrive/c/WINDOWS/system32/Wbem:\

$JAVA BIN"

LIBPATH="$WIN VISUAL STUDIO ROOT\\VC\\1lib"
LIB="$WIN VISUAL STUDIO ROOT\\VC\\T1ib\\;$WIN SDK\\1ib\\winv6.3\\um\\x86"

INCLUDE="$WIN VISUAL STUDIO ROOT\\VC\\include\\;$WIN SDK\\include\\shared\\;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href

1.4 How to Build Erlang/OTP on Windows

$WIN SDK\\include\\um;$WIN SDK\\include\\winrt\\;$WIN SDK\\include\\um\\gl"

export CYGWIN PATH LIBPATH LIB INCLUDE

If you're using MinGW's MSY Sinstead, you need to change the C_DRV setting, which would read:

C_DRV=/c

and you also need to change the PATH environment variable to:

MINGW BIN=/c/MinGW/bin

PATH="$NSIS BIN:\

$VISUAL STUDIO ROOT/VC/bin:\

$VISUAL STUDIO ROOT/VC/vcpackages:\
$VISUAL_STUDIO ROOT/Common7/IDE:\
$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86:/usr/local/bin:\

$MINGW BIN:\
/bin:/c/Windows/system32:/c/Windows:\
/c/Windows/System32/Wbem:\

$JAVA BIN"

For MSY S2 you use the same C_DRV and PATH asfor MSY' S, only update the M NGW BI N:

MINGW BIN=/mingw32/bin

If you are building a 64 bit version of Erlang, you should set up PATHS etc a little differently. We have two
templates to make things work in both Cygwin and MSY'S but needs editing to work with MSY S2 (see the
commentsin the script). The following oneisfor 32 hits:

make winpath()

{
P=$1
if ["$IN CYGWIN" = "true"]1; then
cygpath -d "$P"
else
(cd "$P" && /bin/cmd //C "for %i in (".") do @echo %~fsi")
fi
}

make upath()
{

P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath "$P"
else
echo "$P" | /bin/sed 's,”\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,q'
fi

}

Some common paths
if [-x /usr/bin/msys-?.0.dll]; then

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

Without this the path conversion won't work
COMSPEC="'C:\Windows\System32\cmd.exe'
MSYSTEM=MINGW32 # Comment out this line if in MSYS2
export MSYSTEM COMSPEC
For MSYS2: Change /mingw/bin to the msys bin dir on the line below
PATH=/usr/local/bin:/mingw/bin:/bin:/c/Windows/system32:\
/c/Windows:/c/Windows/System32/Wbem
C DRV=/c
IN CYGWIN=false

else
PATH=/1disk/overrides:/usr/local/bin:/usr/bin:/bin:\
/usr/X11R6/bin:/cygdrive/c/windows/system32:\
/cygdrive/c/windows:/cygdrive/c/windows/system32/Wbem
C DRV=/cygdrive/c
IN CYGWIN=true

fi

obe otp gcc vsn _map="
=>default

obe otp 64 gcc vsn map="
=>default

Program Files

PRG_FLS=$C DRV/Program\ Files

Visual Studio
VISUAL STUDIO ROOT=$PRG FLS/Microsoft\ Visual\ Studio\ 12.0
WIN VISUAL STUDIO ROOT="C:\\Program Files\\Microsoft Visual Studio 12.0"

SDK
SDK=$PRG FLS/Windows\ Kits/8.1
WIN SDK="C:\\Program Files\\Windows Kits\\8.1"

NSIS
NSIS BIN=$PROGRAMFILES/NSIS

Java
JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

The PATH variable should be Cygwin'ish
VCPATH=

$VISUAL STUDIO ROOT/VC/bin:\

$VISUAL STUDIO ROOT/VC/vcpackages:\
$VISUAL STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86

Microsoft SDK libs
LIBPATH=$WIN VISUAL STUDIO ROOT\\VC\\lib

LIB=$WIN VISUAL STUDIO ROOT\\VC\\1ib\\;$WIN KITS\\1ib\\winv6.3\\um\\x86
INCLUDE=$WIN VISUAL STUDIO ROOT\\VC\\include\\;\

$WIN KITS\\include\\shared\\;$WIN KITS\\include\\um;\
$WIN_KITS\\include\\winrt\\;$WIN_KITS\\include\\um\\gl

Put nsis, c compiler and java in path
export PATH=$VCPATH:$PATH:$JAVA BIN:$NSIS BIN

Make sure LIB and INCLUDE is available for others
export LIBPATH LIB INCLUDE

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

1.4 How to Build Erlang/OTP on Windows

The first part of the 64 bit template is identical to the 32 bit one, but there are some environment variable
differences:

Program Files
PRG_FLS64=$C DRV/Program\ Files
PRG_FLS32=$C DRV/Program\ Files\ \(x86\)

Visual Studio
VISUAL STUDIO ROOT=$PRG_FLS32/Microsoft\ Visual\ Studio\ 12.0
WIN VISUAL STUDIO ROOT="C:\\Program Files (x86)\\Microsoft Visual Studio 12.0"

SDK
SDK=$PRG_FLS32/Windows\ Kits/8.1
WIN SDK="C:\\Program Files (x86)\\Windows Kits\\8.1"

NSIS

NSIS BIN=$PROGRAMFILES/NSIS

Java

JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 _02/bin

The PATH variable should be Cygwin'ish
VCPATH=

$VISUAL STUDIO ROOT/VC/bin/amd64:\
$VISUAL STUDIO ROOT/VC/vcpackages:\
$VISUAL STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86

Microsoft SDK libs
LIBPATH=$WIN VISUAL STUDIO ROOT\\VC\\lib\\amd64

LIB=$WIN_VISUAL_STUDIO_ROOT\\VC\\1lib\\amd64\\;\
$WIN_KITS\\1ib\\winv6.3\\um\\x64

INCLUDE=$WIN VISUAL STUDIO ROOT\\VC\\include\\;\
$WIN KITS\\include\\shared\\;$WIN KITS\\include\\um;\
$WIN KITS\\include\\winrt\\;$WIN KITS\\include\\um\\gl

Put nsis, c compiler and java in path
export PATH=$VCPATH:$PATH:$JAVA BIN:$NSIS BIN

Make sure LIB and INCLUDE is available for others
export LIBPATH LIB INCLUDE

Make sure to set the PATH so that NSIS and Microsoft SDK is found before the MSY S/Cygwin tools and that
Javaislast in the PATH.

Make a simple hello world and try to compile it with the cl command from within bash. If that does not work,
your environment needs fixing. Remember, there should be no backslashes in your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

e Sun'sJavaJDK 1.6.0or later. Our Javacode (jinterface, ic) iswritten for JDK 1.6.0. Get it for Windows and install
it, the JRE is not enough. If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 How to Build Erlang/OTP on Windows

"PATH="$PATH: /cygdrive/c/Program Files/Java/jdkl1l.7.0 02/bin""

No CLASSPATHor anything isneeded. Typej avac inthebash prompt and you should get alist of available Java
options. Make sure, e.g by typingt ype j ava, that you use the Javayou installed. Note however that Cygwin's/
MIinGW'SMSY S2'sj ar . exe isused. That's why the JDK bin-directory should be added last in the PATH.

Nullsoft NSIS installer system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases as well.

URL: http://nsis.sour cefor ge.net/download

Install the lot, especially the modern user interface components, asit's definitely needed. Put makensi s inyour
path, in my case:

PATH=/cygdrive/c/Program\ Files/NSIS:$PATH

Type makensis at the bash prompt and you should get alist of optionsif everything is OK.

OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries,
which you can just download and install, available here:

URL: http://openssl.or g/lcommunity/binaries.html

We would recommend using 1.0.2d.
Building with wxWidgets. Download wxWidgets-3.0.2 or higher.
Install or unpack it to the pgm folder: Cygwin: DRI VE: / PATH cygw n/ opt /1 ocal / pgm MSYS:

DRI VE: /| PATH M nGW nsys/ 1. 0/ opt /| ocal / pgmMSYS2: DRI VE: / PATH nmsys<32/ 64>/ opt /
| ocal / pgm

If the wxUSE_POSTSCRI PT isn't enabled in <pat h\t o\ pgn\ wx MSW 3. 0. 2\'i ncl ude\ wx\ nsw
\ set up. h, enableit.

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

.\> cd <path\to\pgm>\wxMSW-3.0.2\build\msw

C:\..
C:\...\> nmake BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

Or - if building a 64bit version:

C:\...\> cd <path\to\pgm>\wxMSW-3.0.2\build\msw
C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

Get the Erlang source distribution (from http://www.erlang.org/download.html). The same as for Unix
platforms. Preferably use tar from within Cygwin, MSYS or MSY S2 to unpack the source tar.gz (t ar zxf
otp_src_18.tar.gz).

Set theenvironment ERL_ TOP to point to theroot directory of the sourcedistribution. Let's say | stood in SHOVE/
src and unpacked ot p_src_18. tar. gz, | then add thefollowingto. profil e:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

href
href
href

1.4 How to Build Erlang/OTP on Windows

ERL TOP=$HOME/src/otp src 18
export $ERL_TOP

1.4.5 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally aPATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should also have an ERL_ TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script SERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might doit...

$ cd $ERL_TOP
$ eval "./otp build env _win32"

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL_TOP
$ eval $(./otp build env_win32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL_TOP
$ eval " ./otp build env_win32 x64°

This should do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path is
cleaned of spacesif possible (using DOS style short namesinstead), the variables OVERRI DE_TARGET, CC, CXX, AR
and RANL| B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/ <cygwi n/
neys> tool s/vcand$ERL_TOP/ erts/etc/w n32/ <cygwi n/ neys>_t ool areaddedfirstinthe PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ ert s/
et c/w n32/ cygwi n_tool s or$ERL_TOP/ erts/ et c/w n32/ nsys_t ool s.

1.4.6 Building and Installing
Building is easiest using the ot p_bui | d script:

./otp build autoconf # Ignore the warning blob about versions of autoconf
./otp build configure <optional configure options>

./otp build boot -a

./otp build release -a <installation directory>

./otp build installer win32 <installation directory> # optional

A A A

Now you will have a file called ot p_wi n32_18. exe or ot p_wi n64_18. exe in the <instal | ati on
directory>,i.e. SERL_TOP/ r el ease/ wi n32.

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

Lets get into more detail:

e $./otp_build autoconf - Thisstep rebuildsthe configure scriptsto work correctly in your environment.
In an ideal world, this would not be needed, but alas, we have encountered several incompatibilities between
our distributed configure scripts (generated on a Linux platform) and the Cygwin/MSY SIMSY S2 environment
over the years. Running autoconf in Cygwin/MSY SIMSY S2 ensures that the configure scripts are generated in a
compatible way and that they will work well in the next step.

« $./otp_build configure-Thisrunsthenewly generated configure scriptswith optionsmaking configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wrapsMSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

e« $./otp_ build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you whould have the prompt.

e $./otp_build rel ease -a-Buildsacommercia releasetreefrom the sourcetree. The defaultisto put it
iNSERL_TOP/ r el ease/ wi n32. You can give any directory as parameter (Cygwin style), but it doesn't really
matter if you're going to build a self extracting installer too.

e« $./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_wi n32_18. exe or ot p_wi n64_18. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $ERL_TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/ erl _rel ease).
You need to have a full NSIS installation and nakensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ release/win32/otp win32 18 /S

or

$ cd $ERL_TOP
$ release/win32/otp win64 18 /S

and after awhile Erlang/OTP-18 will have beeninstalled in C. \ Program Fi | es\ er| 7. 3\, with shortcuts
in the menu etc.

1.4.7 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also uses al the OTP librariesin the source tree.

If you hack the emulator, you can build the emulator executable by standing in $ERL_TOP/ er t s/ ermul at or and
doasimple

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

1.4 How to Build Erlang/OTP on Windows

$ make opt

Note that you need to haverun (cd $ERL_TOP && eval "./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ enul at or)

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dl | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL TOP

rm bin/win32/erlexec.dll
cd erts/emulator

make debug

cd ../etc

make debug

A A

and sometimes

$ cd $ERL_TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do &

1> erlang:system info(system version).
in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.

To hack the erlang libraries, you simply do anake opt inthe specific "applications” directory, like:

$ cd $ERL TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 18 you have built
in the previous steps. You could aso add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding specific
libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

correctly is a little bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc and
$ERL_TOP/ erts/etc/w n32/ cygw n_t ool s before the actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL TOP/erts/etc/win32/cygwin_tools/vc\
:$ERL_TOP/erts/etc/win32/cygwin_tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...
If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:

$ cd $ERL TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

* Windows specific C-code goes in the $ERL_TOP/ ert s/ emul at or/ sys/ wi n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32 or $ERL_TOP/ ert s/ et ¢/ wi n32.

* Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
{win32, } ->
do windows specific();
Other ->
do_fallback or exit()
end,

That's basically all you need to get going.

1.4.8 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in Cygwin, but not
in MSYS. Thereis aproject MsysGIT:

URL:http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
MSY S command prompt for building. Also all test suites cannot be built as M sysGIT/MSY S does not handle symbolic
links.

1.4.9 Copyright and License

Copyright Ericsson AB 2003-2015. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

href

1.5 Patching OTP Applications

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.5 Patching OTP Applications
1.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than already installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestagin theapplication resourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

1.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

e AnErlang/OTP instalation.

* An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/
OTPinstalation.

1.5.3 Using otp_patch_apply

Warning:
Patching applicationsisaone-way process. Create abackup of your OTPinstallation directory before proceeding.

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

Note:
Before applying a patch you need to do afull build of OTP in the source directory.

If you arebuildingingi t you first need to generate the conf i gur e scripts:

$./otp build autoconf

Configure and build all applicationsin OTP:

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 Patching OTP Applications

$ configure
$ make

or

$./otp build configure
$./otp build boot -a

If you have installed documentation in the OTP installation, also build the documentation:

$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp patch apply -s <Dir> -i <Dir> [-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-1 <Dir> -- OTP installation directory to patch.
-1 <Dir> -- Alternative OTP source library directory path(s)

containing build results of OTP applications.
Multiple paths should be colon separated.

-C -- Cleanup (remove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environment).

-h -- Print help then exit.

-n -- Do not install documentation.
-V -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Multiple paths should be colon separated.

Note:

The complete build environment is required while running ot p_pat ch_appl y.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

1.5 Patching OTP Applications

Note:
All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of mesi a and ssl built in/ hone/ e/ gi t/ ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ ot p type

$ otp patch apply -s /home/me/git/otp -i /opt/erlang/my otp \
mnesia ssl

Note:

If thelist of applications contains core applications, i.eert s, kernel ,stdl i b orsasl ,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <l nstal | Di r >/
rel eases/ OTP-REL/ i nstal | ed_application_versions.

1.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actualy loaded. By calling
system i nfornation: sanity_check() onecan validate dependencies among applications actually |oaded.

1> system information:sanity check().

ok

Please take alook at the reference of sanity _check() for more information.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 System Principles

2 System Principles

2.1 System Principles
2.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with ~G)
1>

er | understands a number of command-line arguments, see the erl(1) manual page in ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by calling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

2.1.2 Restarting and Stopping the System
The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual pagein ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot()
init:stop()
For details, seethe init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

2.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

% erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

2.1 System Principles

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}
{start,error_logger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:

« start_cl ean. boot - Loadsthe code for and starts the applications Kernel and STDLIB.
e start_sasl . boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

* no_dot_erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile. er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sas! to use as default is decided by the user when installing Erlang/OTP
usingl nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, then st art _cl ean isused, otherwise st art _sas! isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. This is true especially when running Erlang
in embedded mode, see Code Loading Srategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileNane. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Name. boot is generated from the boot script file Name. scri pt, using the function
syst ool s: script2boot (File).

2.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command-
lineflag - node.

% erl -mode embedded

Default modeisi nt er acti ve.
The mode properties are as follows:

¢ Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so.)

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Error Logging

e Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the

system.

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Nang[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optional. If an ebi n directory exists under the Nane|[- Vsn] directory, this directory is added to the

code path.

The code path can be extended by using the command-lineflags-pa Directories and-pz Directories.
Theseadd Di r ect or i es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kernel.

2.1.5 File Types

The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile . hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resourcefile .app app(4) manual pagein Kernel
Boot script .script script(4) manual pagein SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

2.2 Error Logging

2.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

2.2 Error Logging

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,31},[{m,f,1},{shell,eval loop,2}1}

The error information is handled by the error logger, a system process registered aser r or _| ogger . This process
receives al error messages from the Erlang runtime system as well as from the standard behaviours and different
Erlang/OTP applications.

The exit reasons (such asbadar g) used by the runtime system are described in Errorsand Error Handling.

For information about the process error_| ogger and its user interface (with the same name), see the
error_logger(3) manua page in Kernel. The system can be configured so that error information iswritten to file or to
tty, or both. In addition, user-defined applications can send and format error information using er r or _| ogger .

2.2.2 SASL Error Logging

The standard behaviours (super vi sor, gen_server, and so on) send progress and error information to
error _| ogger . If the SASL application is started, thisinformation is written to tty as well. For more information,
see SASL Error Logging in the SASL User's Guide.

% erl -boot start sasl
Erlang (BEAM) emulator version 5.4.13 [hipe] [threads:0] [kernel-poll]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl safe sup}
started: [{pid,<0.33.0>},

{name,alarm handler},
{mfa, {alarm handler,start link,[]}},
{restart_type,permanent},
{shutdown, 2000},
{child type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl safe sup}
started: [{pid,<0.34.0>},

{name, overload},
{mfa, {overload,start link,[]1}},
{restart_type,permanent},
{shutdown, 2000},
{child type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl sup}
started: [{pid,<0.32.0>},
{name, sasl safe sup},
{mfa, {supervisor,
start link,
[{local,sasl safe sup},sasl,safel}},
{restart_type,permanent},
{shutdown,infinity},
{child type,supervisor}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl sup}
started: [{pid,<0.35.0>},

{name, release handler},
{mfa,{release handler,start link,[]1}},
{restart_type,permanent},
{shutdown, 2000},
{child type,worker}]

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
application: sasl
started at: nonode@nohost
Eshell V5.4.13 (abort with ~G)
1>

2.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere else, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget systemthat can be started by calling the ordinary er | script.

* A simpletarget system where aso code replacement in runtime can be performed.

e Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sas| application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islistedin Listing of target_system.er|

2.3.1 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Sep 1. Create a. rel file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file:

%% mysystem.rel
{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applicationsthat you have
written (here exemplified by the application Pea (pea)).

Sep 2. Start Erlang/OTP from the directory wherethe mysyst em r el fileresides:

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2.3 Creating and Upgrading a Target System

Here also the path to the pea- 1. 0 ebin directory is provided.
Sep 3. Create the target system:

1> target system:create("mysystem").

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

Readsthefilenysyst em r el andcreatesanew filepl ai n. r el thatisidentica to the former, except that
it only liststhe Kernel and STDLIB applications.

From thefilesmysyst em rel andpl ai n. rel createsthefilesmysyst em scri pt, mysyst em boot,
pl ai n. scri pt,andpl ai n. boot through acall tosyst ool s: make_scri pt/ 2.

Creates the file nysystem tar. gz by acal to syst ool s: make_tar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem. rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our mysyst em boot

The release resource file nysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file,r el ease_handl| er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.
Creates the temporary directory t nmp and extractsthe tar filemysyst em t ar . gz into that directory.
Deletesthefileser| andstart fromt np/ ert s-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

Createsthe directory t np/ bi n.

Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .
Copiesthefilesepnd,run_erl ,andt o_er| fromthedirectoryt np/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

Createsthe directory t np/ | og, which isused if the system is started as embedded with thebi n/ st ar t
script.

Createsthefilet np/ r el eases/ start _erl . dat a with the contents"5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

Recreatesthefilemysyst em t ar . gz from the directories in the directory t np and removest np.

2.3.2 Installing a Target System
Sep 4. Install the created target system in a suitable directory.

2> target system:install("mysystem", "/usr/local/erl-target").

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

Thefunctiont ar get _system i nstal | / 2 performsthe following:

» Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get.

* Inthetarget directory readsthefiler el eases/ start _er| . dat a tofind the Erlang runtime system
version ("5.10.4").

* Substitutes %1 NAL_ROOTDI R%and ¥&EMJ%for / usr/ 1 ocal / er| -t ar get and beam respectively, in
thefileser| . src,start.src,andstart _erl.src of thetargetert s- 5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

e Findlythetargetr el eases/ RELEASES fileis created from datain thefiler el eases/ mysystemrel .

2.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as a basic target system by invoking:

os> /usr/local/erl-target/bin/erl

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

e bin/erl (obtainedfromerts-5.10.4/bin/erl.src)
e bin/start.boot (acopy of pl ai n. boot)

We can also start adistributed system (requires bi n/ epnd).
To start all applications specified inthe original nysyst em r el file, useflag - boot asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start a simple target system as above. The only difference isthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er | , whichin
turncalsbi n/ start _er| (roughly,start _erl isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_erl isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start_erl requires:

e Theroot directory ("/usr/ 1l ocal /erl-target")

e Thereleasesdirectory ("/ usr/ | ocal /erl-target/rel eases”
e Thelocation of thefilestart _erl . data

It performs the following:

e Readstheruntime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.
e Startsthe runtime system of the version found.

» Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot").

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

2.3 Creating and Upgrading a Target System

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shel scriptisnormally not to be altered by the user.

2.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system create/ 1.
Infact, if youinthe current directory create not only thefilenysyst em r el , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

2.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makes the release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering | ocation-dependent files.

2.3.6 Creating the Next Version
In this example the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Sep 1. Create thefile. rel :

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}1}.

Sep 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea.appup

{“2-0",
[{"1.0",[{load module,pea lib}1}],
[{"1.0",[{load module,pea lib}]}1}.

Sep 3. From the directory where the filemysyst en®. r el resides, start the Erlang/OTP system, giving the path to
the new version of Pea:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

Sep 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> systools:make relup("mysystem2",["mysystem"],["mysystem"],

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

[{path, ["/home/user/target system/myapps/pea-1.0/ebin",
"/my/old/erlang/lib/*/ebin"1}1).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option isused for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Sep 5. Create the new release:

2> target system:create("mysystem2").

Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.

2.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobi n/start:

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]

then
RELDIR=$RO0TDIR/releases

fi

START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR\
$RELDIR $START ERL DATA -heart

We use the simplest possible sys. conf i g, whichwestoreinr el eases/ Fl RST:

%% sys.config
[1.

Finally, to prepare the upgrade, we must put the new release package in the r el eases directory of the first target
system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

Assuming that the node has been started as follows:

0s> /usr/local/erl-target/bin/start

It can be accessed as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

2.3 Creating and Upgrading a Target System

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.l

Logscanbefoundin/ usr/ | ocal / erl -target/| og. Thisdirectory is specified asan argumenttor un_er | in
the start script listed above.

Sep 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Sep 2. Ingtall the release:

2> release handler:install release(Vsn).
{continue after restart,"FIRST",[]}
heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new s
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _rel ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is aways done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.2

Check which releases there are in the system:

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can also seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

Sep 3. Make the new release permanent:

2> release handler:make permanent("SECOND").

Check the releases again:

3> release handler:which releases().
[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

permanent},
{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sas1-2.3.4","pea-1.0"],

old}]

We see that the new release version isper nanent , so it would be safe to restart the node.

2.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

-module(target system).
-export([create/1l, create/2, install/2]).

% Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

\O \O \O
FE&

% create(RelFileName)

° P
i 2\0 S

eate(RelFileName) ->
create(RelFileName, []).

@

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~tp ...~n", [RelFilel),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~tp from ~tp ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)
+
{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
file:close(Fd),

io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),

io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",

io:fwrite("Creating tar file ~tp ...~n", [TarFileName]),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

2.3 Creating and Upgrading a Target System

make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),
io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
file:make dir(TmpDir),

io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName, TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"]),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"l)),

file:delete(filename:join([ErtsBinDir, "start"]l)),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
copy_ file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"l)),

io:fwrite("Copying files \"epmd\", \"run erl\" and \"to erl\" from \n"
"~tp to ~tp ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preservel),

copy file(filename:join([ErtsBinDir, "run erl"]),
filename:join([TmpBinDir, "run erl"l), [preservel),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"]),

io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {ok, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~tp ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",
io:fwrite("Extracting ~tp ...~n", [TarFilel]),

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

extract tar(TarFile, RootDir),

StartErlDataFile = filename:join([RootDir, "releases", "start erl.data"l),

{ok, StartErlData} = read txt file(StartErlDataFile),

[ErlVsn, RelVsn|] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"l),

BinDir = filename:join([RootDir, "bin"]),

io:fwrite("Substituting in erl.src, start.src and start erl.src to "

"form erl, start and start erl ...\n"),

subst src scripts(["erl", "start", "start erl"], ErtsBinDir, BinDir,
[{"FINAL ROOTDIR", RootDir}, {"EMU", "beam"}],
[preservel),

%! Workaround for pre OTP 17.0: start.src and start erl.src did

|

%! not have correct permissions, so the above 'preserve' option did not help
ok = file:change mode(filename:join(BinDir,"start"),b8#0755),
ok = file:change mode(filename:join(BinDir,"start erl"),8#0755),

io:fwrite("Creating the RELEASES file ...\n"),
create RELEASES(RootDir, filename:join([RootDir, "releases",
filename:basename(RelFileName)])).
%% LOCALS

make script(RelFileName,Opts)

o o0
o o

make script(RelFileName,Opts) ->
systools:make script(RelFileName, [no module tests,
{outdir, filename:dirname(RelFileName)}
[Opts]).

% make tar(RelFileName,Opts)

O °
£

make tar(RelFileName,Opts) ->
RootDir = code:root dir(),
systools:make tar(RelFileName, [{erts, RootDir},
{outdir, filename:dirname(RelFileName)}
[Opts]).

% extract tar(TarFile, DestDir)

O °
£

extract tar(TarFile, DestDir) ->
erl tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create RELEASES(DestDir, RelFileName) ->
release handler:create RELEASES(DestDir, RelFileName ++ ".rel").

subst src scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst src script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst src script(Script, SrcDir, DestDir, Vars, Opts) ->
subst file(filename:join([SrcDir, Script ++ ".src"l),
filename:join([DestDir, Scriptl),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read txt file(Src),
NConts = subst(Conts, Vars),
write file(Dest, NConts),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FilelInfo);
false ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

2.3 Creating and Upgrading a Target System

ok
end.

subst(Str, Vars)

Vars = [{Var, Val}]

Var = Val = string()

Substitute all occurrences of %Var% for Val in Str, using the list
of variables in Vars.

d® d° d° o° o° o°
o® o° o o° o° o°

subst(Str, Vars) ->
subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A
subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a
subst var([C| Rest]l, Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == $ ->
subst var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->
subst(Rest, Vars, [C| Resultl]);
subst([], Vars, Result) ->
lists:reverse(Result).

<C, C =< $zZ ->

<C, C =< $z ->

subst var([$%| Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->
subst(Rest, Vars, lists:reverse(Value, Result));
false ->
subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;
subst var([C| Rest], Vars, Result, VarAcc) ->
subst var(Rest, Vars, Result, [C| VarAccl);
subst var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy file(Src, Dest) ->
copy file(Src, Dest, []).

copy file(Src, Dest, Opts) ->
{ok, } = file:copy(Src, Dest),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

write file(FName, Conts) ->
Enc = file:native name encoding(),
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, unicode:characters to binary(Conts,Enc,Enc)),
file:close(Fd).

read txt file(File) ->
{ok, Bin} = file:read file(File),
{ok, binary to list(Bin)}.

remove dir tree(Dir) ->
remove all files(".", [Dir]).

remove all files(Dir, Files) ->

lists:foreach(fun(File) ->
FilePath = filename:join([Dir, Filel]),

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 Upgrade when Erlang/OTP has Changed

case filelib:is dir(FilePath) of
true ->
{ok, DirFiles} = file:list dir(FilePath),
remove all files(FilePath, DirFiles),
file:del dir(FilePath);
->

file:delete(FilePath)

end

end, Files).

2.4 Upgrade when Erlang/OTP has Changed

2.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor which it isnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

2.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but require the Erlang emulator
toberestarted. Thisisindicated tother el ease_handl er by theupgradeinstructionr est art _new_emnul at or .
Thisinstruction is always the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to alow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _enul at or . Thisinstruction, incontrasttor est art _new_enul at or, causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _erul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _errul at or has no effect asthe r el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

2.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only{Vsn,[],[]}.Any attempt at creating a release upgrade file with such input fails. The only way to force an
upgrade involving applications like this is to handwrite the filer el up, preferably as described above with only the
restart _enul at or instruction.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

2.5 Versions

2.5 \Versions

2.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept was introduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applications from one single OTP version.

Release candidates have an - r c<N> suffix. The suffix - r c0 is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source codetree, the OTP version can beread from thetext file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by calling fil ename:joi n([code:root _dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by caling fil enane:join([code:root _dir(), "rel eases"”,
erl ang: systeminfo(otp_release), "OTP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about all OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versions that are part of a specific OTP version, and has the following format:

<0tpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<O pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and hasthe format <appl i cati on>- <vsn>.

e <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

e <UnchangedAppVer si ons> corresponds to unchanged application versions in this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
* Inwhich OTPversion wasker nel - 3. 0 introduced?

$ sed "s/#.*//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Warning:

The format of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

2.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply a major increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

2.5.3 Version Scheme

Note:

The version scheme was changed as of OTP 17.0. Thisimplies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the normal case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If al parts less significant than <M nor > equas 0, they are omitted. The three norma parts
<Maj or >. <M nor >. <Pat ch> are changed asfollows:

» <Mgj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When a part in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin genera are only partially ordered. However, normal version numbers (with three parts) as of OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

2.5 Versions

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partialy ordered. Such versions are
only used in exceptional cases. When an extra part (out of the normal three parts) is added to a version number, anew
branch of versionsis made. The new branch hasalinear order against the base version. However, versions on different
branches have no order, and therefore one can only conclude that they all include what is included in their closest
common ancestor. When branching multiple times from the same base version, 0 parts are added between the base
version and the least significant 1 part until a unique version is found. Versions that have an order can be compared
as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include all changesin 6. 0. 2. However, 6. 0. 3 will most
likely not include @l changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

2.5.4 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e common_test-1.8

e conpiler-5.0

e cosEvent-2.1.15

 cosEvent Donmin-1.1. 14

e cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTime-1.1.14

 cosTransactions-1.2.14

e cCrypto-3.3

 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

e edoc-0.7.13

e eldap-1.0.3

e erl_docgen-0.3.5

e erl_interface-3.7.16

e erts-6.0

e et-1.5

e eunit-2.2.7
e gs-1.5.16

e hipe-3.10.3

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

ic-4.3.5

i nets-5.10
jinterface-1.5.9
kernel -3.0
megaco-3.17.1
mesi a- 4. 12
observer-2.0
odbc- 2. 10. 20
orber-3.6.27
os_non-2. 2. 15
ose-1.0
otp_mbs-1.0.9
parsetool s-2.0.11
percept-0.8.9
public_key-0.22
reltool-0.6.5
runtime_tools-1.8.14
sasl-2.4
snmp-4.25.1
ssh-3.0.1
ssl-5.3.4
stdlib-2.0
syntax_t ool s-1.6. 14
test_server-3.7

t ool s-2.6. 14

typer-0.9.6
webt ool - 0. 8. 10
wx-1. 2

xnmerl-1.3.7

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

3.1 Embedded Solaris

3 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Note:
Thisis a supplementary section. Y ou also need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

3.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

3.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceis of limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

3.1.3 Installing an Embedded System
This section is about installing an embedded system. The following topics are considered:

e Creating user and installation directory

* Instaling an embedded system

» Configuring automatic start at boot

e Making a hardware watchdog available

e Changing permission for reboot

e Setting TERM environment variable

e Adding patches

e Installing module os_sup in application os_mon

Severa of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

In this section, it is assumed that the username is ot puser and that the home directory of that user is:

/export/home/otpuser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

/export/home/otpuser/otp

This directory isthe installation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

» The (compressed) tape archive file is to be extracted in the installation directory defined above.
* Itisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/ et c/rc3. d. Thefilemust be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750tp.system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#!/bin/sh
#
File name: S750tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#
if [! -d /usr/bin]
then # /usr not mounted
exit
fi
killproc() { # kill the named process(es)

pid="/usr/bin/ps -e |
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/~ *//' -e 's/ .*//"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

3.1 Embedded Solaris

["$pid" !'= ""] && kill $pid
}

Start/stop processes required for Erlang

case "$1" in

‘start')
Start the Erlang emulator
#
su - otpuser -c "/export/home/otpuser/otp/bin/start" &
'stop')
killproc beam
. HH
echo "Usage: $0 { start | stop }"
esac

File/ export/ home/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script
described in Sarting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/export/home/otpuser/otp

Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOME_PATH/erl_call -n Node init stop

To take Erlang down gracefully, seetheer | _cal | (1) manua pageiner| _i nt er f ace for details on the use of
erl _cal | . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki | | pr oc procedure is not to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VME boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see a so Installation Problems).

Seealsotheheart (3) manual pageinker nel .

Changing Permissions for Reboot

If the HEART _COMVAND environment variableisto be setinthest art script in Sarting Erlang, and if thevalueis
to be set to the path of the Solarisr eboot command, that is:

HEART COMMAND=/usr/sbin/reboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

chmod 4755 /usr/sbin/reboot

Seedsotheheart (3) manual pageinker nel .

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun

Thisisto be added tothest art script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_I| NSTALL_DI R>/ READVE.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:

Installation
e Make a copy of the Solaris standard configuration file for sysl ogd:

» Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf and foundin directory / et c.

« Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.ORIG

* Make an Erlang-specific configuration file for sysl ogd:
» Make an edited copy of the backup copy previously made.
e Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

» Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command nan sysl og. conf.

e Usudly alineisadded that is to state:
* Which types of information that is to be supervised by Erlang
» Thename of thefile (actually a named pipe) that is to receive the information

« If, for example, only information originating from the UNIX kernel isto be supervised, the lineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5) .

« After at least one tab-character, the line added is to contain the full name of the named pipe where
sysl ogd writesitsinformation. The path must be the same as for thefilessysl og. conf . ORI Gand
sysl og. conf . OTP. The filename must be sysl og. ot p.

e |f thedirectory for thefilessysl og. conf . ORI Gandsysl og. conf. OTPis/ et c, thelinein
sysl og. conf. OTPisasfollows:

kern.LEVEL /etc/syslog.otp

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

3.1

Embedded Solaris

Check the file privileges of the configuration files:
» Theconfiguration filesisto haver w-r - - r - - file privileges and be owned by root.
« A simpleway to do thisisto issue these commands:

chmod 644 /etc/syslog.conf
chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

* Noticethat if thefilessysl og. conf . ORI Gand sysl og. conf . OTP arenot in directory / et c, the
file path in the second and third command must be modified.

Modify file privileges and ownership of the nod_sysl og utility:
« Thefile privileges and ownership of the nod_sysl og utility must be modified.

* Thefull name of the binary executable file is derived from the position of application os_non in the file
system by adding / pri v/ bi n/ nmod_sysl og. The generic full name of the binary executable fileisthus:

<0TP_ROOT>/1ib/0s _mon-<REV>/priv/bin/mod syslog

Example: If the pathto ot p- r oot is/ usr/ ot p, then the path to theos_non applicationis/ usr/ ot p/
I i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/os_non-1.0/priv/bin/nd_sysl og.

* Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the
set ui d bit of the user must be set.

* A simpleway to do thisisto issue the following commands:

cd <OTP_ROOT>/1lib/0os_mon-<REV>/priv/bin/mod syslog
chmod 4755 mod syslog
chown root mod syslog

Testing the Application Configuration File

The following procedure does not require root privilege:

Ensure that the configuration parameters for the os_sup moduleinthe os_nmon application are correct.
Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the os_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus:

<0TP_ROOT>/1ib/0os_mon-<REV>/ebin/os mon.app.

Example: If the path to ot p-r oot is/ usr/ ot p, then the path to the os_rnon application is/ usr/ ot p/
lib/os_non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
i b/ os_non-1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters have correct values:

Parameter Function Sandard value

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_sup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

0s_sup_sysl ogconf standard configuration file for "/ etc/sysl og. conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang | st d_error

runtime system

Table 1.1: Configuration Parameters

If thevalueslistedinos_non. app do not suit your needs, do not edit that file. Instead overridethe valuesin asystem
configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os mon, [{start os sup, true}, {os sup own, "/etc"},
{os_sup syslogconf, "/etc/syslog.conf"}, {os sup errortag, std error}]1}].

Related Documents

Seethe os_non(3) application, theappl i cati on(3) manual pagein ker nel , andtheer| (1) manual page
inerts.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e exclude: drv/ntp
e exclude: drv/ntpzsa
 exclude: drv/ncpp

Warning:

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

3.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally residein the
directory <ERL_| NSTALL_ DI R>/ bi n. Theonly exceptionisthest art program, which can be located anywhere,
and is al'so the only program that must be modified by the user.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

3.1 Embedded Solaris

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a special directory.

Basically, the procedure is as follows:

* Thestart programiscalled when the machineis started.
e ltcalsrun_erl , which setsup things so the operator can attach to the system.

 ltcalsstart_erl,whichcalsthe correct version of er | exec (whichislocated in
<ERL_| NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and conf i g files.

3.1.5 Programs

start

Thisprogram is called when the machineis started. It can be modified or rewritten to suit aspecia system. By defaullt,
it must be called st art and residein <ERL_| NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application sasl .

The start program must call r un_er | as shown below. It must also take an optional parameter, which defaults to
<ERL_I NSTALL_DI R>/rel eases/ start _erl . dat a.

This program is to set static parameters and environment variables such as - snanme Name and HEART_COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets areinstalled, and where the rel ease handler keepsinformation
about releases. For more information, seether el ease_handl er (3) manual pageinsasl .

The following script illustrates the default behaviour of the program:

#!1/bin/sh

Usage: start [DataFile]
#

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]

then
RELDIR=$RO0TDIR/releases

fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and where the environment
variables HEART _COVMAND and TERMhave been added to the previous script:

#!/bin/sh

Usage: start [DataFile]

#

HEART COMMAND=/usr/sbin/reboot
TERM=sun

export HEART COMMAND TERM
ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

then
RELDIR=$RO0TDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA -heart -sname cpl" > /dev/null 2>&1 &

If a diskless and/or read-only client node is about to start, filest art _er| . dat a islocated in the client directory
at the master node. Thus, the START_ERL_DATA lineisto look like:

CLIENTDIR=$RO0OTDIR/clients/clientname
START ERL DATA=${1:-$CLIENTDIR/bin/start erl.data}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run erl pipe dir/ log dir "exec command [parameters ...1"

Here:

e pipe_dir/ istobe/tnp/ (t o_erl usesthisname by default).

| og_dir iswherethelog files are written.

« comand [paranet er s] isexecuted.

» Everything writtento st di n and st dout isloggedinl og di r.

Log filesare written in| og_di r . Each log file has a name of the form er | ang. | og. N, where N is a generation

number, ranging from 1 to 5. Each log file holds up to 100 kB text. Astime goes by, the following log files are found
in thelog file directory:

erlang.log.1

erlang.log.1l, erlang.log.2

erlang.log.1l, erlang.log.2, erlang.log.3

erlang.log.1l, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1l

The most recent log file is the rightmost in each row. That is, the most recent file is the one with the highest number,
or if there are aready four files, the one before the skip.

When alog fileis opened (for appending or created), atime stamp is written to the file. If nothing has been written to
thelog filesfor 15 minutes, arecord is inserted that says that we are till aive.

to_erl

This program is used to attach to a running Erlang runtime system, started withr un_er | .

Usage: to erl [pipe name | pipe dir]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

3.2 Windows NT

Herepi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

start_erl

This program starts the Erlang emulator with parameters - boot and - conf i g set. It reads data about where these
filesarelocated fromafilenamedst art _er| . dat a, whichislocated in <RELDI R>. Each new release introduces
anew datafile. Thisfile is automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program:

#!/bin/sh

#
This program is called by run erl. It starts

the Erlang emulator and sets -boot and -config parameters.
It should only be used at an embedded target system.

#

Usage: start erl RootDir RelDir DataFile [ErlFlags ...]

#

ROOTDIR=$1

shift

RELDIR=$1

shift

DataFile=$1

shift

ERTS VSN="awk '{print $1}' $DataFile"
VSN="awk '{print $2}' $DataFile"

BINDIR=$ROOTDIR/erts-$ERTS VSN/bin
EMU=beam

PROGNAME="echo $0 | sed 's/.*\///'
export EMU

export ROOTDIR

export BINDIR

export PROGNAME

export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If adiskless and/or read-only client node with the sas| configuration parameter st at i ¢c_enul at or settot rue
is about to start, the - boot and - conf i g flags must be changed.

Assuch aclient cannot read anew st art _er | . dat a file (the file cannot be changed dynamically). The boot and
config files are always fetched from the same place (but with new contents if a new release has been installed).

Ther el ease_handl er copiesthesefilestothebi n directory in the client directory at the master nodes whenever
anew release is made permanent.

Assuming the same CLI ENTDI R as above, the last lineisto look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
-config $CLIENTDIR/bin/sys $*

3.2 Windows NT

This section describes the operating system-specific parts of OTP that relate to Windows NT.

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Windows NT

A normal installation of Windows NT 4.0, with Service Pack 4 or later, is required for an embedded Windows NT
running OTP.

3.2.1 Memory Use

RAM memory of 96 MB is recommended to run OTP on Windows NT. A system with less than 64 MB of RAM is
not recommended.

3.2.2 Disk Space Use

A minimum Windows NT installation with networking needs 250 MB, and an extra 130 MB for the swap file.

3.2.3 Installing an Embedded System

Normal Windows NT installation is performed. No additional application programs are needed, such as Internet
Explorer or web server. Networking with TCP/IP is required.

Service Pack 4 or later must be installed.
Hardware Watchdog

For Windows NT running on standard PCs with 1SA and/or PCI bus, an extension card with a hardware watchdog
can beinstalled.

For more information, seethe hear t (3) manual pageinker nel .

3.2.4 Starting Erlang

On an embedded system, theer | sr v moduleisto be used to install the Erlang process as a Windows system service.
This service can start after Windows NT has booted.

For moreinformation, seetheer | srv manua pageinerts.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

4.1 Introduction

4 Getting Started With Erlang

4.1 Introduction

This section isa quick start tutorial to get you started with Erlang. Everything in this section is true, but only part of
thetruth. For example, only the ssmplest form of the syntax is shown, not all esoteric forms. Also, partsthat are greatly
simplified are indicated with *manual*. This means that a lot more information on the subject is to be found in the
Erlang book or in Erlang Reference Manual.

4.1.1 Prerequisites
The reader of this section is assumed to be familiar with the following:

» Computersin general
e Basicson how computers are programmed

4.1.2 Omitted Topics

The following topics are not treated in this section:

* References.

e Local error handling (catch/throw).

* Singledirection links (monitor).

» Handling of binary data (binaries/ bit syntax).
e List comprehensions.

* How to communicate with the outside world and software written in other languages (ports); thisis described in
Interoperability Tutorial.

e FErlang libraries (for example, file handling).

e OTPand (in consequence) the Mnesia database.
e Hashtablesfor Erlang terms (ETS).

e Changing code in running systems.

4.2 Sequential Programming
4.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, UNIX and Linux have many, Windows has the command
prompt. Erlang hasits own shell wherebits of Erlang code can bewritten directly, and be eval uated to see what happens
(see the shell(3) manual pagein STDLIB).

Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your operating system and
typing er | . You will see something like this.

% erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with ~G)

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

1>

Type "2 + 5." in the shell and then press Enter (carriage return). Notice that you tell the shell you are done entering
code by finishing with afull stop "." and a carriage return.

1> 2 + 5.
7
2>

As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and that it correctly saysthat 2 + 5is7.
If you make writing mistakes in the shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (seetty - A command line interface in ERTS User's Guide).

(Notice that many line numbers given by the shell in the following examples are out of sequence. Thisis because this
tutorial was written and code-tested in separate sessions).

Here is abit more complex calculation:

2> (42 + 77) * 66 / 3.
2618.0

Notice the use of brackets, the multiplication operator "*", and the division operator "/", asin normal arithmetic (see
Expressions).

Press Control-C to shut down the Erlang system and the Erlang shell.
The following output is shown:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

°

Type"a" to leave the Erlang system.
Another way to shut down the Erlang system is by entering hal t () :

3> halt().

)
©

4.2.2 Modules and Functions

A programming language is not much use if you only can run code from the shell. So hereisasmall Erlang program.
Enter itinto afilenamed t ut . er | using a suitable text editor. Thefilenamet ut . er | isimportant, and also that
it is in the same directory as the one where you started er |). If you are lucky your editor has an Erlang mode that
makes it easier for you to enter and format your code nicely (see The Erlang mode for Emacsin Tools User's Guide),
but you can manage perfectly well without. Here is the code to enter:

-module(tut).
-export([double/1]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

4.2 Sequential Programming

double(X) ->
2 * X.

It is not hard to guess that this program doubles the value of numbers. The first two lines of the code are described
later. Let us compile the program. This can be done in an Erlang shell as follows, where ¢ means compile:

3> c(tut).
{ok, tut}

The { ok, t ut } means that the compilation is OK. If it says "error" it means that there is some mistake in the text
that you entered. Additional error messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.

Now run the program:

4> tut:double(10).
20

As expected, double of 10is 20.

Now let us get back to thefirst two lines of the code. Erlang programs are written in files. Each file contains an Erlang
module. Thefirst line of code in the module is the module name (see Modul es):

-module(tut).

Thus, themoduleiscalled tut. Notice thefull stop™." at the end of theline. Thefileswhich are used to store the module
must have the same name as the module but with the extension ".erl". In this case the filenameist ut . er | . When
using a function in another module, the syntax modul e_nane: f uncti on_name(ar gunent s) isused. So the
following means call function doubl e in modulet ut with argument "10".

4> tut:double(10).

The second line says that the module t ut contains a function called doubl e, which takes one argument (X in our
example):

-export([double/1]).

The second line also says that this function can be called from outside the modulet ut . More about this later. Again,
noticethe"." at the end of theline.

Now for a more complicated example, the factorial of a number. For example, the factorial of 4is4* 3* 2* 1,
which equals 24.

Enter the following codein afilenamedt ut 1. er| :

-module(tutl).
-export([fac/1]).

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

fac(l) ->
g
fac(N) ->

N * fac(N - 1).

So thisisamodule, called t ut 1 that contains afunction called f ac>, which takes one argument, N.
Thefirst part saysthat the factorial of 1is1.:

fac(l) ->
i

Notice that this part ends with asemicolon ;" that indicates that there is more of the function f ac> to come.
The second part says that the factorial of N isN multiplied by the factorial of N - 1.

fac(N) ->
N * fac(N - 1).

Notice that this part endswith a"." saying that there are no more parts of this function.
Compilethefile:

5> c(tutl).
{ok, tutl}

And now calculate the factorial of 4.

6> tutl:fac(4).
24

Here the function f ac> in modulet ut 1 is called with argument 4.
A function can have many arguments. Let us expand the modulet ut 1 with the function to multiply two numbers:

-module(tutl).
-export([fac/1, mult/2]).
fac(l) ->

g
fac(N) ->

N * fac(N - 1).
mult(X, Y) ->

X *Y.

Notice that it is aso required to expand the - expor t line with the information that there is another function mul t
with two arguments.

Compile:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

4.2 Sequential Programming

7> c(tutl).
{ok, tutl}

Try out the new function mul t :

8> tutl:mult(3,4).
12

In this exampl e the numbers areintegers and the argumentsin the functionsin thecode N, X, and Y are called variables.
Variables must start with a capital letter (see Variables). Examples of variables are Nunber , ShoeSi ze, and Age.

4.2.3 Atoms

Atomisanother datatypein Erlang. Atomsstart with asmall letter (see Atom), for example, char | es,cent i net er,
and i nch. Atoms are simply names, nothing else. They are not like variables, which can have avalue.

Enter the next program in afile named t ut 2. er |). It can be useful for converting from inches to centimeters and
conversaly:

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M / 2.54;

convert(N, centimeter) ->
N * 2.54.

Compile:

9> c(tut2).
{ok, tut2}

Test:

10> tut2:convert(3, inch).
1.1811023622047243

11> tut2:convert(7, centimeter).
17.78

Notice the introduction of decimals (floating point numbers) without any explanation. Hopefully you can cope with
that.

Let us see what happensif something other than cent i met er ori nch isenteredintheconvert function:

12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

The two parts of theconvert function are called its clauses. As shown, mi | es isnot part of either of the clauses.
The Erlang system cannot match either of the clauses so an error messagef unct i on_cl ause isreturned. The shell
formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the shell
command v/ 1:

13> v(12).
{'EXIT',{function clause, [{tut2,convert,
[3,miles],
[{file,"tut2.erl"},{line,4}1},
{erl eval,do apply,5,[{file,"erl eval.erl"},{line,482}]1},
{shell,exprs,7,[{file, "shell.erl"},{line,666}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,621}]1},
{shell,eval loop,3,[{file,"shell.erl"},{line,606}1}1}}
4.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:

tut2:convert(3, inch).

Does this mean that 3 isin inches? Or does it mean that 3 isin centimeters and is to be converted to inches? Erlang
has a way to group things together to make things more understandable. These are called tuples and are surrounded

by curly brackets, "{" and "}".

So, {i nch, 3} denotes 3 inchesand { centi et er, 5} denotes 5 centimeters. Now let us write a hew program
that converts centimeters to inches and conversely. Enter the following codein afilecaledt ut 3. er |):

-module(tut3).
-export([convert length/1]).

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ok, tut3}

15> tut3:convert length({inch, 5}).

{centimeter,12.7}

16> tut3:convert length(tut3:convert length({inch, 5})).
{inch,5.0}

Notice on line 16 that 5 inches is converted to centimeters and back again and reassuringly get back to the
original value. That is, the argument to a function can be the result of another function. Consider how line 16
(above) works. The argument given to the function {i nch, 5} is first matched against the first head clause of
convert _l ength, thatis, convert _| ength({centimeter, X}).Itcanbeseenthat {centineter, X}
does not match { i nch, 5} (the head is the bit before the "->"). This having failed, let us try the head of the next
clausethat is,convert _| engt h({i nch, Y}). Thismatches, and Y getsthe value 5.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

4.2 Sequential Programming

Tuples can have more than two parts, in fact as many parts as you want, and contain any valid Erlang term. For
example, to represent the temperature of various cities of the world:

{moscow, {c, -103}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of items in them. Each item in a tuple is called an element. In the tuple { roscow,
{c,-10}},element 1lisnoscowand element 2is{ c, - 10} . Here c represents Celsiusand f Fahrenheit.

4.2.5 Lists

Whereas tuples group things together, it is a'so needed to represent lists of things. Listsin Erlang are surrounded by
square brackets, "[" and "]". For example, alist of the temperatures of various cities in the world can be;

[{moscow, {c, -10}}, {cape town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Notice that this list was so long that it did not fit on one line. This does not matter, Erlang allows line breaks at all
"sensible places" but not, for example, in the middle of atoms, integers, and others.

A useful way of looking at parts of lists, isby using "|". Thisis best explained by an example using the shell:

17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest.

[2,3,4,5]

To separate the first elements of the list from the rest of the list, | isused. Fi r st has got value 1 and TheRest
has got the value [2,3,4,5].

Another example:

20> [El, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> E1.

1

22> E2.

2

23> R.

[3,4,5,6,7]

Here you seethe use of | to get the first two elements from the list. If you try to get more elements from the list than
there are elementsin the list, an error is returned. Notice also the special case of the list with no elements, []:

24> [A, B | C] = [1, 2].

[1,2]
25> A.
1

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

26> B.
2
27> C.
[1

In the previous examples, new variable names are used, instead of reusing the old ones: Fi r st , TheRest , E1, E2,
R, A, B, and C. Thereason for thisis that a variable can only be given avalue oncein its context (scope). More about
thislater.

The following example shows how to find the length of alist. Enter the following codein afilenamedt ut 4. er |):

-module(tutd).
-export([list length/1]).

list length([]) ->
0;

list length([First | Rest]) ->
1 + list length(Rest).

Compile and test:

28> c(tut4d).

{ok, tut4}

29> tut4:1list length([1,2,3,4,5,6,71).
7

Explanation:

list length([]) ->
0;

The length of an empty list is obviously O.

list length([First | Rest]) ->
1 + list length(Rest).

The length of alist with the first element Fi r st and the remaining elements Rest is1 + the length of Rest .
(Advanced readers only: Thisis not tail recursive, there is abetter way to write this function.)

In general, tuples are used where "records’ or "structs' are used in other languages. Also, lists are used when
representing things with varying sizes, that is, where linked lists are used in other languages.

Erlang does not have a string data type. Instead, strings can be represented by lists of Unicode characters. Thisimplies
for example that thelist [97, 98, 99] isequivalent to "abc". The Erlang shell is"clever" and guesses what list you
mean and outputsit in what it thinks is the most appropriate form, for example:

30> [97,98,99].
Ilabcll

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

4.2 Sequential Programming

4.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42:

> #{ "key" => 42 }.
#{"key" => 42}

Let usjump straight into the deep end with an example using some interesting features.

Thefollowing example shows how to cal culate al pha blending using mapsto reference color and a phachannels. Enter
thecodeinafilenamed col or. erl):

-module(color).
-export([new/4, blend/2]).
-define(is_channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).
new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->

#{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue := blue(Src,Dst) / Alpha,
alpha := Alpha
I
blend(,Dst,) ->
Dst#{
red = 0.0,
green := 0.0,
blue := 0.0,
alpha := 0.0
e
alpha(#{alpha := SA}, #{alpha := DA}) ->

SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

Compile and test:

> c(color).

{ok,color}

> Cl = color:new(0.3,0.4,0.5,1.0).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> (C2 = color:new(1.0,0.8,0.1,0.3).

V=1,V

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}

> color:blend(C1,C2).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}

> color:blend(C2,C1).

#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:

-define(is_channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).

Firstamacroi s_channel isdefined to help with the guard tests. Thisis only here for convenience and to reduce
syntax cluttering. For more information about macros, see The Preprocessor.

new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is _channel(B), ?is channel(A) ->
#{red => R, green => G, blue => B, alpha => A}.

The function new 4 creates a new map term and lets the keysr ed, gr een, bl ue, and al pha be associated with
an initial value. In this case, only float values between and including 0.0 and 1.0 are allowed, as ensured by the ?
i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By caling bl end/ 2 on any color term created by new/ 4, the resulting color can be calculated as determined by
the two map terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel:

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

The value associated with key al pha isfetched for both arguments using the : = operator. The other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisaso the case for functionsr ed/ 2, bl ue/ 2, andgr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference hereis that a check is made for two keysin each map argument. The other keys are ignored.
Finally, let us return the resulting color in bl end/ 3:

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue := blue(Src,Dst) / Alpha,
alpha := Alpha

}i

The Dst map is updated with new channel values. The syntax for updating an existing key with a new value is with
the: = operator.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

4.2 Sequential Programming

4.2.7 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module i o contains many functions that
help in doing formatted input/output. To look up information about standard modules, the command er | - man can
be used at the operating shell or command prompt (the same place as you started er |). Try the operating system
shell command:

% erl -man io
ERLANG MODULE DEFINITION io(3)

MODULE
io - Standard I/0 Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-

If this does not work on your system, the documentation isincluded asHTML in the Erlang/OTP release. Y ou can also
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercial Erlang)
or www.erlang.org (open source). For example, for Erlang/OTP release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

4.2.8 Writing Output to a Terminal

Itisniceto beableto do formatted output in exampl es, so the next example showsasimpleway tousethei o: f or mat
function. Like all other exported functions, you can test thei o: f or mat function in the shell:

31> io:format("hello world~n", []).

hello world

ok

32> io:format("this outputs one Erlang term: ~w~n", [hello]).

this outputs one Erlang term: hello

ok

33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld

ok

34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world

ok

The function f or mat / 2 (that is, f or mat with two arguments) takes two lists. The first one is nearly aways alist
written between " ". Thislist is printed out as it is, except that each ~w is replaced by aterm taken in order from the
second list. Each ~n isreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a
deliberate policy. Erlang has sophisticated mechanisms to handle errors which are shown later. As an exercise, try to
makei o: f or mat crash, it should not be difficult. But notice that although i o: f or mat crashes, the Erlang shell
itself does not crash.

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

4.2.9 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that you have a list of temperature
readings from a number of citiesin the world. Some of them arein Celsius and some in Fahrenheit (asin the previous
list). First let us convert them all to Celsius, then let us print the data neatly.

%% This module is in file tut5.erl

-module(tut5).
-export([format temps/1]).

%% Only this function is exported

format temps([])-> % No output for an empty list
ok;

format temps([City | Rest]) ->
print temp(convert to celsius(City)),
format temps(Rest).

convert to celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert to celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.

print temp({Name, {c, Temp}}) ->
io:format("~-15w ~w c~n", [Name, Temp]).

35> c(tuth).

{ok, tut5}

36> tut5:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

mos cow -10 ¢

cape_ town 21.11111111111111 c
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 c
ok

Before looking at how this program works, notice that afew comments are added to the code. A comment starts with
a%-character and goes on to the end of the line. Notice also that the- export ([f or mat _t enps/ 1]) . lineonly
includes the function f or mat _t enps/ 1. The other functions are local functions, that is, they are not visible from
outside the modulet ut 5.

Notice also that when testing the program from the shell, the input is spread over two lines as the line was too long.

Whenf or mat _t enps iscalled thefirst time, Ci t y getsthevalue{ moscow, { ¢, - 10} } and Rest istherest of
thelist. So the function pri nt _t enp(convert _to_cel si us({nmoscow, {c,-10}})) iscaled.

Here is a function call as convert _to_cel sius({nmoscow, {c, -10}}) as the argument to the function
print _tenp. When function calls are nested like this, they execute (evaluate) from the inside out. That is, first
convert _to_cel sius({noscow, {c, -10}}) is evauated, which gives the vaue { nroscow, {c, - 10} }
as the temperature is aready in Celsius. Then print _tenp({noscow, {c, - 10}}) isevauated. The function
convert _to_cel si us worksinasimilar way totheconvert _| engt h function in the previous example.

print_tenpsimplycalsi o: f or mat inasimilar way to what has been described above. Notice that ~-15w says
to print the "term" with afield length (width) of 15 and l€ft justify it. (see theio(3)) manual pagein STDLIB.

Now format tenps(Rest) is caled with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Y es, thisis recursion, but do not let that worry you.) So the same

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

4.2 Sequential Programming

format _t enps function is called again, thistime Ci t y gets the value { cape_t own, {f, 70} } and the same
procedure is repeated as before. This is done until the list becomes empty, that is [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

4.2.10 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this. Before extending the program to do
this, let uslook at functions for finding the maximum value of the elementsin alist:

-module(tut6).
-export([list max/1]).

list max([Head|Rest]) ->
list max(Rest, Head).

list max([], Res) ->
Res;

list max([Head|Rest], Result so far) when Head > Result so far ->
list max(Rest, Head);

list max([Head|Rest], Result so far) ->
list max(Rest, Result so far).

37> c(tute).

{ok, tut6}

38> tut6:list max([1,2,3,4,5,7,4,3,2,1]).
7

First notice that two functions have the same name, | i st _nmax. However, each of these takes a different number of
arguments (parameters). In Erlang these are regarded as completely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name and Arity is the number of
arguments, inthiscasel i st _nmax/1andli st_nmax/ 2.

In this example you walk through a list "carrying" avalue, in thiscase Result _so_far.list_max/ 1 simply
assumes that the max value of the list isthe head of the list and calls| i st _nmax/ 2 with the rest of the list and the
value of the head of the list. In the above thiswould bel i st _max([2, 3,4,5,7, 4, 3,2, 1], 1).If you tried
tousel i st _nmax/ 1 with an empty list or tried to use it with something that is not alist at all, you would cause an
error. Notice that the Erlang philosophy is not to handle errors of this type in the function they occur, but to do so
elsewhere. More about this later.

In 1'ist_max/2, you walk down the list and use Head instead of Result_so_far when Head >
Resul t _so_far.when isaspecia word used before the -> in the function to say that you only use this part of
the function if the test that follows istrue. A test of thistypeis called guard. If the guard is false (that is, the guard
fails), the next part of the function istried. In this case, if Head is not greater than Resul t _so_f ar, then it must
be smaller or equal to it. This meansthat a guard on the next part of the function is not needed.

Some useful operatorsin guards are:

e <lessthan

e > greater than

e ==equd

e >=greater or equal
e =<lessorequa

e /=not equa

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

(see Guard Sequences).

To change the above program to one that works out the minimum value of the element in alist, you only need to write
<instead of >. (But it would be wise to change the name of the functiontol i st _ni n.)

Earlier it was mentioned that a variable can only be given a value once in its scope. In the above you see that
Resul t _so_far isgiven severa values. Thisis OK since every timeyou call | i st _nmax/ 2 you create a hew
scope and one can regard Resul t _so_f ar asadifferent variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if you writeM = 5, a
variable called Mis created with the value 5. If, in the same scope, you then write M = 6, an error is returned. Try
thisout in the shell:

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side value 6
41> M =M + 1.

** exception error: no match of right hand side value 6
42> N =M + 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris,{f,28}}

44> X.

paris

45> Y.

{f,28}

Here X getsthevaluepari s and Y{ f, 28} .

If you try to do the same again with another city, an error is returned:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}

Variables can also be used to improve the readability of programs. For example, in function | i st _nmax/ 2 above,
you can write:

list max([Head|Rest], Result so far) when Head > Result so far ->
New result far = Head,
list max(Rest, New result far);

Thisispossibly alittle clearer.

4.2.11 More About Lists
Remember that the | operator can be used to get the head of alist:

47> [M1|T1] = [paris, london, rome].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

4.2 Sequential Programming

[paris, london, rome]
48> M1.

paris

49> T1.

[London, rome]

The | operator can also be used to add ahead to alist:

50> L1 = [madrid | T1].
[madrid, london, rome]
51> L1.

[madrid, London, rome]

Now an example of this when working with lists - reversing the order of alist:

-module(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed List) ->
reverse(Rest, [Head | Reversed List]);
reverse([], Reversed List) ->
Reversed List.

52> c(tut8).

{ok, tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st is built. It starts as [], then successively the heads are taken off of the list to be
reversed and added to the the Rever sed_Li st , asshown in the following:

reverse([1]2,31, [1) =>
reverse([2,31, [1][11)

reverse([2]|3], [1]) =>
reverse([3], [2|[1])

[2,1]) =>

reverse([3|[11,
I, [3][2,111)

[
reverse(

—_——

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s contains many functionsfor manipulating lists, for example, for reversing them. So before writing
a list-manipulating function it is a good idea to check if one not aready is written for you (see the lists(3) manual
pagein STDLIB).

Now let us get back to the cities and temperatures, but take a more structured approach this time. First let us convert
thewholelist to Celsius as follows:

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

-module(tut7).
-export([format temps/1]).

format temps(List of cities) ->
convert list to c(List of cities).

convert list to c([{Name, {f, F}} | Rest]) ->

Converted City = {Name, {c, (F -32)* 5 / 9}},

[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

Test the function:

54> c(tut?7).
{ok, tut7}.

55> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

[{moscow, {c,-10}},

{cape town,{c,21.11111111111111}},
{stockholm, {c, -4}},

{paris, {c, -2.2222222222222223}},
{london, {c,2.2222222222222223}}]

Explanation:

format temps(List of cities) ->
convert list to c(List of cities).

Heref ormat _tenps/ 1 callsconvert list_to_c/1.convert _|ist_to_c/1 takes off the head of the
Li st _of cities, converts it to Celsius if needed. The | operator is used to add the (maybe) converted to the

converted rest of the list:

[Converted City | convert list to c(Rest)];

or:

[City | convert list to c(Rest)];

Thisisdone until the end of thelist isreached, that is, the list is empty:

convert list to c([]) ->
[].

Now when the list is converted, afunction to print it is added:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

4.2 Sequential Programming

-module(tut?).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Templ]),
print temp(Rest);

print temp([]) ->
ok.

56> c(tut7).

{ok, tut7}

57> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

mos cow -10 ¢

cape_ town 21.11111111111111 c
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Now afunction hasto be added to find the cities with the maximum and minimum temperatures. Thefollowing program
is not the most efficient way of doing this asyou walk through thelist of citiesfour times. But it is better to first strive
for clarity and correctness and to make programs efficient only if needed.

-module(tut?).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List),
{Max_city, Min city} = find max _and min(Converted List),
print max _and min(Max city, Min city).

convert list to c([{Name, {f, Temp}} | Rest]) ->
Converted City = {Name, {c, (Temp -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

io:format("~-15w ~w c~n", [Name, Templ),
print temp(Rest);
print temp([]) ->

ok.

find max_and min([City | Rest]) ->
find max _and min(Rest, City, City).

find max_and min([{Name, {c, Temp}} | Restl],
{Max Name, {c, Max Temp}},
{Min Name, {c, Min Temp}}) ->
if
Temp > Max_Temp ->
Max City = {Name, {c, Temp}};

true ->
Max_City = {Max_Name, {c, Max Temp}} %
end,
if
Temp < Min Temp ->
Min City = {Name, {c, Temp}};
true ->
Min City = {Min Name, {c, Min Temp}} %
end,

find max_and min(Rest, Max City, Min City);

find max_and min([], Max City, Min City) ->
{Max City, Min City}.

% Change

Unchanged

% Change

% Unchanged

print max_and min({Max name, {c, Max temp}}, {Min name, {c, Min temp}}) ->

io:format("Max temperature was ~w ¢ in ~w~n",
io:format("Min temperature was ~w ¢ in ~w~n",

58> c(tut7).
{ok, tut7}

[Max_temp, Max_name]),
[Min temp, Min name]).

59> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},

{stockholm, {c,

mos cow -10 ¢

cape_ town 21.11111111111111 c
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢

-4}}, {paris, {f, 28}}, {london, {f, 36}}1).

Max temperature was 21.11111111111111 c in cape_town

Min temperature was -10 ¢ in moscow
ok

4.2.12 If and Case

The function f i nd_nmax_and_m n works out the maximum and minimum temperature. A new construct, i f , is

introduced here. If works as follows:

if

Condition 1 ->
Action 1;

Condition 2 ->
Action 2;

Condition 3 ->
Action 3;

Condition 4 ->
Action 4

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

4.2 Sequential Programming

end

Notice that there isno ";" before end. Conditions do the same as guards, that is, tests that succeed or fail. Erlang
starts at the top and tests until it finds a condition that succeeds. Then it evaluates (performs) the action following
the condition and ignores all other conditions and actions before the end. If no condition matches, arun-time failure
occurs. A condition that always succeedsisthe atom t r ue. Thisis often used last inani f , meaning, do the action
following thet r ue if al other conditions have failed.

The following is a short program to show the workings of i f .

-module(tut9).
-export([test if/2]).

test if(A, B) ->

if
A == ->
io:format("A == 5~n", [1]),
a_equals 5;
B == ->
io:format("B == 6~n", [1]),
b equals 6;
A==2,B==3-> %That is A equals 2 and B equals 3
io:format("A == 2, B == 3~n", []),
a_equals 2 b equals 3;
A == ; B==7 -> %That is A equals 1 or B equals 7
io:format("A ==1 ; B == 7~n", []),
a_equals 1 or b equals 7
end.

Testing this program gives:

60> c(tut9).

{ok, tut9}

61> tut9:test if(5,33).

A ==

a_equals 5

62> tut9:test if(33,6).

B ==

b _equals 6

63> tut9:test if(2, 3).

A==2, B ==

a_equals 2 b equals 3

64> tut9:test if(1, 33).

A==1,; B==17

a_equals 1 or b equals 7

65> tut9:test if(33, 7).

A==1,; B==17

a_equals 1 or b equals 7

66> tut9:test if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test if/2 (tut9.erl, line 5)

Notice that t ut 9: t est _i f (33, 33) does not cause any condition to succeed. This leads to the run time error
i f _cl ause, herenicely formatted by the shell. See Guard Sequences for details of the many guard tests available.

case isanother construct in Erlang. Recall that theconvert _| engt h function was written as:

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

The same program can a so be written as:

-module(tutlo).
-export([convert length/1]).

convert length(Length) ->
case Length of
{centimeter, X} ->

{inch, X / 2.54};

{inch, Y} ->

end.

{centimeter, Y * 2.54}

67> c(tutlo).

{ok, tutle}

68> tutl0:convert length({inch, 6}).

{centimeter,
69> tutl0:convert length({centimeter, 2.5}).

15.24}

{inch,0.984251968503937}

Both case and i f have return values, that is, in the above example case returned either {i nch, X/ 2. 54} or
{centineter, Y*2. 54} . The behaviour of case can also be modified by using guards. The following example
clarifies this. It tells us the length of a month, given the year. The year must be known, since February has 29 days

inaleap year.

-module(tutll).
-export([month length/2]).

month length(Year, Month) ->
%% All years divisible by 400 are leap
%% Years divisible by 100 are not leap (except the 400 rule above)

%% Years divisible by 4 are
Leap = 1

f

trunc(Year / 400) * 400 == Year ->

leap;

trunc(Year / 100) * 100 == Year ->

not leap;

trunc(Year / 4) * 4 == Year ->

true

end,

leap;
->
not leap

case Month of

sep
apr
jun
nov
feb
feb
jan
mar
may

-> 30;
-> 30;
-> 30;
-> 30;
when Leap == leap -> 29;
-> 28;
-> 31;
-> 31;
-> 31;

Ericsson AB. All Rights Reserved

leap (except the 100 rule above)

.: Erlang/OTP System Documentation | 91

4.2 Sequential Programming

jul -> 31;

aug -> 31;

oct -> 31;

dec -> 31
end.

70> c(tutll).

{ok, tutll}

71> tutll:month length(2004, feb).
29

72> tutll:month length(2003, feb).
28

73> tutll:month length(1947, aug).
31

4.2.13 Built-In Functions (BIFs)

BIFs are functionsthat for some reason are built-in to the Erlang virtual machine. BIFs often implement functionality
that isimpossible or istoo inefficient to implement in Erlang. Some BIFs can be called using the function name only
but they are by default belonging to theer | ang module. For example, thecall tothe BIFt r unc below isequivalent
toacdltoerl ang: trunc.

As shown, first it is checked if ayear isleap. If ayear is divisible by 400, it is aleap year. To determine this, first
divide the year by 400 and use the BIF t r unc (more about this later) to cut off any decimals. Then multiply by 400
again and see if the same value is returned again. For example, year 2004

2004 / 400 = 5.01
trunc(5.01) =5
5 * 400 = 2000

2000 is not the same as 2004, so 2004 is not divisible by 400. Y ear 2000:

2000 / 400 = 5.0
trunc(5.0) =5
5 * 400 = 2000

That is, aleap year. The next two t r unc-tests evaluate if the year is divisible by 100 or 4 in the same way. The first
i f returnsl eap or not _| eap, which lands up in the variable Leap. Thisvariable is used in the guard for f eb in
the following case that tells us how long the month is.

This example showed the use of t r unc. It is easier to use the Erlang operator r emthat gives the remainder after
division, for example:

74> 2004 rem 400.
4

So instead of writing:

trunc(Year / 400) * 400 == Year ->

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

leap;

it can be written:

Year rem 400 == 0 ->
leap;

There are many other BIFssuch ast r unc. Only afew BIFs can be used in guards, and you cannot use functions you
have defined yourself in guards. (see Guard Sequences) (For advanced readers: This is to ensure that guards do not
have side effects.) Let us play with afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5.6) .

6

77> length([a,b,c,d]).

4

78> float(5).

5.0

79> is atom(hello).

true

80> is atom("hello").

false

81> is tuple({paris, {c, 30}}).
true

82> is tuple([paris, {c, 30}]).
false

All of these can be used in guards. Now for some BIFs that cannot be used in guards:

83> atom to list(hello).
"hello"

84> 1list to atom("goodbye").
goodbye

85> integer to list(22).
nypn

These three BIFs do conversions that would be difficult (or impossible) to do in Erlang.

4.2.14 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order functions. Here is an example using
the shell:

86> Xf = fun(X) -> X * 2 end.
#Fun<erl eval.5.123085357>
87> Xf(5).

10

Here is defined a function that doubles the value of a number and assigned this function to a variable. Thus Xf (5)
returns value 10. Two useful functions when working with listsaref or each and map, which are defined asfollows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

4.2 Sequential Programming

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map (Fun, [First|Rest]) ->
[Fun(First) |[map(Fun,Rest)];
map (Fun, []) ->
[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element in the list. map creates a new list by applying afun to every element in alist. Going back to the shell, map
isused and afun to add 3 to every element of alist:

88> Add 3 = fun(X) -> X + 3 end.
#Fun<erl eval.5.123085357>

89> lists:map(Add 3, [1,2,3]).
[4,5,6]

Let us (again) print the temperaturesin alist of cities:

90> Print City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun<erl eval.5.123085357>

91> lists:foreach(Print City, [{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow c -10
cape_town f 70
stockholm c -4
paris f 28
london f 36
ok

Let usnow defineafun that can be used to go through alist of citiesand temperatures and transform them all to Celsius.

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
lists:map(fun convert to c/1, List).

92> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

[{moscow, {c,-10}},

{cape_town, {c,21}},

{stockholm, {c,-4}},

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

{paris, {c,-2}},
{london, {c,2}}]

Theconvert to_c function isthe same as before, but here it is used as afun:

lists:map(fun convert to c/1, List)

When a function defined elsewhere is used as a fun, it can be referred to as Functi on/ Arity (remember that
Ari ty =number of arguments). Sointhemap-cal | i sts: map(fun convert to _c/1, List) iswritten.
Asshown,convert |i st _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s aso containsafunctionsort (Fun, Li st) where Fun isafun with two arguments.
Thisfun returnst r ue if the first argument is less than the second argument, or else f al se. Sorting is added to the

convert list to_c:

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
New list = lists:map(fun convert to c/1, List),
lists:sort(fun({ , {c, Templ}}, { , {c, Temp2}}) ->
Templ < Temp2 end, New list).

93> c(tutl3).
{ok,tutl3}

94> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},

{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1]).
[{moscow, {c,-10}},

{stockholm, {c,-4}},

{parisl{cl'z}}r

{london, {c,2}},

{cape _town,{c,21}}]

Insort thefunisused:

fun({ , {c, Templ}}, { , {c, Temp2}}) -> Templ < Temp2 end,

Here the concept of an anonymous variable" " isintroduced. Thisissimply shorthand for avariable that getsavalue,

but the value is ignored. This can be used anywhere suitable, not just in funs. Tenpl < Tenp2 returnstr ue if

Tenpl islessthan Tenp2.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

4.3 Concurrent Programming

4.3 Concurrent Programming

4.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency is meant programs that can handle several threads of execution at the
same time. For example, modern operating systems allow you to use a word processor, a spreadsheet, a mail client,
and aprint job all running at the same time. Each processor (CPU) in the system is probably only handling one thread
(or job) at atime, but it swaps between the jobs at such arate that it gives theillusion of running them all at the same
time. It iseasy to create parallel threads of execution in an Erlang program and to allow these threads to communicate
with each other. In Erlang, each thread of execution is called a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share datain some way. Threads of execution in Erlang share no data, that is why they are called
processes).

The Erlang BIF spawn is used to create a new process: spawn(Modul e, Exported_Function, List of
Ar gurrent s) . Consider the following module:

-module(tutl4).
-export([start/0, say something/2]).

say something(What, 0) ->
done;
say something(What, Times) ->

io:format("~p~n", [What]),
say something(What, Times - 1).

start() ->
spawn(tutl4, say something, [hello, 31]),
spawn(tutl4, say something, [goodbye, 3]).

5> c(tutld).

{ok, tutl4}

6> tutl4:say something(hello, 3).
hello

hello

hello

done

Asshown, thefunctionsay_sormet hi ng writesitsfirst argument the number of times specified by second argument.
The function st ar t starts two Erlang processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_sonet hi ng. Notice that a function used in thisway by spawn,
to start a process, must be exported from the module (that is, in the - expor t at the start of the module).

9> tutl4:start().
hello

goodbye

<0.63.0>

hello

goodbye

hello

goodbye

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Noticethat it did not write"hello" threetimesand then "goodbye" threetimes. Instead, thefirst processwrotea"hello",
the second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return
value of afunction isthe return value of the last "thing" in the function. The last thing inthe functionst art is

spawn(tutl4, say something, [goodbye, 3]).

spawn returns aprocess identifier, or pid, which uniquely identifies the process. So <0.63.0> isthe pid of the spawn
function call above. The next example shows how to use pids.

Notice also that ~p is used instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with standard
syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines
and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings”.

4.3.2 Message Passing

In the following example two processes are created and they send messages to each other a number of times.

-module(tutl5).
-export([start/0, ping/2, pong/0]).

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1);

ping(N, Pong PID) ->
Pong PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [1)
end,
ping(N - 1, Pong PID).

pong () i
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start() ->
Pong PID = spawn(tutl5, pong, []),
spawn(tutl5, ping, [3, Pong PID]).

1> c(tutls).

{ok, tutl5}

2> tutl5: start().
<0.36.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

4.3 Concurrent Programming

Ping received pong
ping finished
Pong finished

Thefunction st ar t first creates a process, let us call it "pong":

Pong PID = spawn(tutl5, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping":

spawn(tutl5, ping, [3, Pong PID]),

This process executes:

tutl5:ping (3, Pong PID)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()
end.

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the following
format:

receive
patternl ->
actionsl;
pattern2 ->
actions2;

patternN
actionsN
end.

Noticethereisno";" beforetheend.

M essages between Erlang processes are simply valid Erlang terms. That is, they can be lists, tuples, integers, atoms,
pids, and so on.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executes ar ecei ve, the first message in the queue is matched against the first pattern in

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

ther ecei ve. If this matches, the message is removed from the queue and the actions corresponding to the pattern
are executed.

However, if the first pattern does not match, the second pattern istested. If this matches, the messageisremoved from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match, the
third is tried and so on until there are no more patterns to test. If there are no more patterns to test, the first message
is kept in the queue and the second message is tried instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match, the third message is tried, and so on, until the end of the queue
is reached. If the end of the queue is reached, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

The Erlang implementation is "clever" and minimizes the number of times each message is tested against the patterns
ineachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes "Pong finished" to the output and,
asit has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":

Ping PID ! pong

Notice how the operator "!" is used to send messages. The syntax of "!" is:

Pid ! Message

That is, Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong to the process "ping", "pong" callsthe pong function again, which causes it to get
back to ther ecei ve again and wait for another message.

Now let uslook at the process "ping". Recall that it was started by executing:

tutl5:ping (3, Pong PID)

Looking at the function pi ng/ 2, the second clause of pi ng/ 2 is executed since the value of the first argument is 3
(not O) (first clause head is pi ng(0, Pong_PI D) , second clause head is pi ng(N, Pong_PI D) , so N becomes 3).

The second clause sends a message to "pong”:

Pong PID ! {ping, self()},
sel f () returns the pid of the process that executes sel f (), in this case the pid of "ping". (Recall the code for

"pong", thislands up in the variable Pi ng_PI Dinther ecei ve previously explained.)
"Ping" now waits for areply from "pong":

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

4.3 Concurrent Programming

receive
pong ->
io:format("Ping received pong~n", [1)
end,

It writes "Ping received pong" when thisreply arrives, after which "ping" callsthe pi ng function again.

ping(N - 1, Pong PID)

N- 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
is executed:

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then terminates as it has nothing left to do.

4.3.3 Registered Process Names

In the above example, "pong" wasfirst created to be able to give the identity of "pong" when "ping" was started. That
is, in some way "ping" must be able to know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently of each other. Erlang thus provides a
mechanism for processes to be given names so that these names can be used as identitiesinstead of pids. Thisisdone
by using ther egi st er BIF:

register(some_atom, Pid)

Let us now rewrite the ping pong example using this and give the name pong to the "pong" process:

-module(tutl6).
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", [1]);

ping(N) ->
pong ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

end.

start() ->
register(pong, spawn(tutl6, pong, [1)),
spawn(tutl6, ping, [31).

2> c(tutle).

{ok, tutl6}

3> tutl6:start().
<0.38.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Herethest art/ O function,

register(pong, spawn(tutl6é, pong, [1)),

both spawns the "pong" process and givesit the name pong. In the "ping" process, messages can be sent to pong by:

pong ! {ping, self()},
pi ng/ 2 now becomes pi ng/ 1 asthe argument Pong_PI Dis not needed.

4.3.4 Distributed Programming

Let us rewrite the ping pong program with "ping" and "pong" on different computers. First a few things are needed
to set up to get this to work. The distributed Erlang implementation provides a basic security mechanism to prevent
unauthorized access to an Erlang system on another computer. Erlang systems which talk to each other must have
the same magic cookie. The easiest way to achieve thisis by having afilecalled . er | ang. cooki e in your home
directory on all machines on which you are going to run Erlang systems communicating with each other:

e On Windows systems the home directory is the directory pointed out by the environment variable $SHOME -
you may need to set this.

e OnLinux or UNIX you can safely ignore thisand smply create afilecalled . er | ang. cooki e inthe
directory you get to after executing the command cd without any argument.

The. er | ang. cooki e fileisto contain aline with the same atom. For example, on Linux or UNIX, inthe OS shell:

$ cd

$ cat > .erlang.cookie
this is very secret

$ chmod 400 .erlang.cookie

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

4.3 Concurrent Programming

The chnod above makesthe. er | ang. cooki e file accessible only by the owner of thefile. Thisisarequirement.
When you start an Erlang system that is going to talk to other Erlang systems, you must give it aname, for example:

$ erl -sname my name

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er | - sname assumes that all nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
giveninfull)

Here is the ping pong example modified to run on two separate nodes:

-module(tutl?7).
-export([start ping/1, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong () =2
receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", []),
Ping PID ! pong,
pong ()
end.

start pong() ->
register(pong, spawn(tutl7, pong, [1)).

start ping(Pong Node) ->
spawn(tutl7, ping, [3, Pong Nodel]).

Let us assume there are two computers called gollum and kosken. First a node is started on kosken, called ping, and
then a node on gollum, called pong.

On kosken (on aLinux/UNIX system):

kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with "G)

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

(ping@kosken)1>

On gollum:

gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~G)
(pong@gollum) 1>

Now the "pong" process on gollum is started:

(pong@gollum)1> tutl7:start pong().
true

And the "ping" process on kosken is started (from the code above you can see that a parameter of thest art _pi ng
function is the node name of the Erlang system where "pong" is running):

(ping@kosken)1> tutl7:start ping(pong@gollum).
<0.37.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

As shown, the ping pong program has run. On the "pong" side:

(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>

Looking at thet ut 17 code, you see that the pong function itself is unchanged, the following lineswork in the same
way irrespective of on which node the "ping" process is executes:

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,

Thus, Erlang pids contain information about where the process executes. So if you know the pid of a process, the "!"
operator can be used to send it a message disregarding if the processis on the same node or on a different node.

A difference is how messages are sent to aregistered process on another node:

{pong, Pong Node} ! {ping, self()},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

4.3 Concurrent Programming

Atuple{regi st ered_nane, node_nane} isusedinstead of just ther egi st er ed_nane.

In the previous example, "ping" and "pong" were started from the shells of two separate Erlang nodes. spawn can
also be used to start processes in other nodes.

The next exampleis the ping pong program, yet again, but thistime "ping" is started in another node:

-module(tutl8).
-export([start/1l, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [1)
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
register(pong, spawn(tutl8, pong, [1)),
spawn(Ping Node, tutl8, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
thisis done:

(pong@gollum)1> tutl8:start(ping@kosken).
<3934.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong finished

ping finished

Noticethat al the output is received on gollum. Thisis because the I/O system finds out where the processis spawned
from and sends all output there.

4.3.5 A Larger Example

Now for a larger example with a simple "messenger”. The messenger is a program that allows users to log in on
different nodes and send simple messages to each other.

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Before starting, notice the following:
« Thisexample only shows the message passing logic - no attempt has been made to provide a nice graphical user
interface, although this can also be donein Erlang.

» Thissort of problem can be solved easier by use of thefacilitiesin OTP, which also provide methods for updating
code on the fly and so on (see OTP Design Principles).

* Thefirst program contains some inadeguacies regarding handling of nodes which disappear. These are corrected
in alater version of the program.

The messenger is set up by allowing "clients' to connect to a central server and say who and wherethey are. That is,
auser does not need to know the name of the Erlang node where another user islocated to send a message.

Filemessenger . erl :

Message passing utility.

5%%
%%% User interface:
%%% Logon (Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.
%%% Logoff()
%%% Logs off anybody at that node
%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.
900
000
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess client"
9.9
000
900
o
O

Protocol between the client processes and the server

%%% To server: {ClientPid, logon, UserName}

%%% Reply {messenger, stop, user exists at other node} stops the client
%%% Reply {messenger, logged on} logon was successful

%%% To server: {ClientPid, logoff}

%%% Reply: {messenger, logged off}

%%% To server: {ClientPid, logoff}

%%% Reply: no reply

%%% To server: {ClientPid, message to, ToName, Message} send a message
%%% Reply: {messenger, stop, you are not logged on} stops the client
%%% Reply: {messenger, receiver not found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%% To client: {message from, Name, Message},

%%% Protocol between the "commands" and the client

%%% Started: messenger:client(Server Node, Name)

%%% To client: logoff

%%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

4.3 Concurrent Programming

%%% name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/1l, logon/1l, logoff/0, message/2, client/2]).

%% Change the function below to return the name of the node where the
%% Messenger server runs
server node() ->

messenger@bill.

[
o
o

o

%% the user list has the format [{ClientPidl, Namel},{ClientPid22, Name2},...]
server(User List) ->
receive
{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);
{From, logoff} ->
New User List = server logoff(From, User List),
server(New User List);
{From, message to, To, Message} ->
server transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)
end.

%%% Start the server
start server() ->
register(messenger, spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
[{From, Name} | User List] %add user to the list

end.
%%% Server deletes a user from the user list
server logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server _transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, {From, Name}} ->
server _transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn (messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess client ! logoff.

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! {message to, ToName, Message},
ok
end.

%%% The client process which runs on each server node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
{messenger, Server Node} ! {self(), logoff},
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Why]),
exit(normal);
{messenger, What} -> % Normal response
io:format("~p~n", [What])
end.

To use this program, you need to:

* Configuretheser ver _node() function.
e Copy the compiled code (messenger . beam) to the directory on each computer where you start Erlang.

In the following example using this program, nodes are started on four different computers. If you do not have that
many machines available on your network, you can start several hodes on the same machine.

Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, c3@gollum.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

4.3 Concurrent Programming

First the server at messenger @super is started up:

(messenger@super)1> messenger:start server().
true

Now Peter logs on at c1@hilbo:

(cl@bilbo)1> messenger:logon(peter).
true
logged on

Jameslogs on at c2@kosken:

(c2@kosken)1> messenger:logon(james).
true
logged on

And Fred logs on at c3@gollum:

(c3@gollum) 1> messenger:logon(fred).
true
logged on

Now Peter sends Fred a message:

(cl@bilbo)2> messenger:message(fred, "hello").
ok
sent

Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok

sent

(c3@gollum)3> messenger:logoff().

logoff

James now tries to send a message to Fred:

(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok
receiver not found

But thisfails as Fred has already logged off.

First let us look at some of the new concepts that have been introduced.

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

There are two versions of the ser ver _t r ansf er function: one with four arguments (ser ver _t ransfer/ 4)
and one with five (ser ver _tr ansf er/ 5). These are regarded by Erlang as two separate functions.

Notice how to write the ser ver function so that it calls itself, through ser ver (User _Li st), and thus creates
aloop. The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call. Otherwise, the compiler expects the call to return
and make a proper function call. This would result in the process getting bigger and bigger for every loop.

Functionsinthel i st s moduleare used. Thisisavery useful module and astudy of the manual page isrecommended
(erl -man lists).lists: keynenber (Key, Position, Li sts) looks through alist of tuples and looks
at Posi ti onineachtupleto seeif itisthe sameasKey. Thefirst element is position 1. If it finds atuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false

|ists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
[{x,y,z},{b,b,b},{q,r,s}]

lists: keysearchislikel i sts: keymenber, butit returns{val ue, Tupl e_Found} or theatomf al se.
There are many very useful functionsinthel i st s module.

An Erlang process (conceptually) runs until it doesar ecei ve and there is no message which it wants to receivein
the message queue. "conceptually” is used here because the Erlang system shares the CPU time between the active
processes in the system.

A process terminates when there is nothing more for it to do, that is, the last function it calls ssimply returns and does
not call another function. Another way for a process to terminateisfor it to call exi t/ 1. Theargumenttoexi t/ 1
has a special meaning, which is discussed later. In this example, exi t (nor nal) isdone, which has the same effect
as a process running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if aregistered process of name Regi st er edNane exists. If it
exists, the pid of that processis returned. If it does not exist, the atom undef i ned isreturned.

Y ou should by now be able to understand most of the code in the messenger-module. Let us study one case in detail:
amessage is sent from one user to another.

Thefirst user "sends" the message in the example above by:

messenger:message(fred, "hello")

After testing that the client process exists:

whereis(mess client)

And amessageissenttoness_cl i ent:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

4.3 Concurrent Programming

mess client ! {message to, fred, "hello"}

The client sends the message to the server by:

{messenger, messenger@super} ! {self(), message to, fred, "hello"},
And waits for areply from the server.
The server receives this message and calls:

server transfer(From, fred, "hello", User List),

This checksthat the pid Fr omisintheUser _Li st :

lists:keysearch(From, 1, User List)

If keysear ch returnsthe atom f al se, some error has occurred and the server sends back the message:

From ! {messenger, stop, you are not logged on}

Thisisreceived by the client, whichinturn doesexi t (nor mal) andterminates. If keysear ch returns{ val ue,
{ From Nane}} itiscertain that the user islogged on and that his name (peter) isin variable Nane.

Let usnow call:

server _transfer(From, peter, fred, "hello", User List)

Notice that asthisisserver _t ransf er/ 5, itisnot the same as the previous function ser ver _t ransf er/ 4.
Another keysear ch isdoneon User _Li st tofind the pid of the client corresponding to fred:

lists:keysearch(fred, 2, User List)

This time argument 2 is used, which is the second element in the tuple. If this returns the atom f al se, fred is not
logged on and the following message is sent:

From ! {messenger, receiver not found};

Thisisreceived by the client.

If keysear ch returns:

{value, {ToPid, fred}}

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

The following message is sent to fred's client:

ToPid ! {message from, peter, "hello"},

The following message is sent to peter's client:

From ! {messenger, sent}

Fred's client receives the message and printsit:

{message from, peter, "hello"} ->
io:format("Message from ~p: ~p~n", [peter, "hello"])

Peter's client receives the message intheawai t _r esul t function.

4.4 Robustness

Several things are wrong with the messenger example in A Larger Example. For example, if a node where a user is
logged on goes down without doing alogoff, the user remains in the server'sUser _Li st , but the client disappears.
Thismakesit impossible for the user to log on again as the server thinks the user already is logged on.

Or what happensif the server goesdown in the middle of sending amessage, |eaving the sending client hanging forever

intheawai t _resul t function?

4.4.1 Time-outs

Before improving the messenger program, let us look at some general principles, using the ping pong program as an
example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed asa
message to "pong" so that "pong" can aso finish. Another way to let "pong"” finish isto make "pong" exit if it does
not receive a message from ping within a certain time. This can be done by adding a time-out to pong as shown in

the following example:

-module(tutl9).
-export([start ping/1, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 111

4.4 Robustness

pong ()
after 5000 ->

io:format("Pong timed out~n", [])
end.

start pong() ->
register(pong, spawn(tutl9, pong, [1)).

start ping(Pong Node) ->
spawn(tutl9, ping, [3, Pong Nodel).

After this is compiled and the file t ut 19. beamis copied to the necessary directories, the following is seen on
(pong@kosken):

(pong@kosken)1> tutl9:start pong().
true

Pong received ping

Pong received ping

Pong received ping

Pong timed out

And the following is seen on (ping@gollum):

(ping@gollum)1> tutl9:start ping(pong@kosken).
<0.36.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

Thetime-out is set in:

pong() ->
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

after 5000 ->
io:format("Pong timed out~n", [])

end.

Thetime-out (af t er 5000) isstarted whenr ecei ve isentered. Thetime-outiscanceled if { pi ng, Pi ng_PI D}
is received. If {ping, Pi ng_PI D} is not received, the actions following the time-out are done after 5000

milliseconds. af t er must belastinther ecei ve, that is, preceded by all other message reception specificationsin
ther ecei ve. Itisalso possible to call afunction that returned an integer for the time-out:

after pong timeout() ->

In general, there are better ways than using time-outs to supervise parts of adistributed Erlang system. Time-outs are
usually appropriate to supervise external events, for example, if you have expected a message from some external

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

system within a specified time. For example, atime-out can be used to log a user out of the messenger system if they
have not accessed it for, say, ten minutes.

4.4.2 Error Handling

Before going into details of the supervision and error handling in an Erlang system, let us see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters aruntime error (for example, divide by zero, bad match, trying to call afunction that does
not exist and so on) exits with an error, that is, has an abnormal exit. A process which executes exit(Reason) where
Reason isany Erlang term except the atom nor nmal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the processcalled O her _Pi d. When a process terminates, it sends something called asignal
to al the processesit haslinks to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of aprocess that receives anormal exit isto ignore the signal.
The default behaviour in the two other cases (that is, abnormal exit) aboveis to:

* Bypassall messages to the receiving process.
« Kill the receiving process.
* Propagate the same error signa to the links of the killed process.

Inthisway you can connect all processesin atransaction together using links. If one of the processes exits abnormally,
al the processesin the transaction are killed. Asit is often wanted to create a process and link to it at the same time,
thereisaspecia BIF, spawn_link that does the same as spawn, but also creates alink to the spawned process.

Now an example of the ping pong example using links to terminate "pong":

-module(tut20).
-export([start/1l, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

plngl(el 7) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [1)
end,
pingl(N - 1, Pong Pid).

pong() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

4.4 Robustness

PongPID = spawn(tut20, pong, []),
spawn(Ping Node, tut20, ping, [3, PongPID]).

(s1l@bill)3> tut20:start(s2@kosken).
Pong received ping

<3820.41.0>

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Thisis adlight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, and the "ping" process can be spawned on a separate node. Notice the use of the | i nk BIF. "Ping" calls
exi t (pi ng) whenit finishes and this causes an exit signal to be sent to "pong", which also terminates.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal
exit signals. Instead, all signals are turned into normal messagesontheformat { ' EXI T' , Fr onPI D, Reason} and
added to the end of the receiving process message queue. This behaviour is set by:

process flag(trap exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway isusually
not donein standard user programs, but is | eft to the supervisory programsin OTP. However, the ping pong program

ismodified to illustrate exit trapping.

-module(tut2l).
-export([start/1, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong_ Pid),
pingl(N, Pong Pid).

plngl(or 7) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
pingl(N - 1, Pong Pid).

pong() ->
process flag(trap exit, true),
pongl().

pongl() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", []),
Ping PID ! pong,
pongl();
{'EXIT', From, Reason} ->

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

star

io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
end.

t(Ping Node) ->
PongPID = spawn(tut2l, pong, []),
spawn(Ping Node, tut2l, ping, [3, PongPID]).

(s1l@bill) 1> tut2l:start(s2@gollum).

<382
Pong
Ping
Pong
Ping
Pong
Ping
pong

0.39.0>

received ping

received pong

received ping

received pong

received ping

received pong

exiting, got {'EXIT',<3820.39.0>,ping}

4.4.3 The Larger Example with Robustness Added

Let usreturn to the messenger program and add changes to make it more robust:

Message passing utility.

User interface:

login(Name)
One user at a time can log in from each Erlang node in the
system messenger: and choose a suitable Name. If the Name
is already logged in at another node or if someone else is
already logged in at the same node, login will be rejected
with a suitable error message.

logoff()
Logs off anybody at that node

message(ToName, Message)
sends Message to ToName. Error messages if the user of this
function is not logged on or if ToName is not logged on at
any node.

One node in the network of Erlang nodes runs a server which maintains

data about the logged on users. The server is registered as "messenger"
Each node where there is a user logged on runs a client process registered
as "mess client"

Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

When the client terminates for some reason
To server: {'EXIT', ClientPid, Reason}

To server: {ClientPid, message to, ToName, Message} send a message
Reply: {messenger, stop, you are not logged on} stops the client

Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Protocol between the "commands" and the client

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

4.4 Robustness

%% Started: messenger:client(Server Node, Name)
%% To client: logoff
%% To client: {message to, ToName, Message}

%% Configuration: change the server node() function to return the
%% name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/0,
logon/1, logoff/0, message/2, client/2]).

%% Mmessenger server runs
server node() ->
messenger@super.

ver() ->
process flag(trap exit, true),
server([]).

server(User List) ->
receive
{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);
{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);
{From, message to, To, Message} ->
server transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)
end.

%%% Start the server
start server() ->
register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
server logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server _transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

{value, { , Name}} ->
server _transfer(From, Name, To, Message, User List)
end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess client ! logoff.

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess _client ! {message to, ToName, Message},
ok
end.

%%% The client process which runs on each user node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Why]),
exit(normal);
{messenger, What} -> % Normal response
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", [1]),
exit(timeout)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

4.5 Records and Macros

end.

The following changes are added:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason}, this means that a client
process has terminated or is unreachable for one of the following reasons:

e Theuser haslogged off (the "logoff" message is removed).

» The network connection to the client is broken.

¢ Thenode on which the client process resides has gone down.
» Theclient processes has done someillegal operation.

If an exit signal is received as above, the tuple { Fr om Nane} is deleted from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated
by the system) is sent to all of the client processes: {' EXI T' , Messenger Pl D, noconnect i on} causing al the
client processesto terminate.

Also, atime-out of five seconds has been introduced intheawai t _r esul t function. That is, if the server does not
reply within five seconds (5000 ms), the client terminates. Thisis only needed in the logon sequence before the client
and the server are linked.

An interesting case is if the client terminates before the server links to it. This is taken care of because linking to a
non-existent process causes an exit signal, { ' EXI T' , Fr om nopr oc}, to be automatically generated. Thisis asif
the process terminated immediately after the link operation.

4.5 Records and Macros

Larger programs are usually written as a collection of files with awell-defined interface between the various parts.

4.5.1 The Larger Example Divided into Several Files
To illustrate this, the messenger example from the previous section is divided into the following five files:
e nmess_config. hrl

Header file for configuration data
« ness_interface. hrl

Interface definitions between the client and the messenger
e user_interface. erl

Functions for the user interface
e nmess_client.erl

Functions for the client side of the messenger
e nmess_server.erl

Functions for the server side of the messenger

While doing this, the message passing interface between the shell, the client, and the server is cleaned up and is defined
using records. Also, macros are introduced:

-define(server node, messenger@super).

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

%%%- - - -END FILE----

o°

%%----FILE mess interface.hrl----

%% Message interface between client and server and client shell for
%% messenger program

o° o°

%%%Messages from Client to server received in server/1l function.
-record(logon, {client pid, username}).

-record(message, {client pid, to name, message}).

%%% {'EXIT', ClientPid, Reason} (client terminated or unreachable.

oP

% Messages from Server to Client, received in await result/0 function
ecord(abort client, {message}).
Messages are: user exists at other node,
you are not logged on
ecord(server _reply, {message}).
Messages are: logged on
receiver not found
sent (Message has been sent (no guarantee)
Messages from Server to Client received in client/1 function
ecord(message from, {from name, message}).

1P P
o° o°

0® o° o° o°

1o o o o
S5 0 d°® d°® d® 5 d° °® 5 o°

function is not logged on or if ToName is not logged on at
any node.

%%% Messages from shell to Client received in client/1 function
%%% spawn(mess client, client, [server node(), Namel)
-record(message to,{to name, message}).

%%% logoff

%%%----END FILE----

%%%----FILE user interface.erl----

%%% User interface to the messenger program

%%% Login(Name)

%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.

%%% Logoff()

%%% Logs off anybody at that node

%%% message(ToName, Message)

%%% sends Message to ToName. Error messages if the user of this

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess interface.hrl").
-include("mess config.hrl").

logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(mess client, client, [?server node, Name]));
_ -> already logged on
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

4.5 Records and Macros

logoff() ->
mess client ! logoff.

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! #message to{to name=ToName, message=Message},
ok
end.

-module(mess client).
-export([client/2]).
-include("mess interface.hrl").

client(Server Node, Name) ->
{messenger, Server Node} ! #logon{client pid=self(), username=Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
#message to{to name=ToName, message=Message} ->
{messenger, Server Node} !
#message{client pid=self(), to name=ToName, message=Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
#abort client{message=Why} ->
io:format("~p~n", [Whyl),
exit(normal);
#server reply{message=What} ->
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

-module(mess_server).

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

-export([start server/0, server/0]).
-include("mess interface.hrl").

server() ->
process flag(trap exit, true),
server([]).

%%% the user list has the format [{ClientPidl, Namel},{ClientPid22, Name2},...]
r

server(User List) ->
io:format("User list = ~p~n", [User List]),
receive

#logon{client pid=From, username=Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

#message{client pid=From, to name=To, message=Message} ->
server transfer(From, To, Message, User List),
server(User List)

end.

%%% Start the server
start server() ->
register(messenger, spawn(?MODULE, server, [1)).

%%% Server adds a new user to the user list
server logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! #abort client{message=user exists at other node},
User List;
false ->
From ! #server reply{message=logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! #abort client{message=you are not logged on};
{value, { , Name}} ->
server _transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! #server reply{message=receiver not found};
{value, {ToPid, To}} ->
ToPid ! #message from{from name=Name, message=Message},
From ! #server reply{message=sent}
end.

%%%- - - -END FILE---

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

4.5 Records and Macros

4.5.2 Header Files

As shown above, somefiles have extension . hr | . These are header filesthat are included inthe. er | filesby:

-include("File Name").

for example:

-include("mess interface.hrl").

Inthe case abovethefileisfetched from the samedirectory asall the other filesin the messenger example. (* manual*).
.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

4.5.3 Records
A record is defined as:

-record(name_of record,{field namel, field name2, field name3, 1.

For example:

-record(message to,{to name, message}).

Thisis equivaent to:

{message to, To Name, Message}

Creating arecord is best illustrated by an example:

#message to{message="hello", to name=fred)

This creates:

{message to, fred, "hello"}

Notice that you do not have to worry about the order you assign values to the various parts of the records when you
createit. The advantage of using recordsisthat by placing their definitionsin header files you can conveniently define
interfaces that are easy to change. For example, if you want to add a new field to the record, you only have to change
the code where the new field is used and not at every place the record is referred to. If you leave out a field when
creating arecord, it gets the value of the atom undef i ned. (*manual*)

Pattern matching with records is very similar to creating records. For example, insideacase or r ecei ve:

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

#message to{to name=ToName, message=Message} ->

Thisisthe same as:

{message to, ToName, Message}

4.5.4 Macros

Another thing that has been added to the messenger isamacro. Thefilemess_confi g. hr| containsthe definition:

%%% Configure the location of the server node,
-define(server node, messenger@super).

Thisfileisincludedinness_server.erl:

-include("mess config.hrl").

Every occurrence of ?ser ver _node inness_server. erl isnow replaced by nessenger @uper.
A macro is aso used when spawning the server process:

spawn (?MODULE, server, [])

Thisis a standard macro (that is, defined by the system, not by the user). ?MODULE is always replaced by the name
of the current module (that is, the - modul e definition near the start of the file). There are more advanced ways of
using macros with, for example, parameters (* manua*).

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean). The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
this case, they are simply put in our current working directory (that is, the place you have done "cd" to). There are
ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It can be any valid
Erlang term.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

5.1 Introduction

5 Erlang Reference Manual

5.1 Introduction

This section is the Erlang reference manual. 1t describes the Erlang programming language.

5.1.1 Purpose

Thefocusof the Erlang referencemanual ison thelanguageitself, not theimplementation of it. Thelanguage constructs
are described in text and with examples rather than formally specified. Thisisto make the manual more readable. The
Erlang reference manual is not intended as a tutorial.

Information about implementation of Erlang can, for example, be found, in the following:
* SystemPrinciples
Starting and stopping, boot scripts, code loading, error logging, creating target systems
» Efficiency Guide
Memory consumption, system limits
* ERTSUser'sGuide

Crash dumps, drivers

5.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

5.1.3 Document Conventions

In this section, the following terminology is used:

e A sequenceisone or more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

* Alistisany number of items. For example, an argument list can consist of zero, one, or more arguments.
If afeature has been added recently, in Erlang 5.0/0TP R7 or later, thisis mentioned in the text.

5.1.4 Complete List of BIFs

For acomplete list of BIFS, their arguments and return values, see erlang(3) manual pagein ERTS.

5.1.5 Reserved Words

The following are reserved words in Erlang:

after and andal so band begi n bnot bor bsl bsr bxor case catch cond div end fun
if let not of or orelse receive remtry when xor

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Character Set and Source File Encoding

5.2 Character Set and Source File Encoding

5.2.1 Character Set

Since Erlang 4.8/0OTP R5A, the syntax of Erlang tokensis extended to allow the use of the full 1SO-8859-1 (Latin-1)
character set. Thisis noticeablein the following ways:

* All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
* Atomsand variables can use all Latin-1 |etters.

Octal Decimal Class
200 - 237 128 - 159 Control characters
240 - 277 160 - 191 - ¢ | Punctuation characters
300 - 326 192 - 214 A-0 Uppercase |etters

327 215 x Punctuation character
330- 336 216 - 222 g-b Uppercase letters
337 - 366 223 - 246 k-0 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 g-y Lowercase letters

Table 2.1: Character Classes

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support is limited to string
literals and comments. Atoms, module names, and function names are restricted to the | SO-Latin-1 range. More about
the usage of Unicode in Erlang source files can be found in STDLIB's User's Guide.

5.2.2 Source File Encoding

The Erlang source fileencodi ng is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is an invalid encoding, it isignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case
of the characters can be chosen freely.

The following example selects UTF-8 as default encoding:

%% coding: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%% For this file we have chosen encoding = Latin-1

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

5.3 Data Types

%% -*- coding: latin-1 -*-

The default encoding for Erlang source filesis changed from Latin-1 to UTF-8 since Erlang/OTP 17.0.

5.3 Data Types

Erlang provides a number of data types, which are listed in this section.

5.3.1 Terms
A piece of data of any datatypeiscalled aterm.

5.3.2 Number

There are two types of numeric literals, integers and floats. Besides the conventional notation, there are two Erlang-
specific notations:

* S$char
ASCII value or unicode code-point of the character char .

* base#val ue
Integer with the base base, that must be an integer in the range 2..36.
In Erlang 5.2/OTP R9B and earlier versions, the allowed rangeis 2..16.

Examples:

1> 42.

42

2> $A.

65

3> $\n.
10

4> 2#101.
5

5> 16#1f.
31

6> 2.3.
2.3

7> 2.3e3.
2.3e3

8> 2.3e-3.
0.0023

5.3.3 Atom

An atom is a literal, a constant with name. An atom is to be enclosed in single quotes () if it does not begin with a
lower-case |etter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hello

phone number
'Monday'
'phone number'

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

5.3.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit strings are expressed using the bit syntax.

Bit strings that consist of a number of bitsthat are evenly divisible by eight, are called binaries

Examples:

1> <<10,20>>.
<<10,20>>

2> <<"ABC">>.
<<"ABC">>

1> <<1:1,0:1>>.
<<2:2>>

For more examples, see Programming Examples.

5.3.5 Reference

A referenceisaterm that is unique in an Erlang runtime system, created by calling nake _ref /0.

5.3.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>

2> Funl(2).

3

Read more about funsin Fun Expressions. For more examples, see Programming Examples.

5.3.7 Port Identifier

A port identifier identifies an Erlang port.
open_port/ 2, whichisused to create ports, returns a value of this datatype.
Read more about portsin Ports and Port Drivers.

5.3.8 Pid

A processidentifier, pid, identifies a process.

The following BIFs, which are used to create processes, return values of this data type:
e spawn/1,2,3,4

e spawn_link/1,2,3,4

e spawn_opt/4

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

5.3 Data Types

1> spawn(m, f, []).
<0.51.0>

In the following example, the BIF sel f () returnsthe pid of the calling process:

-module(m).
-export([loop/0]).

loop() ->
receive
who are you ->
io:format("I am ~p~n", [self()]),
loop()
end.

1> P = spawn(m, loop, [1).
<0.58.0>

2> P ! who are you.

I am <0.58.0>

who are you

Read more about processes in Processes.

5.3.9 Tuple

A tupleis acompound data type with afixed number of terms:

{Terml, ..., TermN}

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists anumber of BIFs to manipulate tuples.

Examples:

1> P = {adam,24,{july,29}}.
{adam, 24, {july,29}}

2> element(1,P).

adam

3> element(3,P).

{july,29}

4> P2 = setelement(2,P,25).
{adam, 25, {july,29}}

5> tuple size(P).

3

6> tuple size({}).
0

5.3.10 Map

A map is acompound data type with a variable number of key-value associations:

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

#{Keyl=>Valuel, ..., KeyN=>ValueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called
elements. The number of association pairsis said to be the size of the map.

There exists anumber of BIFs to manipulate maps.
Examples:

1> M1 = #{name=>adam,age=>24,date=>{july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name,M1).

adam

3> maps:get(date,M1).

{july,29}

4> M2 = maps:update(age,25,M1).

#{age => 25,date => {july,29},name => adam}
5> map _size(M).

3

6> map size(#{}).

0

A collection of maps processing functions can be found in maps manual pagein STDLIB.

Read more about mapsin Map Expressions.

Note:
Maps are considered to be experimental during Erlang/OTP R17.

5.3.11 List

A list isa compound data type with a variable number of terms.

[Terml, ..., TermN]

Each term Ter minthelist is called an element. The number of elementsis said to be the length of the list.
Formally, alist is either the empty list [] or consists of ahead (first element) and atail (remainder of the list). The

tail isaso alist. The latter can be expressed as[H| T] . The notation [Ter i, . . ., Ter mN] above is equivaent
withthelist[TernL|[...|[TernN []1]]1].

Example:

[1 isaligt, thus

[cl[]] isalist, thus
[bl[cl[]1]] isaligt, thus
[al[b][cl[]11]] isalist,orinshort| a, b, c]

A list wherethetail isalist is sometimes called aproper list. Itisallowed to have alist where the tail isnot alist, for
example, [a| b] . However, thistype of list is of little practical use.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

5.3 Data Types

1> L1 = [a,2,{c,4}].
[a,2,{c,4}]

2> [H|T] = L1.
[a,2,{c,4}]

3> H.

a

4> T,
[2,{c,4}]

5> L2 = [d]|T].
[d,2,{c,4}]

6> length(L1).
3

7> length([1]).
0

A collection of list processing functions can be found in the lists manual pagein STDLIB.

5.3.12 String

Strings are enclosed in double quotes ("), but is not adatatype in Erlang. Instead, astring " hel | 0" is shorthand for
thelist[$h, $e, $I , $I , $o] , that is, [104, 101, 108, 108, 111].

Two adjacent string literals are concatenated into one. Thisisdonein the compilation, thus, does not incur any runtime
overhead.

Example:

gt ring 0w

isequivalent to

"string42"

5.3.13 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. However, arecord is not a true data type. Instead, record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless special actions are taken. For details,
see the shell(3) manual pagein STDLIB).

Examples:

-module(person).
-export([new/2]).

-record(person, {name, age}).

new(Name, Age) ->
#person{name=Name, age=Age}.

1> person:new(ernie, 44).

{person,ernie, 44}

Read more about records in Records. More examples can be found in Programming Examples.

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

5.3.14 Boolean

There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false.
true

5.3.15 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return

\s Space

\t Tab

\v Vertical tab

\XYZ,\YZ,\z Character with octal representation XYZ, YZ or Z

\XXY Character with hexadecimal representation XY

WX} Character with h_exadeci mal representation; X... isone
or more hexadecimal characters

t::\(\,\zz Control A to control Z

\ Single quote

\" Double quote

\ Backslash

Table 3.1: Recognized Escape Sequences

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

5.4 Pattern Matching

5.3.16 Type Conversions
There are a number of BIFs for type conversions.
Examples:

1> atom to list(hello).

"hello"

2> list to atom("hello").

hello

3> binary to list(<<"hello">>).
"hello"

4> binary to list(<<104,101,108,108,111>>).
"hello"

5> list to binary("hello").
<<104,101,108,108,111>>

6> float to list(7.0).
"7.00000000000000000000e+00"
7> list to float("7.000e+00").

7.0

8> integer to list(77).
wg7n

9> list to integer("77").
77

10> tuple to list({a,b,c}).
[a,b,c]

11> list to tuple([a,b,c]).
{a,b,c}

12> term to binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary to term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}

14> binary to integer(<<"77">>).

77

15> integer to binary(77).

<<"77">>

16> float to binary(7.0).
<<"7.00000000000000000000e+00">>

17> binary to float(<<"7.000e+00>>").

7.0

5.4 Pattern Matching
5.4.1 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In a pattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, a run-time error occurs.

Examples:

1> X.

** 1: variable 'X' is unbound **
2> X = 2.

2

3> X + 1.

3

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Modules

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

3

5.5 Modules
5.5.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.).

Example:

module attribute
module attribute

-module(m) .
-export([fact/1]).

o° o°

fact(N) when N>0 ->
N * fact(N-1);

fact(0) ->

1.

beginning of function declaration

end of function declaration

d° o° o° o°

For a description of function declarations, see Function Declaration Syntax.

5.5.2 Module Attributes

A module attribute defines a certain property of a module.
A module attribute consists of atag and avalue:

-Tag(Value).

Tag must be an atom, while Val ue must be a literal term. As a convenience in user-defined attributes, if the literal
term Val ue hasthe syntax Nane/ Ari t y (where Nane isan atom and Ar i t y apositive integer), the term Nane/
Arity istrandatedto { Name, Arity}.

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes), or by using the module beam lib(3) in STDLIB.

Several module attributes have predefined meanings. Some of them have arity two, but user-defined module attributes
must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributes is to be placed before any function declaration.
- modul e(Modul e) .

M odul e declaration, defining the name of the module. The name Mbdul e, an atom, isto be same asthe file name
minus the extension . er | . Otherwise code loading does not work as intended.

This attribute is to be specified first and is the only mandatory attribute.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

5.5 Modules

-export (Functions).

Exported functions. Specifies which of the functions, defined within the module, that are visible from outside
the module.

Functions isalist [Namel/ Arityl, ..., NanmeN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i nmport (Modul e, Functi ons).

Imported functions. Can be called the same way aslocal functions, that is, without any module prefix.

Modul e, anatom, specifieswhich moduletoimport functionsfrom. Funct i ons isalist similar asforexport .
-conpi | e(Options).

Compiler options. Opt i ons isasingle option or alist of options. This attribute is added to the option list when
compiling the module. See the compile(3) manual page in Compiler.

-vsn(Vsn).

Module version. Vsn is any literal term and can be retrieved using beam | i b: ver si on/ 1, see the
beam lib(3) manual pagein STDLIB.

If this attribute is not specified, the version defaults to the MD5 checksum of the module.
-on_l oad(Functi on).

This attribute names a function that is to be run automatically when a module is loaded. For more information,
see Running a Function When a Module is Loaded.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for a behaviour:

-behaviour(Behaviour).

TheatomBehavi our givesthe name of the behaviour, which can be auser-defined behaviour or one of thefollowing
OTP standard behaviours:

e gen_server
e gen_fsm

* gen_event
e supervisor

The spelling behavi or isalso accepted.
The callback functions of the modul e can be specified either directly by the exported functionbehavi our _i nf o/ 1:

behaviour info(callbacks) -> Callbacks.

or by a- cal | back attribute for each callback function:

-callback Name(Arguments) -> Result.

Here, Ar gunent s isalist of zero or more arguments. The - cal | back attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Modules

Read more about behaviours and callback modulesin OTP Design Principles.
Record Definitions

The same syntax as for module attributes is used for record definitions:

-record(Record, Fields).

Record definitions are allowed anywhere in amodule, also among the function declarations. Read more in Records.

Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).

Read more in Preprocessor.

Setting File and Line
The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?L1 NE:

-file(File, Line).

This attribute is used by tools, such as Y ecc, to inform the compiler that the source program is generated by another
tool. It aso indicates the correspondence of source filesto lines of the original user-written file, from which the source
program is produced.

Types and function specifications
A similar syntax as for module attributes is used for specifying types and function specifications:

-type my type() :: atom() | integer().
-spec my function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications, which is not to be further updated.

5.5.3 Comments

Comments can be placed anywhere in a module except within strings and quoted atoms. A comment begins with the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Notice that the terminating
end-of-line has the effect of white space.

5.5.4 module_info/0 and module_info/1 functions

The compiler automatically inserts the two special, exported functions into each module;

e« Mbodul e: nodul e_info/0

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

href

5.6 Functions

e Modul e: nodul e_info/1l

These functions can be called to retrieve information about the module.

module_info/0

The nodul e_i nf o/ O function in each module, returns alist of { Key, Val ue} tupleswith information about the
module. Currently, the list contain tuples with the following Keys: nodul e, at t ri but es, conpi | e, exports,
nmd5 and nat i ve. The order and number of tuples may change without prior notice.

module_info/1
Thecdl nodul e_i nf o(Key) , where Key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:
nodul e
Returns an atom representing the module name.
attributes

Returns a list of { Attri but eNane, Val ueLi st} tuples, where At tri but eNare is the name of an
attribute, and Val uelLi st isalist of vaues. Notice that a given attribute can occur more than once in the list
with different values if the attribute occurs more than once in the module.

Thelist of attributes becomes empty if the module is stripped with the beam |ib(3) module (in STDLIB).
conpile

Returns a list of tuples with information about how the module was compiled. Thislist is empty if the module
has been stripped with the beam 1ib(3) module (in STDLIB).

md5

Returns a binary representing the MD5 checksum of the module. If the module has native code loaded, this will
be the MD5 of the native code, not the BEAM bytecode.

exports

Returnsalist of { Nane, Ari ty} tupleswith all exported functions in the module.
functions

Returnsalist of { Name, Ari t y} tupleswith al functionsin the module.
native

Return t r ue if the module has native compiled code. Return f al se otherwise. In a system compiled without
HiPE support, the result isalwaysf al se

5.6 Functions

5.6.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when:

Name(Patternll, ...,PatternlN) [when GuardSeql] ->
Body1l;

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Functions

Name (PatternKl, ...,PatternKN) [when GuardSegK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nis the arity of the function. A function is uniquely defined by the module name, function
name, and arity. That is, two functions with the same name and in the same module, but with different arities are two
different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.

A clause body consists of a sequence of expressions separated by comma.(,):

Exprl,

Expri
Valid Erlang expressions and guard sequences are described in Expressions.
Example:

fact(N) when N>0 -> first clause head

o° o°

N * fact(N-1); first clause body
fact(0) -> % second clause head
1. % second clause body

5.6.2 Function Evaluation

When afunctionm f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
runtime error occurs. Notice that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills both of the
following two conditions:

e The patternsin the clause head can be successfully matched against the given arguments.
e Theguard sequence, if any, istrue.

If such a clause cannot be found, af unct i on_cl ause runtime error occurs.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Consider the function f act :

-module(m) .
-export([fact/1]).

fact(N) when N>0 ->
N * fact(N-1);

fact(0) ->

1.

Assume that you want to calculate the factorial for 1:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

5.6 Functions

1> m:fact(1l).

Evaluation starts at thefirst clause. The pattern Nis matched against argument 1. The matching succeeds and the guard
(N>0) istrue, thus Nis bound to 1, and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now, f act (0) is caled, and the function clauses are scanned sequentially again. First, the pattern N is matched
against 0. The matching succeeds, but the guard (N>0) isfalse. Second, the pattern 0 ismatched against 0. The matching
succeeds and the body is evaluated:

1 * fact(0) =>
1*x1=
1

Evaluation has succeed and m f act (1) returns 1.

Ifm fact/ 1iscaledwith anegative number asargument, no clause head matches. A f unct i on_cl ause runtime
€rror occurs.

5.6.3 Tail recursion

If the last expression of afunction body isafunction call, atail recursive call is done. Thisisto ensure that no system
resources, for example, call stack, are consumed. This means that an infinite loop can be doneif it uses tail-recursive
cals.

Example:

loop(N) ->
io:format("~w~n", [N]),
loop (N+1).

The earlier factorial example can act as a counter-example. It is not tail-recursive, since a multiplication is done on
the result of therecursivecall tof act (N-1) .

5.6.4 Built-In Functions (BIFs)

BIFs are implemented in C code in the runtime system. BIFs do things that are difficult or impossible to implement
in Erlang. Most of the BIFs belong to the module er | ang but there are also BIFs belonging to afew other modules,
for examplel i st s and et s.

The most commonly used BIFs belonging to er | ang(3) are auto-imported. They do not need to be prefixed with
the module name. Which BIFs that are auto-imported is specified in the erlang(3) module in ERTS. For example,
standard-type conversion BIFslikeat om t o_| i st and BIFs allowed in guards can be called without specifying
the module name.

Examples:

1> tuple size({a,b,c}).
3

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

2> atom to list('Erlang').
"Erlang"

Noticethat it isnormally the set of auto-imported BIFsthat are referred to when talking about 'BIFS.

5.7 Types and Function Specifications

5.7.1 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type. This effectively forms specific subtypes of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and also the argument and return types of
functions.

Type information can be used for the following:

e Todocument function interfaces
e To provide moreinformation for bug detection tools, such asDi al yzer
« To beexploited by documentation tools, such as EDoc, for generating program documentation of various forms

It is expected that the type language described in this section supersedes and replaces the purely comment-based
@ ype and @pec declarations used by EDoc.

5.7.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist of, and are built from, a set of predefined types, for example,
i nteger(),atonm(),andpi d() . Predefined types represent atypically infinite set of Erlang terms that belong to
thistype. For example, the type at on{) standsfor the set of all Erlang atoms.

For integers and atoms, it is allowed for singleton types; for example, theintegers- 1 and 42, or theatoms' f oo’ and
" bar'). All other types are built using unions of either predefined types or singleton types. In atype union between a
type and one of its subtypes, the subtype is absorbed by the supertype. Thus, the union isthen treated asif the subtype
was not a constituent of the union. For example, the type union:

atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:
atom() | integer()

Because of subtyperelationsthat exist between types, typesform alattice where thetop-most element, any () , denotes
the set of all Erlang terms and the bottom-most element, none() , denotes the empty set of terms.

The set of predefined types and the syntax for types follows:

% The top type, the set of all Erlang terms
% The bottom type, contains no terms

Type :: any()
none()

pid()

port()

reference()

[1 %% nil

Atom

Bitstring

float()

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

5.7 Types and Function Specifications

| Fun

| Integer

| List

| Map

| Tuple

| Union

| UserDefined

o°

% described in Type Declarations of User-Defined Types

Atom :: atom()

| Erlang Atom %% 'foo', 'bar',
Bitstring :: <<>>
| << :M>> M is a positive integer

| << i *N>> N is a positive integer
| << M, : *N>>
Fun :: fun() %% any function
| fun((...) -> Type) %% any arity, returning Type
| fun(() -> Type)
| fun((TList) -> Type)
Integer :: integer()

| Erlang Integer
| Erlang Integer..Erlang Integer

., -1, 0, 1, ... 42 ...
specifies an integer range

o° o°
o° o°

List :: list(Type)
| maybe improper list(Typel, Type2)
| nonempty improper list(Typel, Type2)
| nonempty list(Type)

Proper list ([]-terminated)
Typel=contents, Type2=termination
Typel and Type2 as above

Proper non-empty list

a® d° o° o°
o® o° o° o°

Map :: map() %% stands for a map of any size
| #{} %% stands for a map of any size
| #{PairList}
Tuple :: tuple() %% stands for a tuple of any size
| {}
| {TList}

PairList :: Type => Type
| Type => Type, PairList

TList :: Type
| Type, TList

Union :: Typel | Type2

The general form of bitstringsis<<_: M _: _*N>>, where Mand N are positive integers. It denotes a bitstring that
isM + (k*N) bitslong (that is, a bitstring that starts with Mbits and continues with k segments of N bits each,
wherek isalso apositive integer). The notations<<_: _* N>>, <<_: M>>, and <<>> are convenient shorthands for
the cases that Mor N, or both, are zero.

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonenpty_Iist(T) havetheshorthands[T] and[T, . . .], respectively. The only difference between the two
shorthandsisthat [T] canbeanempty listbut[T, ...] cannot.

Notice that the shorthand for | i st (), that is, the list of elements of unknown type, is[_] (or[any()]),not[].
Thenotation [] specifies the singleton type for the empty list.

For convenience, the following types are aso built-in. They can be thought as predefined aliases for the type unions
also shown in thetable.

Built-in type Defined as

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

tern() any()

bi nary() <<_:_*8>>

bi tstring() << *1>>

bool ean() ‘false' | 'true
byte() 0..255

char () 0..16#10f f ff

ni 1 () []

nunber () integer() | float()
list() [any()]

maybe_i nproper _list()

maybe_i nproper _list(any(), any())

nonenpty_list()

nonenpty_|ist(any())

string()

[char ()]

nonenpty_string()

[char(),...]

i odat a() iolist() | binary()
L T)
function() fun()

nmodul e() aton()

nfa() {nmodul e(),atom(),arity()}

arity() 0..255

identifier() pid() | port() | reference()

node() aton()

ti meout () "infinity' | non_neg_integer()
no_return() none()

Table 7.1: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type
definition” is not valid syntax according to the type language defined above.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

5.7 Types and Function Specifications

Built-in type Can be thought defined by the syntax
non_neg_i nt eger () 0..

pos_i nteger () 1..

neg_i nteger () .o-1

Table 7.2: Additional built-in types

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and its violation results in a compilation error.

Note:
Thefollowing built-in list types also exist, but they are expected to be rarely used. Hence, they have long names:

nonempty maybe improper list() :: nonempty maybe improper list(any(), any())
nonempty improper list(Typel, Type2)
nonempty maybe improper list(Typel, Type2)

where the last two types define the set of Erlang terms one would expect.

Also for convenience, record notation is alowed to be used. Records are shorthands for the corresponding tuples:

Record :: #Erlang Atom{}
| #Erlang Atom{Fields}

Records are extended to possibly contain type information. This is described in Type Information in Record
Declarations.

Note:

Map types, both map() and#{. ..}, are considered experimental during OTP 17.
No type information of maps pairs, only the containing map types, are used by Dialyzer in OTP 17.

5.7.3 Type Declarations of User-Defined Types

As seen, the basic syntax of atypeisan atom followed by closed parentheses. New types are declared using - t ype
and - opaque attributes as in the following:

-type my struct type() :: Type.
-opaque my opaq type() :: Type.

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

Thetype nameistheatomny_struct _t ype, followed by parentheses. Type is atype as defined in the previous
section. A current restriction is that Type can contain only predefined types, or user-defined types which are either
of the following:

e Modulelocal type, that is, with adefinition that is present in the code of the module
* Remotetype, that is, type defined in, and exported by, other modules; more about this soon.

For module-local types, the restriction that their definition existsin the module is enforced by the compiler and results
in acompilation error. (A similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variables is the same as Erlang variables, that is, starts with an upper-case letter. Naturally, these variables can - and
isto - appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}].
A module can export some types to declare that other modules are allowed to refer to them as remote types. This

declaration has the following form:

-export type([T1/Al, ..., Tk/AK]).

Here the Ti's are atoms (the name of the type) and the Ai's are their arguments

Example:

-export type([my struct type/0, orddict/2]).

Assuming that these types are exported from module' nod' , you can refer to them from other modul es using remote
type expressions like the following:

mod:my struct type()
mod:orddict(atom(), term())

It isnot allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structureis not supposed to be visible from outside of their
defining module. That is, only the module defining them is allowed to depend on their term structure. Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and is always to be exported.

5.7.4 Type Information in Record Declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis asfollows:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the previous example is a shorthand for the
following:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

5.7 Types and Function Specifications

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initia values for fields, the type must be declared after the initialization, as follows:

-record(rec, {fieldl = [] :: Typel, field2, field3 = 42 :: Type3}).

Theinitial valuesfor fields are to be compatible with (that is, a member of) the corresponding types. Thisis checked
by the compiler and results in a compilation error if a violation is detected. For fields without initial values, the
singleton type ' undef i ned' isadded to all declared types. In other words, the following two record declarations
have identical effects:

-record(rec, {fl = 42 :: integer(),
f2 ;1 float(),
f3 :p 'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
2 :: 'undefined' | float(),
f3 :: 'undefined' | 'a' | 'b'}).

For this reason, it is recommended that records contain initializers, whenever possible.
Any record, containing type information or not, once defined, can be used as a type using the following syntax:

#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field asfollows:

#rec{some field :: Type}

Any unspecified fields are assumed to have the typein the original record declaration.

5.7.5 Specifications for Functions

A specification (or contract) for afunction is given using the - spec attribute. The general format is as follows:
-spec Module:Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

The arity of the function must match the number of arguments, else a compilation error occurs.

Thisform can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can beincluded in files that (implicitly or explicitly) import these functions.

Within a given module, the following shorthand sufficesin most cases:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

-spec Function(ArgNamel :: Typel, ..., ArgNameN :: TypeN) -> RT.

A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):

-spec foo(Tl, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently results in a warning (not an error) by the compiler, is that the domains of the
argument types cannot overlap. For example, the following specification results in a warning:

-spec foo(pos_integer()) -> pos_integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

-spec id(X) -> X.

Noticethat the above specification does not restrict theinput and output typein any way. Thesetypes can be constrained
by guard-like subtype constraints and provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the: : constraint (read asi s_subt ype) isthe only guard constraint that can be used inthe' when' part
of a' - spec' attribute.

Note:

The above function specification uses multiple occurrences of the same type variable. That provides more type
information than the following function specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple. The specification with the
X type variable specifies that the function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specificationss to choose whether to take this extra information
into account or not.

Thescopeof a: : constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
it is suggested that different variables are used in different constituents of an overloaded contract, as shown in the
following example:

-spec foo({X, integer()}) -> X when X :: atom()

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

5.8 Expressions

; ([Y]) -> Y when Y :: number().

Note:

For backwards compatibility the following form is also allowed:
-spec id(X) -> X when is subtype(X, tuple()).

but its useis discouraged. It will be removed in a future Erlang/OTP release.

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions, asin the following function:

my error(Err) -> erlang:throw({error, Err}).

For such functions, it is recommended to use the special no_r et ur n() type for their "return”, through a contract
of the following form:

-spec my error(term()) -> no_return().

5.8 Expressions

In this section, al valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate sections:

* Preprocessor
e Records
5.8.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type causes abadar g runtime error.

5.8.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list, map, or tuple. The return value
isthetermitself.

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

5.8.3 Variables

A variable is an expression. If avariable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore (). Variables can contain a phanumeric characters, underscore
and @

Examples:

X

Namel
PhoneNumber
Phone number

_Height

Variables are bound to values using pattern matching. Erlang uses single assignment, that is, a variable can only be
bound once.

The anonymous variable is denoted by underscore () and can be used when a variable is required but its value can
be ignored.

Example:

[H]_1 = [1,2,3]
Variables starting with underscore (), for example, _Hei ght , are normal variables, not anonymous. They are
however ignored by the compiler in the sense that they do not generate any warnings for unused variables.

Example:
The following code:

member(, []) ->
can be rewritten to be more readable:
member(Elem, []) ->

[1.

This causes a warning for an unused variable, El em if the code is compiled with the flag war n_unused_var s
set. Instead, the code can be rewritten to:

member(Elem, []) ->

[1.

Notice that since variables starting with an underscore are not anonymous, this matches:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

5.8 Expressions

{,_} =112}

But thisfails:

{_N,_N} = {1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f, case, or r ecei ve expression
must be bound in all branches to have a value outside the expression. Otherwise they are regarded as 'unsafe' outside
the expression.

For thet r y expression introduced in Erlang 5.4/OTP R10B, variable scoping islimited so that variables bound in the
expression are always 'unsafe’ outside the expression. Thisisto be improved.

5.8.4 Patterns

A pattern has the same structure as a term but can contain unbound variables.
Example:

Namel
[H|T]
{error,Reason}

Patterns are allowed in clause heads, case and r ecei ve expressions, and match expressions.

Match Operator = in Patterns

If Pat t er n1 and Pat t er n2 are valid patterns, the following is also avalid pattern:

Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 are matched against the term. The idea behind this
feature is to avoid reconstruction of terms.

Example:

f({connect,From,To,Number,Options}, To) ->
Signal = {connect,From,To,Number,Options},

f(signal, To) ->
ignore.

can instead be written as

f({connect, ,To, , } = Signal, To) ->

f(Signal, To) ->
ignore.

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8

Expressions

String Prefix in Patterns
When matching strings, the following is avalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$f,$1,9x | Str]) -> ...

Expressions in Patterns
An arithmetic expression can be used within a pattern if it meets both of the following two conditions:

e It usesonly numeric or bitwise operators.
» lItsvalue can be evaluated to a constant when complied.

Example:

case {Value, Result} of
{?THRESHOLD+1, ok} -> ...

This feature was added in Erlang 5.0/0TP R7.

5.8.5 Match
The following matches Expr 1, a pattern, against Expr 2:

Exprl = Expr2

If the matching succeeds, any unbound variable in the pattern becomes bound and the value of Expr 2 is returned.

If the matching fails, abadmat ch run-time error occurs.

Examples:

1> {A, B} = {answer, 42}.

{answer,42}

2> A,

answer

3> {C, D} = [1, 2].

** exception error: no match of right-hand side value [1,2]

5.8.6 Function Calls

ExprF(Exprl,...,ExprN)
ExprM:ExprF(Exprl,...,ExprN)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

5.8 Expressions

In the first form of function calls, Expr M Expr F(Expr 1, ..., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to as a remote or external function call.

Example:

lists:keysearch(Name, 1, List)

In the second form of function calls, Expr F(Expr 1, . . ., Expr N) , Expr F must be an atom or evaluate to afun.

If Expr F is an atom, the function is said to be called by using the implicitly qualified function name. If the
function Expr F is localy defined, it is called. Alternatively, if Expr F is explicitly imported from the Mmodule,
M Expr F(Expr1, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF.

Examples:

handle(Msg, State)
spawn(m, init, [])

Examples where Expr F isafun:

Funl = fun(X) -> X+1 end
Funl(3)
= 4

fun lists:append/2([1,2]1, [3,4])
= [1,2,3,4]

Notice that when calling alocal function, there is a difference between using the implicitly or fully qualified function
name. The latter always refersto the latest version of the module. See Compilation and Code Loading and Function
Evaluation.

Local Function Names Clashing With Auto-Imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsisthat implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, there is acompiler directive available,
-conpi l e({no_auto_i nport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
acompile-directive is mandatory.

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Warning:

Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to a function having the same name
as an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler, the local
function is called instead. This is to avoid that future additions to the set of auto-imported BIFs do not silently
change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need
to explicitly remove the auto-import using a compiler directive, or replace the call with afully qualified function
call. Otherwise you get a compilation error. See the following example:

-export([length/1,f/11).
-compile({no_auto import,[length/1]}). % erlang:length/1 no longer autoimported

length([]) ->
0;
length([H|T]) ->
1 + length(T). %% Calls the local function length/1
f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
which is allowed in guards

()
“©
[X)
670

long.

The same logic applies to explicitly imported functions from other modules, as to locally defined functions. It is not
allowed to both import afunction from another module and have the function declared in the modul e at the sametime:

-export([f/1]).
-compile({no _auto import, [length/1]}). % erlang:length/1 no longer autoimported
-import(mod, [length/11).

f(X) when erlang:length(X) > 33 -> Calls erlang:length/1,

which is allowed in guards

o° o°

)
"6
)

"6

o°

erlang:length(X); % Explicit call to erlang:length in body

f(X) ->
length(X).

o°
o°

mod: length/1 is called

For auto-imported Bl Fsadded in Erlang/OTP R14A and thereafter, overriding the namewith alocal function or explicit
import is aways allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not used, the
compiler issues awarning whenever the function is called in the module using the implicitly qualified function name.

5.8.7 If

if
GuardSeql ->
Body1;

sy

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

5.8 Expressions

GuardSegN ->
BodyN
end

The branches of an i f -expression are scanned sequentially until a guard sequence Guar dSeq that evaluates to true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

The return value of Body isthereturn value of thei f expression.

If no guard sequence is evaluated astrue, ani f _cl ause run-time error occurs. If necessary, the guard expression
t r ue can be used in the last branch, as that guard sequence is awaystrue.

Example:

is _greater than(X, Y) ->
if
X>Y ->
true;
true -> % works as an 'else' branch
false
end

5.8.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

The return value of Body isthe return value of the case expression.
If there is no matching pattern with atrue guard sequence, acase_cl ause run-time error occurs.
Example:

is valid signal(Signal) ->
case Signal of
{signal, What, From, To} ->
true;
{signal, What, To} ->
true;
_Else ->
false
end.

5.8.9 Send

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluate to a pid, a registered name (atom), or atuple { Nane, Node} . Name isan atom and Node is
anode name, also an atom.

« If Expr 1 evaluatesto a name, but this nameis not registered, abadar g run-time error occurs.

» Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

« Distributed message sending, that is, if Expr 1 evaluatesto atuple { Nane, Node} (or apid located at another
node), also never fails.

5.8.10 Receive

receive
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pat t er n are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If amatch succeeds and the optional
guard sequence Guar dSeq is true, the corresponding Body is evaluated. The matching message is consumed, that
is, removed from the mailbox, while any other messages in the mailbox remain unchanged.

The return value of Body isthereturn value of ther ecei ve expression.

r ecei ve never fails. The execution is suspended, possibly indefinitely, until a message arrives that matches one of
the patterns and with a true guard sequence.

Example:

wait for onhook() ->
receive
onhook ->
disconnect(),
idle();
{connect, B} ->
B ! {busy, self()},
wait for onhook()
end.

Ther ecei ve expression can be augmented with a timeout:

receive
Patternl [when GuardSeql] ->
Body1l;
PatternN [when GuardSegN] ->
BodyN
after
ExprT ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

5.8 Expressions

BodyT
end

Expr T is to evaluate to an integer. The highest allowed value is 16#FFFFFFFF, that is, the value must fit in 32
bits.r ecei ve. . af t er worksexactly asr ecei ve, except that if no matching message has arrived within Expr T
milliseconds, then BodyT is evaluated instead. The return value of Body T then becomes the return value of the
receive. . af t er expression.

Example:

wait for onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self()},
wait for onhook()

after
60000 ->
disconnect(),
error()
end.

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
BodyT
end

This construction does not consume any messages, only suspends execution in the process for Expr T milliseconds.
This can be used to implement simple timers.

Example:

timer() ->
spawn(m, timer, [self()]).

timer(Pid) ->

receive
after
5000 ->
Pid ! timeout
end.

There are two special cases for the timeout value Expr T:

infinity
The processisto wait indefinitely for a matching message; thisis the same as not using atimeout. This can be
useful for timeout values that are calculated at runtime.

If there is no matching message in the mailbox, the timeout occurs immediately.

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8

Expressions

5.8.11 Term Comparisons

Exprl op Expr2

op Description

== Equal to

/= Not equal to

=< Lessthan or equal to

< Lessthan

>= Greater than or equal to
> Greater than

Exactly equal to

=/=

Exactly not equal to

Table 8.1: Term Comparison Operators.

The arguments can be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < map < nil < list < bit string

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement

by element.

Maps are ordered by size, two maps with the same size are compared by keys in ascending term order and then by
valuesin key order. In maps key order integers types are considered |ess than floats types.

When comparing an integer to a float, the term with the lesser precision is converted into the type of the other term,
unless the operator is one of =: = or =/ =. A float is more precise than an integer until al significant figures of the
float are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0.
The conversion strategy is changed depending on the size of the float because otherwise comparison of large floats

and integers would lose their transitivity.

Term comparison operators return the Boolean value of the expression, t r ue or f al se.

Examples:

1> 1==1.0.

true

2> 1=:=1.0.

false

3>1> a.

false

4> #{c => 3} > #{a == 1, b => 2}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

5.8 Expressions

false

4> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}.

true

5.8.12 Arithmetic Expressions

op Expr

Exprl op Expr2

Operator Description Argument Type
+ Unary + Number
- Unary - Number
+ number
- Number
* Number
/ Floating point division Number
bnot Unary bitwise NOT Integer
div Integer division Integer
rem Integer remainder of X/Y Integer
band Bitwise AND Integer
bor Bitwise OR Integer
bxor Arithmetic bitwise XOR Integer
bsl Arithmetic bitshift left Integer
bsr Bitshift right Integer
Table 8.2: Arithmetic Operators.
Examples:
1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0

156 | Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation

5.8

Expressions

5> 5 div 2.

2

6> 5 rem 2.

1

7> 2#10 band 2#01.
0

8> 2#10 bor 2#01.
3

9> a + 10.

** exception error: an error occurred when evaluating an arithmetic expression

in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).

** exception error: a system limit has been reached

in operator bsl/2
called as 1 bsl 18446744073709551616

5.8.13 Boolean Expressions

op Expr
Exprl op Expr2

Operator Description

not Unary logical NOT
and Logical AND

or Logical OR

xor Logical XOR
Table 8.3: Logical Operators.

Examples:

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
in operator or/2
called as true or garbage

5.8.14 Short-Circuit Expressions

Exprl orelse Expr2
Exprl andalso Expr2

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 157

5.8 Expressions

Expr 2 isevaluated only if necessary. That is, Expr 2 isevauated only if:

« Exprlevauatestof al seinanorel se expression.

or

* Exprlevauatestot r ue inanandal so expression.

Returns either the value of Expr 1 (thatis, t rue or f al se) or the value of Expr 2 (if Expr 2 is evaluated).
Example 1.

case A >= -1.0 andalso math:sqrt(A+1) > B of

Thisworkseven if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 isnever evaluated.
Example 2:

OnlyOne = is atom(L) orelse
(is _list(L) andalso length(L) == 1),

From Erlang/OTP R13A, Expr 2 isno longer required to evaluate to a Boolean value. As a consequence, andal so
and or el se are now tail-recursive. For instance, the following function is tail-recursive in Erlang/OTP R13A and
later:

all(Pred, [Hd|Tail]) ->
Pred(Hd) andalso all(Pred, Tail);
all(_, [1) ->

true.

5.8.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2
The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list that is a copy of the first argument. The procedure is a follows: for
each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3]++[4,5].

[1,2,3,4,5]
2> [1,2,3,2,1,2]--[2,1,2].
[3,1,2]

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Warning:

The complexity of A - - Bisproportiona tol engt h(A) *I engt h(B) . That is, it becomes very slow if both
Aand B arelong lists.

5.8.16 Map Expressions
Creating Maps

Constructing a new map is done by letting an expression K be associated with another expression V:
#{ K=V}

New maps can include multiple associations at construction by listing every association:
#{ K1 => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:
#{}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by acomma, .

Examples:

MO = #{}, % empty map

M1 = #{a => <<"hello">>}, % single association with literals

M2 = #{1 => 2, b => b}, % multiple associations with literals

M3 = #{k == {A,B}}, % single association with variables

M4 = #{{"w", 1} => f()}. % compound key associated with an evaluated expression

Here, A and B are any expressions and MD through M4 are the resulting map terms.
If two matching keys are declared, the latter key takes precedence.
Example:

1> #{1 => a, 1 => b}.
#{1 =>Db }

2> #{1.0 => a, 1 => b}.
#{1 => b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated values) are evaluated is not defined.
The syntactic order of the key-value pairsin the construction is of no relevance, except in the recently mentioned case
of two matching keys.

Updating Maps

Updating a map has a similar syntax as constructing it.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

5.8 Expressions

An expression defining the map to be updated, is put in front of the expression defining the keys to be updated and
their respective values:

M#{ K => V }

Here Mis aterm of type map and K and V are any expression.
If key K does not match any existing key in the map, a new association is created from key K to value V.

If key K matches an existing key in map M its associated value is replaced by the new value V. In both cases, the
evaluated map expression returns a new map.

If Mis not of type map, an exception of type badmap isthrown.
To only update an existing value, the following syntax is used:

M#{ K :=V }

Here Mis aterm of type map, V is an expression and K is an expression that evaluates to an existing key in M

If key K does not match any existing keysin map M an exception of typebadar g istriggered at runtime. If amatching
key K is present in map M its associated value is replaced by the new value V, and the evaluated map expression
returns a new map.

If Mis not of type map, an exception of type badmap isthrown.

Examples:
Mo = #{},
M1 = Me#{a => 0},
Ml#{a => 1, b => 2},

M2#{"function" => fun() -> f() end},
M3#{a := 2, b :=3}. % 'a' and 'b' was added in "M1® and "M2 .

=
N
L | [

Here MD isany map. It followsthat ML .. M4 are maps as well.
More Examples:

1> M = #{1 => a}.

#{1 => a }

2> M#{1.0 => b}.

#{1 => a, 1.0 => b}.

3> M#{l := b}.

#{1 => b}

4> M#{1.0 := b}.

** exception error: bad argument

Asin construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match. In that case, the
latter value is used.

Maps in Patterns

Matching of key-value associations from mapsis done as follows:

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

#H K:=V}=M

Here Mis any map. The key K must be an expression with bound variables or literals. V can be any pattern with either
bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with the key K, which must exist in the map M
If the variable V is bound, it must match the value associated with Kin M

Example:

1> M = #{"tuple" => {1,2}}.
#{"tuple" => {1,2}}

2> #{"tuple" := {1,B}} = M.
#{"tuple" => {1,2}}

3> B.

2.

This binds variable B to integer 2.

Similarly, multiple values from the map can be matched:

#{ KL :=V1l, .., Kn :=Vn } =M
HerekeysK1 .. Kn areany expressionswith literals or bound variables. If al keys exist in map M all variablesin

V1 .. Vnismatched to the associated values of their respective keys.
If the matching conditions are not met, the match fails, either with:
* A badnmat ch exception.

Thisisif it is used in the context of the matching operator as in the example.
» Or resulting in the next clause being tested in function heads and case expressions.

Matching in maps only allows for : = as delimiters of associations.
The order in which keys are declared in matching has no relevance.

Duplicate keys are allowed in matching and match each pattern associated to the keys:

K:=Vl, K:=V2} =M

Matching an expression against an empty map literal, matches its type but no variables are bound:
#{} = Expr

This expression matches if the expression Expr is of type map, otherwise it fails with an exception badnat ch.
Matching Syntax
Matching of literals as keys are alowed in function heads:

%% only start if not started
handle call(start, From, #{ state := not started } = 5S) ->

. {reply, ok, S#{ state := start }};

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

5.8 Expressions

%% only change if started
handle call(change, From, #{ state := start } = S) ->

. {reply, ok, S#{ state := changed }};

Maps in Guards
Maps are allowed in guards as long as all subexpressions are valid guard expressions.
Two guard BIFs handle maps:

* is map/lintheer| ang module
e map _size/lintheer| ang module

5.8.17 Bit Syntax Expressions

<<>>
<<El,...,En>>

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
Value:Size |
Value/TypeSpecifierList |
Value:Size/TypeSpecifierlList

Used in abit string construction, Val ue is an expression that is to evaluate to an integer, float, or bit string. If the
expression isnot asingle literal or variable, it isto be enclosed in parenthesis.

Used in a bit string matching, Val ue must be avariable, or an integer, float, or string.

Notice that, for example, using astring literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in ahit string construction, Si ze is an expression that isto evaluate to an integer.

Used in abit string matching, Si ze must be an integer, or avariable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below):

 Forinteger itis8.

e Forfloat itis64.

e Forbinary andbi t stri ng itisthewholebinary or bit string.

In matching, this default valueisonly valid for the last element. All other bit string or binary elementsin the matching
must have a size specification.

For theut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment is implicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.
Type=integer |float |binary |bytes |bitstring|bits|utf8|utfl6|utf32
Thedefaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Si gnedness=si gned |unsi gned
Only matters for matching and when the typeisi nt eger . The default isunsi gned.

Endi anness=big|little|native
Native-endian means that the endianness is resolved at load time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machineis run on. Endianness only matters when the
Typeiseitheri nt eger,ut f16,utf 32, orfl oat . Thedefaultisbi g.

Unit=unit:IntegerlLiteral
The allowed range is 1..256. Defaultsto 1 fori nt eger ,fl oat ,andbi t stri ng, andto 8for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have asize
that isevenly divisible by 8.

Note:

When constructing binaries, if the size N of an integer segment is too small to contain the given integer, the most
significant bits of the integer are silently discarded and only the N least significant bits are put into the binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation Formats UTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Val ue must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction failswith abadar g exceptionif Val ue isoutside the allowed ranges. Thesize
of the resulting binary segment depends on the type or Val ue, or both:

e Forutf 8, Val ue isencoded in 1-4 bytes.
e Forutf 16, Val ue isencodedin 2 or 4 bytes.
e Forutf 32, Val ue isaways be encoded in 4 bytes.

When constructing, aliteral string can be given followed by one of the UTF types, for example: <<" abc"/ ut f 8>>
which is syntactic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of asegment of aut f type, resultsin aninteger intherange 0..16#D7FF or 16#E000..16#10FFFF.
The match fails if the returned value falls outside those ranges.

A segment of type ut f 8 matches 1-4 bytes in the binary, if the binary at the match position contains avalid UTF-8
seguence. (See RFC-3629 or the Unicode standard.)

A segment of type ut f 16 can match 2 or 4 bytes in the binary. The match fails if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 can match 4 bytesin the binary in the sasmeway asani nt eger segment matches 32 hits.
The match fails if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Binl = <<1,17,42>>.
<<1,17,42>>

2> Bin2 = <<"abc">>.

<<97,98,99>>

3> Bin3 = <<1,17,42:16>>.
<<1,17,0,42>>

4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>

5> C.

42

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

5.8 Expressions

6> <<D:16,E,F>> = <<1,17,42:16>>.
<<1,17,0,42>>

7> D.

273

8> F.

42

9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>

10> H.

<<17,0,42>>

11> <<G,H/bitstring>> = <<1,17,42:12>>.
<<1,17,1,10:4>>

12> H.

<<17,1,10:4>>

13> <<1024/utf8>>.

<<208,128>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" isinterpreted as "B =<<1>>" which is a syntax error. The correct way is to write a
space after '=": "B= <<1>>.

More examples are provided in Programming Examples.

5.8.18 Fun Expressions

fun
[Name] (Patternll,...,PatternlN) [when GuardSeql] ->
Body1l;
[Name] (PatternKl, ...,PatternkKN) [when GuardSegK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them is to be a function
declaration, similar to aregular function declaration, except that the function name is optional and isto be avariable,
if any.

Variables in a fun head shadow the function name and both shadow variables in the function clause surrounding the
fun expression. Variables bound in afun body are local to the fun body.

The return value of the expression is the resulting fun.
Examples:

1> Funl = fun (X) -> X+1 end.

#Fun<erl eval.6.39074546>

2> Funl(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> 1t end.
#Fun<erl eval.6.39074546>

4> Fun2(7).

gt

5> Fun3 = fun Fact(l) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
#Fun<erl eval.6.39074546>

6> Fun3(4).

24

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

The following fun expressions are also allowed:

fun Name/Arity
fun Module:Name/Arity

InNanme/ Arity, Name isanatomand Ari ty isaninteger. Nane/ Ari t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl,...,ArgN) -> Name(Argl,...,ArgN) end

InModul e: Nare/ Ari ty, Modul e, and Nanme areatomsand Ar i t y isaninteger. Starting from Erlang/OTP R15,
Modul e, Nare, and Ari ty can also be variables. A fun defined in this way refers to the function Narre with arity
Ari tyinthelatest version of module Modul e. A fun defined in thisway is not dependent on the code for the module
inwhich it is defined.

More examples are provided in Programming Examples.

5.8.19 Catch and Throw

catch Expr

Returns the value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught.
For exceptions of classer r or , that is, run-time errors, {' EXI T' , { Reason, St ack} } isreturned.

For exceptions of classexi t , that is, thecodecalledexi t (Term), {' EXI T', Ter n} isreturned.

For exceptions of classt hr ow, that isthe code calledt hr ow(Ter m) , Ter mis returned.

Reason depends on the type of error that occurred, and St ack isthe stack of recent function calls, see Exit Reasons.
Examples:

1> catch 1+2.

3
2> catch l+a.
{'EXIT',{badarith,[...]}}

Notice that cat ch has low precedence and catch subexpressions often needs to be enclosed in a block expression
or in parenthesis:

3> A = catch 1+2.

** 1: syntax error before: 'catch' **
4> A = (catch 1+2).

3

TheBIFt hr ow(Any) can be used for non-local return from afunction. It must be evaluated within acat ch, which

returns the value Any.
Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

5.8 Expressions

5> catch throw(hello).
hello

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error occurs.

5.8.20 Try
try Exprs
catch
[Classl:]ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;
[ClassN:]ExceptionPatternN [when ExceptionGuardSegN] ->
ExceptionBodyN
end

Thisis an enhancement of catch that appeared in Erlang 5.4/0OTP R10B. It gives the possibility to:

» Distinguish between different exception classes.

e Chooseto handle only the desired ones.

e Passing the otherson to an enclosingt ry or cat ch, or to default error handling.

Notice that although the keyword cat ch isused inthet r y expression, thereisnot acat ch expression within the
t ry expression.

It returns the value of Expr s (a sequence of expressions Expr1l, ..., ExprN) unless an exception occurs
during the evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right
exception class Cl ass are sequentially matched against the caught exception. An omitted Cl ass is shorthand for
t hr ow. If a match succeeds and the optional guard sequence Except i onGuar dSeq is true, the corresponding
Except i onBody isevaluated to become the return value.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
d ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

If an exception occurs during evaluation of Except i onBody, it isnot caught.
Thet ry expression can have an of section:

try Exprs of
Patternl [when GuardSeql] ->

Body1;
PatternN [when GuardSegN] ->
BodyN
catch
[Classl:]ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;

[ClassN:]ExceptionPatternN [when ExceptionGuardSegN] ->
ExceptionBodyN
end

If theevaluation of Expr s succeedswithout an exception, the patternsPat t er n are sequentially matched against the
result inthe sameway asfor acase expression, except that if thematching fails,at ry_cl ause run-timeerror occurs.

An exception occurring during the evaluation of Body is not caught.

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Thet ry expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
catch
[Classl:]ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;

[ClassN:]ExceptionPatternN [when ExceptionGuardSegN] ->
ExceptionBodyN
after
AfterBody
end

Af t er Body is evaluated after either Body or Except i onBody, no matter which one. The evaluated value of
Af t er Body islogt; thereturn value of thet r y expression isthe samewith an af t er section as without.

Evenif an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevauated. In this case
the exception is passed on after Af t er Body has been evaluated, so the exception from thet ry expression is the
samewith an af t er section as without.

If an exception occursduring evaluation of Af t er Body itself, itisnot caught. Soif Af t er Body isevaluated after an
exceptionin Expr s, Body, or Except i onBody, that exceptionislost and masked by theexceptionin Af t er Body.

Theof, cat ch,and af t er sectionsare all optional, aslong asthereisat least acat ch or an af t er section. So
thefollowing arevalidt r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body
after
AfterBody
end

try Exprs
catch
ExpressionPattern ->
ExpressionBody
after
AfterBody
end

try Exprs after AfterBody end

Next is an example of using af t er . This closes the file, even in the event of exceptionsinfil e:read/ 2 orin
bi nary_to_terni 1. The exceptions are the same aswithout thet ry...af t er ...end expression:

termize file(Name) ->
{ok,F} = file:open(Name, [read,binary]),

try
{ok,Bin} = file:read(F, 1024*1024),
binary to term(Bin)

after

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

5.8 Expressions

file:close(F)
end.

Next isan example of usingt r y to emulate cat ch Expr:

try Expr
catch

throw:Term -> Term;

exit:Reason -> {'EXIT',Reason}

error:Reason -> {'EXIT',{Reason,erlang:get stacktrace()}}
end

5.8.21 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example, in arithmetic expressions:

1> 1+ 2 * 3.

7

2> (1 + 2) * 3.
9

5.8.22 Block Expressions

begin
Exprl,

ExprN

end

Block expressions provide away to group a sequence of expressions, similar to a clause body. Thereturn valueisthe
value of the last expression Expr N.

5.8.23 List Comprehensions

List comprehensions is a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are anal ogousto set comprehensionsin Zermel o-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to the set of andfi ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qualifierl,...,QualifierN]

Here, Expr isan arbitrary expression, and each Qual i f i er iseither agenerator or afilter.

* A generator iswritten as:

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Pattern <- ListExpr.
Li st Expr must be an expression, which evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression, which evaluatesto a bitstring.

» Afilter isan expression, which evaluatestot r ue or f al se.
The variables in the generator patterns, shadow variablesin the function clause, surrounding the list comprehensions.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and bit string generator elements, for which all filters are true.

Example:

1> [X*2 || X <- [1,2,3]].
[2,4,6]

More examples are provoded in Programming Examples.

5.8.24 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qualifierl,...,QualifierN >>

Here, Bi t St ri ng isabit string expression and each Qual i fi er iseither a generator, a bit string generator or a
filter.

e A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression that evaluatesto alist of terms.

* A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression that evaluates to a bitstring.

e Afilter isan expression that evaluatestot r ue or f al se.

The variables in the generator patterns, shadow variables in the function clause, surrounding the bit string
comprehensions.

A bit string comprehension returnsabit string, which iscreated by concatenating theresultsof evaluatingBi t St ri ng
for each combination of bit string generator elements, for which al filters are true.

Example:

1> << << (X*2) >> ||
<<X>> <= << 1,2,3 >> >>,
<<2,4,6>>

More examples are provided in Programming Examples.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

5.8 Expressions

5.8.25 Guard Sequences

A guard sequence is a sequence of guards,

separated by semicolon (;). The guard sequenceistrueif at least one of the

guardsistrue. (The remaining guards, if any, are not evaluated.)

A guard isasequence of guard expressions, separated by comma(,). Theguardistrueif al guard expressions evaluate

Quardil;...; GuardK
totrue.
QuardeExprl, ..., GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang expressions.
The reason for restricting the set of valid expressions is that evaluation of a guard expression must be guaranteed to

be free of side effects. Valid guard expressions are the following:

e Theatomtrue

e Other constants (terms and bound variables), al regarded as false
» CdlstotheBlFs specifiedintable Type Test BI Fs

e Term comparisons
e Arithmetic expressions
» Boolean expressions

« Short-circuit expressions (andal so/or el se)

is_atonm 1

is_binary/1l

is_bitstring/1

i s_bool ean/ 1

is float/1

is_function/1l

is_function/2

is_integer/1

is list/1

is_map/1

is_nunber/1

is_pid/1

is_port/1

is record/2

is_record/3

170 | Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation

5.8 Expressions

is_reference/l

is_tuplel/ll

Table 8.4: Type Test BIFs

Notice that most type test BIFs have older equivaents, without the i s_ prefix. These old BIFs are retained for
backwards compatibility only and are not to be used in new code. They are also only allowed at top level. For example,
they are not alowed in Boolean expressions in guards.

abs(Number)

bit_size(Bitstring)

byte size(Bitstring)

el ement (N, Tupl e)

float(Term

hd(Li st)

| engt h(Li st)

map_si ze(Map)

node()

node(Pi d| Ref | Port)

round(Nunber)

sel f ()

size(Tupl e| Bitstring)

t1(List)

t runc(Nunber)

tupl e_size(Tupl e)

Table 8.5: Other BIFs Allowed in Guard Expressions

If an arithmetic expression, a Boolean expression, a short-circuit expression, or acall to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) is evaluated.

5.8.26 Operator Precedence
Operator precedence in falling priority:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

5.9 Preprocessor

#

Unary + - bnot not

/ * div rem band and L eft associative
+ - bor bxor bsl bsr or xor L eft associative
++ -- Right associative

== /==<<>=>===/=

andalso

orelse

=1 Right associative

catch

Table 8.6: Operator Precedence

When evaluating an expression, the operator with the highest priority isevaluated first. Operatorswith the same priority
are evaluated according to their associativity.

Example:
The left associative arithmetic operators are evaluated | eft to right:

6 +5 *4 -3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

5.9 Preprocessor
5.9.1 File Inclusion

A file can be included as follows:

-include(File).
-include lib(File).

Fi | e, astring, isto point out afile. The contents of thisfile are included asis, at the position of the directive.

Includefilesaretypically used for record and macro definitions that are shared by several modules. It isrecommended
to use the file name extension . hr | for include files.

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 Preprocessor

Fi | e can start with a path component $VAR, for some string VAR. If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If 0s: get env(VAR) returns f al se,
$VARIs|eft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified file is searched for in the following directories, and in this order:

e The current working directory
e Thedirectory where the moduleis being compiled
» Thedirectories given by thei ncl ude option

For details, see the erlc(1) manual pagein ERTS and compile(3) manual pagein Compiler.
Examples:

-include("my records.hrl").
-include("incdir/my records.hrl").
-include("/home/user/proj/my records.hrl").
-include("$PROJ ROOT/my records.hrl").

i nclude_Ilibissimilar toi ncl ude, but is not to point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application.

Example:

-include lib("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude issearched for thefilefil e. hrl .

5.9.2 Defining and Using Macros

A macro is defined as follows:

-define(Const, Replacement).
-define(Func(Varl,...,VarN), Replacement).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an includefile.
A macro isused as follows:

?Const

?Func(Argl,...,ArgN)

Macros are expanded during compilation. A simple macro ?Const isreplaced with Repl acenent .
Example:

-define (TIMEOUT, 200).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

5.9 Preprocessor

call(Request) ->
server:call(refserver, Request, ?TIMEOUT).

Thisis expanded to:

call(Request) ->
server:call(refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) isreplaced with Repl acenent , where al occurrences of a variable Var
from the macro definition are replaced with the corresponding argument Ar g.

Example:

-define(MACRO1(X, Y), {a, X, b, Y}).
Bé}(X) ->

?MACRO1(a, b),

?MACRO1 (X, 123)

Thisis expanded to:

bar(X) ->
{a,a,b,b},
{a,X,b,123}.

It isgood programming practice, but not mandatory, to ensure that amacro definition isavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the* P' option. conpil e: fil e(Fil e,
['P']).Thisproducesalisting of the parsed code after preprocessing and parse transforms, in thefileFi | e. P.

5.9.3 Predefined Macros

The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

The file name of the current module.
?LI1 NE.

The current line number.
?MACHI NE.

The machine name, ' BEAM .

5.9.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 Preprocessor

A macro ?Func(Argl, ..., ArgN) witha(possibly empty) list of arguments results in an error message if there
isat least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A).
-define(C, m:f).

the following does not work:

fo() ->
?FO. % No, an empty list of arguments expected.

f1(A) ->
?F1(A, A). % No, exactly one argument expected.

On the other hand,

f() ->
?7C().

is expanded to

f() ->
m:f().

5.9.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr o) .
Causes the macro to behave as if it had never been defined.
-i fdef (Macro).
Evaluate the following lines only if Macr o is defined.
-i f ndef (Macr o).
Evaluate the following lines only if Macr o is not defined.
- el se.
Only allowed after ani f def ori f ndef directive. If that condition isfalse, the linesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def ori f ndef directive.

Note:

The macro directives cannot be used inside functions.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

5.10 Records

-module(m) .

-ifdef (debug) .

-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.

-define(LOG(X), true).

-endif.

When trace output is desired, debug isto be defined when the module mis compiled:

% erlc -Ddebug m.erl
or

1> c(m, {d, debug}).
{ok,m}

?LOG Ar g) isthen expandedtoacall toi o: f or mat / 2 and provide the user with some simple trace output.

5.9.6 Stringifying Macro Arguments

The construction ??Ar g, where Ar g is a macro argument, is expanded to a string containing the tokens of the
argument. Thisis similar to the #ar g stringifying construction in C.

The feature was added in Erlang 5.0/0TP R7.
Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Calll)).

?TESTCALL (myfunction(1,2)),
?TESTCALL (you: function(2,1)).

resultsin

io:format("Call ~s: ~w~n",["myfunction (1 , 2)",myfunction(1,2)1),
io:format("Call ~s: ~w~n",["you : function (2 , 1)",you:function(2,1)]).

That is, atrace output, with both the function called and the resulting value.

5.10 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless special actions are taken. For details, see the shell(3) manual pagein STDLIB.

More examples are provided in Programming Examples.

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Records

5.10.1 Defining Records

A record definition consists of the name of therecord, followed by thefield names of therecord. Record and field names
must be atoms. Each field can be given an optional default value. If no default valueis supplied, undef i ned isused.

-record(Name, {Fieldl [= Valuel],

FieldN [= ValueN]}).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord is used in several modules, it is recommended that the record definition is placed in an include file.

5.10.2 Creating Records

Thefollowing expression creates anew Nane record wherethe value of each field Fi el dI isthevalue of evaluating
the corresponding expression Expr | :

#Name{Fieldl=Exprl,...,FieldK=ExprK}

The fields can be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields get their respective default value instead.

If several fields are to be assigned the same value, the following construction can be used:

#Name{Fieldl=Exprl, ...,FieldK=ExprK, =ExprL}
Omitted fields then get the value of evaluating Expr L instead of their default values. Thisfeature was added in Erlang

5.1/0TP R8 and is primarily intended to be used to create patterns for ETS and Mnesia match functions.
Example:

-record(person, {name, phone, address}).

lookup(Name, Tab) ->
ets:match object(Tab, #person{name=Name, =' "'}).

5.10.3 Accessing Record Fields

Expr#Name.Field

Returns the value of the specified field. Expr isto evaluate to a Name record.
The following expression returns the position of the specified field in the tuple representation of the record:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

5.10 Records

#Name.Field

Example:

-record(person, {name, phone, address}).

lookup(Name, List) ->
lists:keysearch(Name, #person.name, List).

5.10.4 Updating Records

Expr#Name{Fieldl=Exprl, ..., FieldK=ExprK}

Expr istoevaluateto aName record. A copy of thisrecord isreturned, with the value of each specified field Fi el dl
changed to the value of evaluating the corresponding expression Expr | . All other fields retain their old values.

5.10.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example, for field initiations, must be valid guard expressions as well.

Examples:

handle(Msg, State) when Msg==#msg{to=void, no=3} ->

handle(Msg, State) when State#state.running==true ->

Thereisasoatypetest BIFi s_record(Term RecordTag).
Example:

is person(P) when is record(P, person) ->
true;

is person(P) ->
false.

5.10.6 Records in Patterns

A pattern that matches a certain record is created in the same way as arecord is created:

#Name{Fieldl=Exprl, ...,FieldK=ExprK}

In this case, one or more of Expr 1...Expr K can be unbound variables.

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Records

5.10.7 Nested Records

Beginning with Erlang/OTP R14, parentheses when accessing or updating nested records can be omitted. Assume the
following record definitions:

"nested0"}).
"nestedl", nrecO=#nrec0{}}).
"nested2", nrecl=#nrecl{}}).

-record(nrecO, {name
-record(nrecl, {name
-record(nrec2, {name

N2 = #nrec2{},
Before R14, parentheses were needed as follows:

"nested0" = ((N2#nrec2.nrecl)#nrecl.nrec0Q)#nrec0.name,
NOn = ((N2#nrec2.nrecl)#nrecl.nrec0)#nrecO{name = "nested0a"},

Since R14, the following can also be written:

"nested0" = N2#nrec2.nrecl#nrecl.nrec0#nrec0.name,
NOn = N2#nrec2.nrecl#nrecl.nrecO#nrecO0{name = "nested0a"},

5.10.8 Internal Representation of Records
Record expressions are translated to tuple expressions during compilation. A record defined as:
-record(Name, {Fieldl,...,FieldN}).

isinternally represented by the tuple:

{Name,Valuel, ...,ValueN}
Here each Val uel isthedefault valuefor Fi el dl .

To each module using records, a pseudo function is added during compilation to obtain information about records:

record info(fields, Record) -> [Field]
record info(size, Record) -> Size

Si ze isthe size of the tuple representation, that is, one more than the number of fields.
In addition, #Recor d. Name returns the index in the tuple representation of Nane of the record Recor d.

Nanme must be an atom.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

5.11 Errors and Error Handling

5.11 Errors and Error Handling
5.11.1 Terminology

Errors can roughly be divided into four different types:

» Compile-time errors

e Logical errors

* Run-timeerrors

* Generated errors

A compile-time error, for example a syntax error, does not cause much trouble asit is caught by the compiler.

A logical error iswhen a program does not behave asintended, but does not crash. An exampleisthat nothing happens
when a button in agraphical user interfaceis clicked.

A run-time error is when a crash occurs. An example is when an operator is applied to arguments of the wrong type.
The Erlang programming language has built-in features for handling of run-time errors.

A run-time error can also be emulated by calling er | ang: error (Reason) or erl ang: error (Reason,
Ar gs) (those appeared in Erlang 5.4/0TP-R10).

A run-time error is another name for an exception of classer r or .

A generated error is when the code itself callsexi t/ 1 or t hr ow/ 1. Notice that emulated run-time errors are not
denoted as generated errors here.

Generated errors are exceptions of classesexi t andt hr ow.

When a run-time error or generated error occurs in Erlang, execution for the process that evaluated the erroneous
expression is stopped. This is referred to as a failure, that execution or evaluation fails, or that the process fails,
terminates, or exits. Notice that a process can terminate/exit for other reasons than afailure.

A process that terminates emits an exit signal with an exit reason that says something about which error has occurred.
Normally, some information about the error is printed to the terminal.

5.11.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression (new in Erlang 5.4/0TP R10B) can distinguish between the different classes, whereas the catch expression
cannot. They are described in Expressions.

Class Origin

Run-time error, for example, 1+a, or the process called

error erlang: error/ 1, 2 (new in Erlang 5.4/OTP R10B)
exit Theprocesscaledexit/ 1
t hr ow Theprocesscaledt hr ow 1

Table 11.1: Exception Classes.

An exception consists of its class, an exit reason (see Exit Reason), and a stack trace (which aids in finding the code
location of the exception).

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Errors and Error Handling

The stack trace can beretrieved using er | ang: get _st ackt race/ 0 (new in Erlang 5.4/OTP R10B) from within
atry expression, and isreturned for exceptions of classer r or fromacat ch expression.

An exception of classer r or isaso known as arun-time error.

5.11.3 Handling of Run-time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
ortry, see Expressions about catch and try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see Processes.

5.11.4 Exit Reasons

When arun-time error occurs, that is an exception of classer r or . The exit reason is atuple { Reason, St ack},
where Reason isaterm indicating the type of error:

Reason Type of Error

badar Bad argument. The argument is of wrong datatype, or is
9 otherwise badly formed.

badarith Bad argument in an arithmetic expression.

Evaluation of a match expression failed. The value V

{ badmat ch, V} did not match.

No matching function clause is found when evaluating a

function cl ause .
= function call.

No matching branch is found when evaluating acase

{case_clause, V} expression. The value V did not match.

No true branch is found when evaluating an i f

i f _clause .
- expression.

No matching branch is found when evaluating the of -

{try_cl ause, V}

section of at ry expression. The value V did not match.

undef

The function cannot be found when evaluating a
function call.

{badf un, F}

Something is wrong with afun F.

{badarity, F}

A funisapplied to the wrong number of arguments. F
describes the fun and the arguments.

ti meout val ue

Thetimeout valueinar ecei ve. . af t er expression
is evaluated to something else than an integer or
infinity.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

5.12 Processes

nopr oc Trying to link to a non-existing process.
Trying to evaluate at hr ow outsideacat ch. Visthe
{inocatch, V} thrown term.

A system limit has been reached. See Efficiency Guide

systemlimt for information about system limits.

Table 11.2: Exit Reasons

Stack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{ Modul e, Nane, Ari ty} with the most recent function call first. The most recent function call tuple can in some
casesbe{ Modul e, Nane, [Arg] }.

5.12 Processes

5.12.1 Processes

Erlang is designed for massive concurrency. Erlang processes are lightweight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate, and the scheduling overhead is low.

5.12.2 Process Creation

A processis created by calling spawn:

spawn (Module, Name, Args) -> pid()
Module = Name = atom()
Args = [Argl,...,ArgN]
ArgIl = term()
spawn creates a new process and returns the pid.

The new process starts executing in Modul e: Name(Ar g1, . .., ArgN) where the arguments are the elements of
the (possible empty) Ar gs argument list.

There exist anumber of other spawn BIFs, for example, spawn/ 4 for spawning a process at another node.

5.12.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

BIF Description

Associates the name Nane, an atom, with the process

regi ster(Name, Pid) Pi d

Returns alist of names that have been registered using

registered() register/2.

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.12 Processes

Returns the pid registered under Nane, or undef i ned

wher ei s(Narre) if the nameis not registered.

Table 12.1: Name Registration BIFs

5.12.4 Process Termination
When a process terminates, it always terminates with an exit reason. The reason can be any term.

A processissaid to terminate normally, if the exit reasonistheatomnor mal . A processwith no more code to execute
terminates normally.

A process terminates with an exit reason { Reason, St ack} when arun-time error occurs. See Exit Reasons.
A process can terminate itself by calling one of the following BIFs:

e exit(Reason)
e« erlang: error(Reason)
e erlang:error(Reason, Args)

The process then terminates with reason Reason forexi t / 1 or { Reason, St ack} for the others.
A processcan also beterminated if it receivesan exit signal with another exit reason thannor mal , see Error Handling.

5.12.5 Message Sending

Processes communicate by sending and receiving messages. Messages are sent by using the send operator ! and
received by calling receive.

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient, provided that
the recipient exists.

5.12.6 Links

Two processes can be linked to each other. A link between two processes Pi d1 and Pi d2 iscreated by Pi d1 calling
the BIF I i nk(Pi d2) (or conversely). There also exist a number of spawn_| i nk BIFs, which spawn and link to
a process in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk(Pi d) have
no effect.

A link can be removed by calling the BIF unl i nk(Pi d) .
Links are used to monitor the behaviour of other processes, see Error Handling.

5.12.7 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes emit exit signals to all
linked processes, which can terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example, restarting them
if they terminate abnormally.

See OTP Design Principles for more information about OTP supervision trees, which use this feature.
Emitting Exit Signals

When a process terminates, it terminates with an exit reason as explained in Process Termination. This exit reason
isemitted in an exit signal to all linked processes.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

5.12 Processes

A process can aso call the function exi t (Pi d, Reason) . Thisresultsin an exit signal with exit reason Reason
being emitted to Pi d, but does not affect the calling process.

Receiving Exit Signals

The default behaviour when a process receives an exit signal with an exit reason other than nor mal , isto terminate
and in turn emit exit signals with the same exit reason to its linked processes. An exit signa with reason nor nal
isignored.

A process can be set to trap exit signals by calling:

process flag(trap exit, true)

When aprocessistrapping exits, it does not terminate when an exit signal isreceived. Instead, the signal istransformed
into amessage {' EXI T' , FronPi d, Reason}, which is put into the mailbox of the process, just like a regular
message.

An exception to the above is if the exit reason is ki | | , that is if exi t (Pid, kill) has been called. This
unconditionally terminates the process, regardless of if it istrapping exit signals.

5.12.8 Monitors

An aternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by caling the BIF
erl ang: noni t or (process, Pi d2). Thefunction returns areference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:

{'DOWN', Ref, process, Pid2, Reason}

If Pi d2 doesnot exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

Monitors are unidirectional. Repeated callsto er | ang: noni t or (process, Pi d) creates severa independent
monitors, and each one sends a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: denoni t or (Ref) .
Monitors can be created for processes with registered names, also at other nodes.

5.12.9 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put (Key, Value)
get (Key)

get()

get keys(Value)
erase(Key)
erase()

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Distributed Erlang

5.13 Distributed Erlang
5.13.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is caled a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, arelocal to each node. This means that the
node must be specified as well when sending messages, and so on, using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How toimplement an alternative carrier isdescribed
in the ERTS User's Guide.

5.13.2 Nodes

A nodeis an executing Erlang runtime system that has been given aname, using the command-lineflag - nane (long
names) or - sname (short names).

Theformat of the node nameisan atom nane@ost . nane isthenamegiven by theuser. host isthefull host name
if long names are used, or thefirst part of the host nameif short namesareused. node() returnsthe name of the node.

Example:

% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
'dilbert@uab.ericsson.se’

% erl -sname dilbert
(dilbert@uab)1> node().
dilbert@uab

Note:

A node with along node name cannot communicate with a node with a short node name.

5.13.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used,
for example, if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node
is made.

Connections are by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A aso tries to connect to node C. This feature can be turned off by using the command-line flag - connect _al |
f al se, seetheerl(1) manual pagein ERTS.

If a node goes down, all connections to that node are removed. Calling er | ang: di sconnect _node(Node)
forces disconnection of anode.

The list of (visible) nodes currently connected to is returned by nodes() .

5.13.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. See the epmd(1) manual pagein ERTS.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

5.13 Distributed Erlang

5.13.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example is some kind of O&M functionality used to inspect the status of a system, without disturbing it. For this
purpose, a hidden node can be used.

A hidden node is a node started with the command-line flag - hi dden. Connections between hidden nodes and other
nodes are not transitive, they must be set up explicitly. Also, hidden nodes does not show up inthelist of nodesreturned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node is not added to the set of nodesthat gl obal is keeping track of.

This feature was added in Erlang 5.0/0TP R7.

5.13.6 C Nodes

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. For more information about C nodes, see the Erl_Interface application and
Interoperability Tutorial..

5.13.7 Security

Authentication determines which nodes are allowed to communicate with each other. In a network of different Erlang
nodes, it is built into the system at the lowest possible level. Each node has its own magic cookie, which is an Erlang
atom.

When a node tries to connect to another node, the magic cookies are compared. If they do not match, the connected
node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is assumed to
be nocooki e. The first action of the Erlang network authentication server (aut h) is then to read a file named
$HOVE/ . er | ang. cooki e. If the file does not exigt, it is created. The UNIX permissions mode of the file is set
to octal 400 (read-only by user) and its contents are a random string. An atom Cooki e is created from the contents
of the file and the cookie of the local nodeis setto thisusing er | ang: set _cooki e(node(), Cooki e). This
also makes the local node assume that all other nodes have the same cookie Cooki e.

Thus, groups of userswith identical cookiefiles get Erlang nodesthat can communicate freely and without interference
from the magic cookie system. Users who want to run nodes on separate file systems must make certain that their
cookiefiles areidentical on the different file systems.

For a node Node 1 with magic cookie Cooki e to be able to connect to, or accept a connection from, another node
Node?2 with a different cookie Di f f Cooki e, the function er | ang: set _cooki e(Node2, Diff Cooki e)
must first be called at Node1. Distributed systems with multiple user 1Ds can be handled in this way.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, thereisawaysafully connected network. If there are nodes with different cookies, this method can be
inappropriate and the command-lineflag - connect _al | f al se must be set, seethe erl(1) manual pagein ERTS.

The magic cookie of the local node isretrieved by calling er | ang: get _cooki e() .

5.13.8 Distribution BIFs
Some useful BIFs for distributed programming (for more information, see the erlang(3) manual pagein ERTS:

BIF Description

erl ang: di sconnect _node(Node) Forces the disconnection of a node.

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Distributed Erlang

erl ang: get _cooki e()

Returns the magic cookie of the current node.

is_alive()

Returnst r ue if the runtime system is anode and can
connect to other nodes, f al se otherwise.

noni t or _node(Node,

true| fal se)

Monitors the status of Node. A message{ nodedown,
Node} isreceived if the connectionto it islost.

Returns the name of the current node. Allowed in

node() guards.

Returns the node where Ar g, apid, reference, or port, is
node(Arg) located. 9P P

Returns alist of all visible nodes this node is connected
nodes() o

Depending on Ar g, this function can return alist
nodes(Arg) not only of visible nodes, but aso hidden nodes and

previously known nodes, and so on.

erl ang: set _cooki e(Node, Cooki e)

Sets the magic cookie used when connecting to Node.
If Node isthe current node, Cooki e isused when
connecting to all new nodes.

spawn|[_| i nk| _opt] (Node, Fun)

Creates a process at a remote node.

Functi onNane, Args)

spawn[_I i nk| opt] (Node, Mbdul e,

Creates a process at a remote node.

Table 13.1: Distribution BIFs

5.13.9 Distribution Command-Line Flags

Examples of command-line flags used for distributed programming (for moreinformation, seetheerl(1) manual page

in ERTS:

Command-Line Flag

Description

-connect _all false

Only explicit connection set-ups are used.

- hi dden

Makes a node into a hidden node.

-name Name

Makes a runtime system into a node, using long node
names.

-set cooki e Cooki e

Sameascalinger | ang: set _cooki e(hode(),
Cooki e) .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

5.14 Compilation and Code Loading

Makes a runtime system into a node, using short node
-sname Name

names.
Table 13.2: Distribution Command-Line Flags
5.13.10 Distribution Modules
Examples of modules useful for distributed programming:
In the Kernel application:
Module Description
gl obal A global name registration facility.
gl obal _group Grouping nodes to global name registration groups.
net _adm Various Erlang net administration routines.
net ker nel Erlang networking kernel.
Table 13.3: Kernel Modules Useful For Distribution.
Inthe STDLIB application:
Module Description
sl ave Start and control of slave nodes.

Table 13.4: STDLIB Modules Useful For Distribution.

5.14 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system-dependent. This section describes compilation
and code loading in Erlang/OTP with references to relevant parts of the documentation.

5.14.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate a new file that contains the object code.
The current abstract machine, which runs the object code, is called BEAM, therefore the object files get the suffix
. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the module conpi | e (see the compile(3) manual page in Compiler).
compile: file(Module)

compile: file(Module, Options)

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Modul e.

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Compilation and Code Loading

There is also a module make, which provides a set of functions similar to the UNIX type Make functions, see the
make(3) manual pagein Tools.

The compiler can also be accessed from the OS prompt, see the erl(1) manual pagein ERTS.

erl -compile Modulel...ModuleN
erl -make

)
©
)

©

The er | ¢ program provides an even better way to compile modules from the shell, see the erlc(1) manua pagein
ERTS. It understands a number of flagsthat can be used to define macros, add search pathsfor includefiles, and more.

% erlc <flags> Filel.erl...FileN.erl

5.14.2 Code Loading

The object code must be loaded into the Erlang runtime system. This is handled by the code server, see the code(3)
manual pagein Kernel.

The code server |oads code according to a code loading strategy, which is either interactive (default) or embedded. In
interactive mode, code is searched for in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. Thisis described in System Principles.

5.14.3 Code Replacement
Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin a system: current and old. When amodule isloaded into the system
for the first time, the code becomes "current’. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes ‘current'.

Both old and current code is valid, and can be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code can still be evaluated because of processes lingering in the old code.

If athird instance of the module is|oaded, the code server removes (purges) the old code and any processes lingering
in it isterminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

To change from old code to current code, a process must make a fully qualified function call.
Example:

-module(m).
-export([loop/0]).

loop() ->
receive
code switch ->
m:loop();
Msg ->
loop()
end.

To make the process change code, send the message code_swi t ch to it. The process then makes a fully qualified
cal tom | oop() and changesto current code. Noticethat m | oop/ 0 must be exported.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

5.15 Ports and Port Drivers

For code replacement of funsto work, usethe syntax f un Mbdul e: Functi onNanme/ Arity.

5.14.4 Running a Function When a Module is Loaded

Warning:
The on_|I oad feature is to be considered experimental as there are a number of known weak points in current
semantics, which therefore might change in future Erlang/OTP rel eases:

e Doaing external call inon_| oad to the module itself leads to deadlock.

e At module upgrade, other processes calling the module get suspended waiting for on_I| oad to finish. This
can be very bad for applications with demands on realtime characteristics.

e At module upgrade, no rollback is done if the on_I| oad function fails. The system is left in a bad limbo
state without any working and reachable instance of the module.

The problems with module upgrade described above can be fixed in future Erlang/OTP releases by changing the
behaviour to not make the module reachable until after the on_| oad function has successfully returned.

The- on_| oad() directive names afunction that isto be run automatically when a module isloaded.
Its syntax is as follows:

-on_load(Name/0) .

It is not necessary to export the function. It is called in a freshly spawned process (which terminates as soon as the
function returns). The function must return ok if the module is to remain loaded and become callable, or any other
value if the module is to be unloaded. Generating an exception also causes the module to be unloaded. If the return
value is not an atom, awarning error report is sent to the error logger.

A process that calls any function in a module whose on_| oad function has not yet returned, is suspended until the
on_| oad function has returned.

In embedded mode, first all modules are loaded. Then all on_| oad functions are called. The system is terminated
unless al of theon_| oad functionsreturn ok

Example:

-module(m).
-on_load(load my nifs/0).

load my nifs() ->
NifPath = ..., %Set up the path to the NIF library.
Info = ... %sInitialize the Info term

erlang:loaafnif(NifPath, Info).

If thecall toer | ang: | oad_ni f/ 2 fails, the module is unloaded and awarning report is sent to the error loader.

5.15 Ports and Port Drivers

Examples of how to use ports and port drivers are provided in Interoperability Tutorial. For information about the
BIFs mentioned, see the erlang(3) manual pagein ERTS.

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.15 Ports and Port Drivers

5.15.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process creating aport is said to be the port owner, or the connected process of the port. All communication
to and from the port must go through the port owner. If the port owner terminates, so does the port (and the external
program, if it iswritten correctly).

The external program resides in another OS process. By defaullt, it reads from standard input (file descriptor 0) and
writes to standard output (file descriptor 1). The external program is to terminate when the port is closed.

5.15.2 Port Drivers

Itispossibletowriteadriver in C according to certain principles and dynamically link it to the Erlang runtime system.
The linked-in driver looks like a port from the Erlang programmer's point of view and is called a port driver.

Warning:

An erroneous port driver causes the entire Erlang runtime system to leak memory, hang or crash.

For information about port drivers, seetheerl_driver(4) manual pagein ERTS, driver_entry(1) manual pagein ERTS,
and erl_ddll(3) manual pagein Kernel.

5.15.3 Port BIFs
To create a port:

Returns a port identifier Por t asthe result of opening a
new Erlang port. Messages can be sent to, and received
open_port (PortName, Port Settings from, aport identifier, just like apid. Port identifiers
canasobelinkedtousing | i nk/ 1, or registered under
anameusingr egi ster/ 2.

Table 15.1: Port Creation BIF

Por t Nane isusualy atuple{ spawn, Command} , where the string Comrand is the name of the external program.
The external program runs outside the Erlang workspace, unless a port driver with the name Command is found. If
Command isfound, that driver is started.

Port Set ti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N},
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvaluesfor N arel, 2, or 4. If binariesare to be used instead of lists of bytes, the option bi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the port owner must be identified in the message).

As of Erlang/OTP R16, messages sent to ports are delivered truly asynchronously. The underlying implementation
previously delivered messages to ports synchronously. Message passing has however always been documented as an
asynchronous operation. Hence, this is not to be an issue for an Erlang program communicating with ports, unless
fal se assumptions about ports have been made.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

5.15 Ports and Port Drivers

In the following tables of examples, Dat a must bean 1/Olist. An1/Olistisabinary or a(possibly deep) list of binaries
or integersin the range 0..255:

Message Description

{Pi d, {conmmand, Dat a}} Sends Dat a to the port.

Closes the port. Unless the port is already closed, the
{Pid, cl ose} port replieswith { Por t , cl osed} when al buffers
have been flushed and the port really closes.

Sets the port owner of Por t to NewPi d. Unless

the port is aready closed, the port replies

{Pi d, {connect, NewPi d} } with{ Port , connect ed} totheold port owner. Note
that the old port owner is still linked to the port, but the
new port owner is not.

Table 15.2: Messages Sent To a Port

Message Description

{Port, {data, Dat a} } Dat a isreceived from the external program.
{Port, cl osed} ReplytoPort ! {Pid, cl ose}.

{Port, connect ed} ReplytoPort ! {Pid, {connect, NewPi d}}.
{"EXIT", Port, Reason} If the port has terminated for some reason.

Table 15.3: Messages Received From a Port

Instead of sending and receiving messages, there are also a number of BIFsthat can be used:

Port BIF Description
port _conmand(Port, Dat a) Sends Dat a to the port.
port _cl ose(Port) Closes the port.

Sets the port owner of Por t to NewPi d. The old
port _connect (Port, NewPi d) port owner Pi d stays linked to the port and must call
unl i nk(Port) if thisisnot desired.

erl ang: port _info(Port,ltem Returnsinformation as specified by | t em

erl ang: ports() Returnsalist of al ports on the current node.

Table 15.4: Port BIFs

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.15 Ports and Port Drivers

Some additional BIFsthat apply to port drivers. port _control /3 anderl ang: port_cal | /3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

6.1 Records

6 Programming Examples

This section contains examples on using records, funs, list comprehensions, and the bit syntax.

6.1 Records
6.1.1 Records and Tuples

The main advantage of using records rather than tuplesisthat fieldsin arecord are accessed by hame, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that you want to represent a person with
thetuple{ Name, Address, Phone}.

To write functions that manipulate this data, remember the following:

* TheNane field isthefirst element of the tuple.
 TheAddr ess field isthe second element.
* ThePhone field isthe third element.

For example, to extract data from a variable P that contains such a tuple, you can write the following code and then
use pattern matching to extract the relevant fields:

Name = element(1l, P),
Address = element(2, P),

Such codeisdifficult to read and understand, and errors occur if the numbering of the elementsin thetupleiswrong. If
the data representation of thefieldsis changed, by re-ordering, adding, or removing fields, all referencesto the person
tuple must be checked and possibly modified.

Records allow references to the fields by name, instead of by position. In the following example, a record instead of
atupleis used to store the data:

-record(person, {name, phone, address}).

This enables references to the fields of the record by name. For example, if P isavariable whose valueisaper son
record, the following code access the name and address fields of the records:

Name = P#person.name,
Address = P#person.address,

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Records

6.1.2 Defining a Record

This following definition of aper son isused in several examples in this section. Three fields are included, nane,
phone, and addr ess. The default values for name and phone is"" and [], respectively. The default value for
addr ess istheatom undef i ned, since no default value is supplied for this field:

-record(person, {name = , phone = [], address}).

The record must be defined in the shell to enable use of the record syntax in the examples:

> rd(person, {name = "", phone = [], address}).
person

Thisisbecause record definitions are only available at compile time, not at runtime. For details on recordsin the shell,
see the shell(3) manual pageinstdl i b.
6.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

Astheaddr ess field was omitted, its default value is used.

From Erlang 5.1/OTP R8B, a vaue to al fields in a record can be set with the specia field . means "al fields
not explicitly specified".

Example:
> #person{name = "Jakob", _ ="' _'}.
#person{name = "Jakob",phone = ' ',address = ' '}

Itis primarily intended to be used in et s: nat ch/ 2 and mesi a: mat ch_obj ect / 3, to set record fields to the
atom' ' .(Thisisawildcardinet s: mat ch/ 2.)

6.1.4 Accessing a Record Field

The following example shows how to access arecord field:

> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> P#person.name.

"Joe

6.1.5 Updating a Record

The following example shows how to update a record:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

6.1 Records

> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
#person{name = "Joe",phone = [1,2,3],address = "A street"}

> P2 = Pl#person{name="Robert"}.

#person{name = "Robert",phone = [1,2,3],address = "A street"}

6.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type per son:

foo(P) when is record(P, person) -> a person;
foo() -> not a person.

6.1.7 Pattern Matching

Matching can be used in combination with records, as shown in the following example:

> P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.

#person{name = "Joe",phone = [0,0,7],address = "A street"}
> #person{name = Name} = P3, Name.
"Joe"

Thefollowing function takesalist of per son records and searches for the phone number of aperson with a particular
name:

find phone([#person{name=Name, phone=Phone} |], Name) ->
{found, Phone};

find_phone([_| T], Name) ->
find phone(T, Name);

find phone([], Name) ->
not found.

Thefields referred to in the pattern can be given in any order.

6.1.8 Nested Records

The value of afield in arecord can be an instance of arecord. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(name, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).

demo() ->
P = #person{name= #name{first="Robert", last="Virding"}, phone=123},
First = (P#person.name)#name.first.

Here, denmo() evaluatesto” Robert ™.

6.1.9 A Longer Example

Comments are embedded in the following example:

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2

Funs

o
&

File: person.hrl

Data Type: person

where:
name: A string (default is undefined).
age: An integer (default is undefined).

phone: A list of integers (default is []).
dict: A dictionary containing various information
about the person.

O O A0 A0 0 A0 A0 0 O O
PELELLLLLRS

record(person, {name, age, phone = [], dict = []}).

-module(person).
-include("person.hrl").
-compile(export all). % For test purposes only.

o°

This creates an instance of a person.
% Note: The phone number is not supplied so the
default value [] will be used.

a° o° o°

o°

make hacker without phone(Name, Age) ->
#person{name = Name, age = Age,
dict = [{computer knowledge, excellent},
{drinks, coke}l}.

%% This demonstrates matching in arguments

print (#person{name = Name, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when record(P, person) ->
P#person{age = P#person.age + 1}.

register two hackers() ->
Hackerl = make hacker without phone("Joe", 29),
OldHacker = birthday(Hackerl),
% The central register server should have
% an interface function for this.
central register server ! {register person, Hackerl},
central register server ! {register person,
OldHacker#person{name = "Robert",
phone = [0,8,3,2,4,5,3,1]}}.

6.2 Funs
6.2.1 map

The following function, doubl e, doubles every element in alist:

double([H|T]) -> [2*H|double(T)];

A {Key, Value} list (default is the empty list).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

6.2 Funs

double([]) -> [].

Hence, the argument entered as input is doubled as follows:

> double([1,2,3,4]).
[2,4,6,8]

Thefollowing function, add_one, adds oneto every element in alist:

add one([H|T]) -> [H+1l|add one(T)];
add _one([]) -> [1].

The functions doubl e and add_one have a similar structure. This can be used by writing a function map that
expresses this similarity:

map(F, [H|TI) -> [F(H)|map(F, T)];
map(F, [1) -> [1.

The functionsdoubl e and add_one can now be expressed in terms of map as follows:

double(L) -> map(fun(X) -> 2*X end, L).
add one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) isafunction that takesafunction F and alist L as arguments and returns a new list, obtained by
applying F to each of the elementsin L.

The process of abstracting out the common features of anumber of different programsis called procedural abstraction.
Procedural abstraction can be used to write severa different functions that have a similar structure, but differ in some
minor detail. Thisis done as follows:

* Sep 1. Write one function that represents the common features of these functions.
e Sep 2. Parameterize the difference in terms of functions that are passed as arguments to the common function.

6.2.2 foreach

This section illustrates procedural abstraction. Initialy, the following two examples are written as conventional
functions.

This function prints all elements of alist onto a stream:

print list(Stream, [H|T]) ->
io:format(Stream, "~p~n", [H]),
print list(Stream, T);

print list(Stream, []) ->
true.

This function broadcasts a message to alist of processes:

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

broadcast(Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast(Msg, Pids);
broadcast(, []1) ->
true.

These two functions have asimilar structure. They both iterate over alist and do something to each element in thelist.
The "something" is passed on as an extra argument to the function that does this.

Thefunction f or each expresses this similarity:

foreach(F, [H|T]) ->

F(H),
foreach(F, T);

foreach(F, []) ->
ok.

Using the function f or each, thefunctionpri nt | i st becomes:

foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

Using the function f or each, the function br oadcast becomes:

foreach(fun(Pid) -> Pid ! M end, L)

f or each is evaluated for its side-effect and not its value. f or each(Fun , L) cals Fun(X) for each element
Xin L and the processing occurs in the order that the elements were defined in L. map does not define the order in
which its elements are processed.

6.2.3 Syntax of Funs

Funs are written with the following syntax (see Fun Expressions for full description):
F = fun (Argl, Arg2, ... ArgN) ->
g

This creates an anonymous function of N arguments and binds it to the variable F.

Another function, Funct i onNane, written in the same module, can be passed as an argument, using the following
syntax:

F = fun FunctionName/Arity

With this form of function reference, the function that is referred to does not need to be exported from the module.
It isalso possible to refer to afunction defined in a different module, with the following syntax:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 199

6.2 Funs

F = fun Module:FunctionName/Arity

In this case, the function must be exported from the module in question.
The following program illustrates the different ways of creating funs:

-module(fun_test).
-export([t1/0, t2/0]).
-import(lists, [map/21).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).

double(X) -> X * 2.

The fun F can be evaluated with the following syntax:

F(Argl, Arg2, ..., Argn)

To check whether atermisafun, usethetesti s_functi on/ 1 inaguard.
Example:

f(F, Args) when is function(F) ->
apply(F, Args);

f(N,) when is integer(N) ->
N.

Funs are a distinct type. The BIFser | ang: f un_i nf o/ 1, 2 can be used to retrieve information about a fun, and
theBlFerl ang: fun_to_li st/ 1 returnsatextual representation of afun. Thecheck_pr ocess_code/ 2 BIF
returnst r ue if the process contains funs that depend on the old version of a module.

6.2.4 Variable Bindings Within a Fun

The scope rules for variables that occur in funs are as follows:

« All variables that occur in the head of afun are assumed to be "fresh" variables.

* Variablesthat are defined before the fun, and that occur in function calls or guard tests within the fun, have the
values they had outside the fun.

e Variables cannot be exported from afun.
The following examples illustrate these rules:

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

Here, the variable X, defined in the head of the fun, is a new variable. The variable St r eam which is used within
thefun, getsitsvaluefromthefi | e: open line.

Asany variable that occursin the head of afun is considered anew variable, it is equally valid to write as follows:

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->
io:format(Stream,"~p~n", [File])
end, List),
file:close(Stream).

Here, Fi | e isused asthe new variable instead of X. Thisis not so wise because code in the fun body cannot refer to
thevariable Fi | e, which is defined outside of the fun. Compiling this example gives the following diagnostic:

./FileName.erl:Line: Warning: variable 'File’
shadowed in ‘'fun'

This indicates that the variable Fi | e, which is defined inside the fun, collides with the variable Fi | e, which is
defined outside the fun.

The rules for importing variables into a fun has the consequence that certain pattern matching operations must be
moved into guard expressions and cannot be written in the head of the fun. For example, you might write the following
codeif you intend the first clause of F to be evaluated when the value of its argument is'Y:

Y=L
map (fun(X) when X ==Y ->

6.2.5 Funs and Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
fromthemodulel i st s.

map

map takes afunction of one argument and alist of terms:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

6.2 Funs

map(F, [H|TI) -> [F(H)|map(F, T)];
map(F, [1) -> [1.

It returns the list obtained by applying the function to every argument in the list.
When anew fun is defined in the shell, the value of the funis printed as Fun#<er | _eval >:

> Double = fun(X) -> 2 * X end.
#Fun<erl eval.6.72228031>

> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

any

any takes apredicate P of one argument and alist of terms:

any(Pred, [H|T]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, []) ->
false.

A predicate is afunction that returnst r ue or f al se. any istr ue if thereisaterm X in the list such that P(X)
istrue.

A predicate Bi g(X) isdefined, whichist r ue if itsargument is greater that 10:

> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl eval.6.72228031>

> lists:any(Big, [1,2,3,4]).

false

> lists:any(Big, [1,2,3,12,5]).

true

all

al | hasthe same argumentsasany:

all(Pred, [H|T]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, []1) ->
true.

Itist r ue if the predicate applied to all elementsin thelistist r ue.

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> lists:all(Big, [1,2,3,4,12,6]).
false
> lists:all(Big, [12,13,14,15]).
true

foreach

f or each takes afunction of one argument and alist of terms:;

foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

The function is applied to each argument in thelist. f or each returnsok. It isonly used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1
2
3
4
ok

foldl

f ol dl takesafunction of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Tail]) ->
foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive elements in the list. The second
argument is the accumulator. The function must return a new accumulator, which is used the next time the function
iscalled.

If you havealistof lisssL = ["I","|ike","Erlang"], then you can sum the lengths of all the stringsin L
asfollows:

>L = ["I","like","Erlang"].

[IIIII , Illikell) IIEr'Langll]

10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11

f ol dI workslikeawhi | e loop in an imperative language:

L = ["I",Illikell,"Erlang"],
Sum = 0,
while(L !'= []){

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

6.2 Funs

Sum += length(head(L)),
L = tail(L)
end

mapfoldl

mapf ol dl simultaneously maps and folds over alist;

mapfoldl(F, Accu®, [Hd|Tail]) ->
{R,Accul} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accul, Tail),
{[R|Rs], Accu2};

mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change al lettersin L to upper case and then count them.
First the change to upper case:

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X

end.

#Fun<erl eval.6.72228031>

> Upcase word =

fun(X) ->
lists:map(Upcase, X)
end.

#Fun<erl eval.6.72228031>

> Upcase word("Erlang").
"ERLANG"

> lists:map(Upcase word, L).
["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
{Upcase word(Word), Sum + length(Word)}
end, 0, L).

{["I","LIKE","ERLANG"],11}

filter
filter takesapredicate of one argument and alist and returns al elementsin the list that satisfy the predicate:

filter(F, [H|T]) ->
case F(H) of
true -> [H|filter(F, T)1;
false -> filter(F, T)
end;
filter(F, []1) -> [].

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> lists:filter(Big, [500,12,2,45,6,7]).
[5600,12,45]

Combining maps and filters enables writing of very succinct code. For example, to define a set difference function
di ff (L1, L2) tobethedifference betweenthelistsL1 and L2, the code can be written asfollows:

diff(Ll, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).

Thisgivesthelist of all elementsin L1 that are not contained in L2.
The AND intersection of thelist L1 and L2 is also easily defined:

intersection(L1l,L2) -> filter(fun(X) -> member(X,L1l) end,

takewhile

L2).

t akewhi | e(P, L) takeselements X from alist L aslong asthe predicate P(X) istrue:

takewhile(Pred, [H|T]) ->
case Pred(H) of
true -> [H|takewhile(Pred, T)1;
false -> []
end;
takewhile(Pred, []) ->
[1.

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

dropwhile
dr opwhi | e isthe complement of t akewhi | e:

dropwhile(Pred, [H|T]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H|T]
end;
dropwhile(Pred, []) ->
[1.

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 205

6.2 Funs

splitwith

splitwith(P, L) splitsthelistL intothetwo sublists{L1, L2},whereL = takewhile(P, L) andL2
= dropwhil e(P, L):

splitwith(Pred, L) ->
splitwith(Pred, L, [1).

splitwith(Pred, [H|T], L) ->
case Pred(H) of
true -> splitwith(Pred, T, [H|LI);
false -> {reverse(L), [H|TI}
end;
splitwith(Pred, [], L) ->
{reverse(L), [1}.

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}

6.2.6 Funs Returning Funs

So far, only functions that take funs as arguments have been described. More powerful functions, that themselves
return funs, can also be written. The following examplesillustrate these type of functions.

Simple Higher Order Functions
Adder (X) isafunction that given X, returns a new function Gsuch that G(K) returnsK + X

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl eval.6.72228031>

> Add6 = Adder(6).

#Fun<erl eval.6.72228031>

> Add6(10) .

16

Infinite Lists

Theideaisto write something like:

-module(lazy).
-export([ints from/11).
ints from(N) ->
fun() ->
[N|]ints from(N+1)]
end.

Then proceed as follows:

> XX = lazy:ints from(1).
#Fun<lazy.0.29874839>
> XX().

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

[1]|#Fun<lazy.0.29874839>]
> hd(XX()) .
1

> Y = t1(XX()).
#Fun<lazy.0.29874839>

> hd(Y()).
2

And so on. Thisis an example of "lazy embedding".

Parsing
The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toksl} | fail

Toks isthelist of tokensto be parsed. A successful parsereturns{ ok, Tree, Toks1}.

e Treeisaparsetree.
 Tokslisatail of Tr ee that contains symbols encountered after the structure that was correctly parsed.

An unsuccessful parse returnsf ai | .
The following example illustrates a simple, functional parser that parses the grammar:

(a | b) & (c | d)

The following code defines a function pconst (X) inthe module f unpar se, which returns a fun that parses alist
of tokens:

pconst(X) ->

fun (T) ->
case T of
[X|T1] -> {ok, {const, X}, T1};
_ -> fail
end
end.

This function can be used as follows:

> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).

{ok, {const,a}, [b,cl}

> P1([x,y,z]).

fail

Next, the two higher order functions pand and por are defined. They combine primitive parsers to produce more
complex parsers.

First pand:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

6.2 Funs

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1l) of
{ok, R2, T2} ->
{ok, {'and', R1, R2}};

fail ->

fail
end;
fail ->
fail

end
end.

Given a parser P1 for grammar GL, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar, which consists of sequences of tokens that satisfy GL1, followed by sequences of tokens that satisfy G2.

por (P1, P2) returnsa parser for the language described by the grammar Gl or &:

por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R, T1} ->
{ok, {'or',1,R}, T1};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2,R1}, T1};
fail ->
fail
end
end
end.

The original problem wasto parsethegrammar (a | b) & (¢ | d). Thefollowing code addressesthis problem:
grammar() ->
pand (

por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
(grammar()) (List).

The parser can be tested as follows:

> funparse:parse([a,c]).

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]).
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]).
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).

fail

6.3 List Comprehensions

6.3.1 Simple Examples

This section starts with a simple example, showing a generator and afilter:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].

[a,4,b,5,6]
Thisisread asfollows: Thelist of X such that X istakenfromthelist[1, 2, a, . . .] and X isgreater than 3.
Thenotation X <- [1, 2, a,...] isagenerator and the expression X > 3 isafilter.
An additional filter, i nt eger (X) , can be added to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,bl]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

6.3.2 Quick Sort

The well-known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([X || X <- T, X >= Pivot]);
sort([]) -> [I.

Theexpression[X || X <- T, X < Pivot] isthelistof al elementsin T that are lessthan Pi vot .
[X]| X< T, X >= Pivot] isthelist of al elementsin T that are greater than or equal to Pi vot .

A list sorted as follows:

* Thefirst element inthelist isisolated and the list is split into two sublists.
e Thefirst sublist contains al elements that are smaller than the first element in the list.
e The second sublist contains all elements that are greater than, or equal to, the first element in the list.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

6.3 List Comprehensions

¢ Thenthe sublists are sorted and the results are combined.

6.3.3 Permutations

The following example generates all permutations of the elementsin alist:

perms([1) -> [[I];
perms(L) -> [[H|T] || H<- L, T <- perms(L--[H])].

This takes Hfrom L in al possible ways. The result is the set of al lists[H| T] , where T is the set of al possible
permutations of L, with Hremoved:

> perms([b,u,qg]).
[[b,u,g],[b,g,ul,[u,b,g],[u,q,bl,[g,b,ul,[g,u,bll]

6.3.4 Pythagorean Triplets
Pythagorean triplets are sets of integers{ A, B, C} suchthat A**2 + B**2 = C**2.

Thefunction pyt h(N) generatesalist of al integers{ A, B, C} suchthat A**2 + B**2 = C**2 and wherethe
sum of the sidesis equal to, or lessthan, N:

pyth(N) ->
[{A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C

> pyth(3).
[1.
> pyth(11).
[1.
> pyth(12).
[{3,4,5},{4,3,5}]
> pyth(50).
[{3,4,5},
{4,3,5},
{5,12,13},
{6,8,10},
{8,6,10},
{8,15,17},
{9,12,15},
{12,5,13},
{12,9,15},
{12,16,20},
{15,8,17},
{16,12,20}]

The following code reduces the search space and is more efficient:

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

pythl(N) ->
[{A,B,C} |]
A <- lists:seq(1,N-2),
B <- lists:seq(A+1,N-1),
C <- lists:seq(B+1,N),
A+B+C =< N,
A*A+B*B == C*C].

6.3.5 Simplifications With List Comprehensions

Asan example, list comprehensions can be used to simplify some of the functionsinl i sts. erl :

append(L) -> [X || L1 <- L, X <- L1].
map (Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

6.3.6 Variable Bindings in List Comprehensions
The scope rules for variables that occur in list comprehensions are as follows:

* All variables that occur in agenerator pattern are assumed to be "fresh” variables.

e Any variablesthat are defined before the list comprehension, and that are used in filters, have the values they
had before the list comprehension.

* Variables cannot be exported from alist comprehension.

As an example of these rules, suppose you want to write the function sel ect , which selects certain elementsfrom a
list of tuples. Supposeyou writesel ect (X, L) -> [Y || {X Y} <- L]. withtheintention of extracting
al tuplesfrom L, wherethefirst itemis X.

Compiling this gives the following diagnostic:
./FileName.erl:Line: Warning: variable 'X' shadowed in generate
Thisdiagnostic warnsthat the variable X in the pattern is not the same asthe variable X that occursin the function head.

Evaluating sel ect givesthe following result:

> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[1,2,3,7]

Thisis not the wanted result. To achieve the desired effect, sel ect must be written as follows:

select(X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter.

This now works as expected:

> select(b, [{a,1},{b,2},{c,3},{b,7}]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 211

6.4 Bit Syntax

[2,7]

A consequence of therulesfor importing variablesinto alist comprehensionsisthat certain pattern matching operations
must be moved into the filters and cannot be written directly in the generators.

To illustrate this, do not write as follows:

Y= ...
[Expression || PatternInvolving Y <- Expr, ...]

Instead, write as follows:

Y= ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]

6.4 Bit Syntax
6.4.1 Introduction

In Erlang, a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

<<El, E2, ... En>>

A Binisalow-level sequence of bits or bytes. The purpose of a Bin isto enable construction of binaries:

Bin = <<E1, E2, ... En>>

All elements must be bound. Or match a binary:

<<El1l, E2, ... En>> = Bin

Here, Bi n isbound and the elements are bound or unbound, as in any match.
Since Erlang R12B, a Bin does not need to consist of awhole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits does not need to be divisible by 8. If the
number of bitsisdivisible by 8, the bitstring is also a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment, and so on.

Thefollowing examplesillustrate how binaries are constructed, or matched, and how elements and tails are specified.

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

Examples
Example 1: A binary can be constructed from a set of constants or a string literal:

Binll
Binl2

<<1l, 17, 42>>,
<<"abc">>

This gives two binaries of size 3, with the following evaluations:

e binary_to_list(Binll) evaluatesto[1, 17, 42].

e binary_ to_list(Binl2) evaluatesto[97, 98, 99].

Example 2: Similarly, a binary can be constructed from a set of bound variables:

A=1, B=17, C = 42,
Bin2 = <<A, B, C:16>>

Thisgives abinary of size 4. Here, asize expression is used for the variable C to specify a 16-bits segment of Bi n2.
binary to |ist(Bin2) evduatesto[1, 17, 00, 42].

Example 3: A Bin can a so be used for matching. D, E, and F are unbound variables, and Bi n2 isbound, asin Example
2

<<D:16, E, F/binary>> = Bin2

ThisgivesD = 273,E = 00,and Fbindstoabinary of sizel:binary to list(F) = [42].

Example 4: The following is a more elaborate example of matching. Here, Dgr amis bound to the consecutive bytes
of an IP datagram of |P protocol version 4. The ambition is to extract the header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN HDR LEN, 5).

DgramSize = byte size(Dgram),
case Dgram of
<<?IP VERSION:4, HLen:4, SrvcType:8, TotLen:16,
ID:16, Flgs:3, Frag0ff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
OptsLen = 4*(HLen - ?IP _MIN HDR LEN),
<<0Opts:OptsLen/binary,Data/binary>> = RestDgram,

end.

Here, the segment corresponding to the Opt s variable has atype modifier, specifying that Opt s isto bind to abinary.
All other variables have the default type equal to unsigned integer.

An |P datagram header is of variable length. Thislength is measured in the number of 32-bit wordsand isgiveninthe
segment corresponding to HLen. The minimum value of HLen is 5. It is the segment corresponding to Opt s that is
variable, so if HLen isequal to 5, Opt s becomes an empty binary.

Thetail variables Rest Dgr amand Dat a bind to binaries, as al tail variables do. Both can bind to empty binaries.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

6.4 Bit Syntax

The match of Dgr amfailsif one of the following occurs:

e Thefirst 4-bits segment of Dgr amis not equal to 4.
« HLenislessthan5.
* Thesizeof Dgr amislessthan 4* HLen.

6.4.2 Lexical Note

Notice that "B=<<1>>" will beinterpreted as"B =< <1>>", which isa syntax error. The correct way to write the
expressionis: B = <<1>>.

6.4.3 Segments

Each segment has the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

The Si ze or the TypeSpeci f i er, or both, can be omitted. Thus, the following variants are allowed:

* \Val ue
* Val ue: Si ze
e Val ue/ TypeSpeci fi erLi st

Default values are used when specifications are missing. The default values are described in Defaults.

The Val ue part is any expression, when used in binary construction. Used in binary matching, the Val ue part must
be aliteral or avariable. For more information about the Val ue part, see Constructing Binaries and Bitstrings and
Matching Binaries.

The Si ze part of the segment multiplied by the unit in TypeSpeci fi er Li st (described later) gives the number
of bitsfor the segment. In construction, Si ze isany expression that evaluates to an integer. In matching, Si ze must
be a constant expression or avariable.

The TypeSpeci fi er Li st isalist of type specifiers separated by hyphens.

Type
Thetypecanbei nt eger,fl oat,or bi nary.

Signedness
The signedness specification can be either si gned or unsi gned. Notice that signedness only matters for
matching.

Endianness
The endianness specification can be either bi g, 1 i tt 1 e, or nati ve. Native-endian means that the endian is
resolved at load time, to be either big-endian or little-endian, depending on what is "native" for the CPU that
the Erlang machine isrun on.

Unit
Theunit sizeisgivenasuni t: | nt eger Li t er al . Theallowed rangeis 1-256. It is multiplied by the Si ze
specifier to give the effective size of the segment. Since Erlang R12B, the unit size specifies the alignment for
binary segments without size.

Example:

X:4/little-signed-integer-unit:8

This element has atotal size of 4*8 = 32 bits, and it contains asigned integer in little-endian order.

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

6.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is aliteral.
For example, the default type in <<3. 14>> isinteger, not float.

Thedefault Si ze dependsonthetype. For integer itis8. For float it is64. For binary itisal of thebinary. In matching,
thisdefault valueisonly valid for thelast element. All other binary elementsin matching must have asize specification.

The default unit depends on the the type. For i nt eger ,fl oat ,andbi t stri ngitisl. Forbinaryitis8.
The default signednessisunsi gned.
The default endiannessisbi g.

6.4.5 Constructing Binaries and Bitstrings

This section describes the rulesfor constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of abinary can fail with abadar g exception.

There can be zero or more segmentsin abinary to be constructed. The expression <<>> constructsazero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
typei nt eger andf | oat . For binaries and bitstrings without size, the unit specifiesthe alignment. Since the default
alignment for thebi nar y typeis8, the size of abinary segment must be amultiple of 8 bits, that is, only whole bytes.

Example:

<<Bin/binary,Bitstring/bitstring>>

The variable Bi n must contain awhole number of bytes, because the bi nar y type defaultstouni t : 8. A badar g
exception is generated if Bi n consist of, for example, 17 bits.

TheBi t st ri ng variable can consist of any number of bits, for example, 0, 1, 8, 11, 17, 42, and so on. Thisisbecause
the default uni t for bitstringsis 1.

For clarity, it is recommended not to change the unit size for binaries. Instead, use bi nhar y when you need byte
alignment and bi t st r i ng when you need bit alignment.

The following example successfully constructs a bitstring of 7 bits, provided that all of X and Y are integers:
<<X:1,Y:6>>

As mentioned earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When constructing binaries, Val ue and Si ze can be any Erlang expression. However, for syntactical reasons, both
Val ue and Si ze must be enclosed in parenthesisif the expression consists of anything more than a single literal or
avariable. The following gives a compiler syntax error:

<<X+1:8>>

This expression must be rewritten into the following, to be accepted by the compiler:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

6.4 Bit Syntax

<<(X+1):8>>

Including Literal Strings

A literal string can be written instead of an element:

<<"hello">>

Thisis syntactic sugar for the following:

<<$h, $e,$1, $1, $0>>

6.4.6 Matching Binaries

This section describes the rules for matching binaries, using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur wherever patterns are allowed,
including inside other patterns. Binary patterns cannot be nested. The pattern <<>> matches a zero length binary.

Each segment in abinary can consist of zero or morebits. A segment of typebi nar y must haveasizeevenly divisible
by 8 (or divisible by the unit size, if the unit size has been changed). A segment of typebi t st ri ng hasno restrictions
onthesize.

As mentioned earlier, segments have the following genera syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When matching Val ue, value must be either a variable or an integer, or a floating point literal. Expressions are not
allowed.

Si ze must be an integer literal, or a previously bound variable. The following is not allowed:

foo(N, <<X:N,T/binary>>) ->
{X,T}.

The two occurrences of N are not related. The compiler will complain that the N in the size field is unbound.

The correct way to write this example is as follows:

foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

Getting the Rest of the Binary or Bitstring
To match out the rest of abinary, specify abinary field without size:

foo(<<A:8,Rest/binary>>) ->

The size of the tail must be evenly divisible by 8.
To match out the rest of a bitstring, specify afield without size:

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

foo(<<A:8,Rest/bitstring>>) ->
There are no restrictions on the number of bitsin the tail.

6.4.7 Appending to a Binary

Since Erlang R12B, the following function for creating a binary out of alist of triples of integersis efficient:

triples to bin(T) ->
triples to bin(T, <<>>).

triples to bin([{X,Y,Z} | Tl, Acc) ->

triples to bin(T, <<Acc/binary,X:32,Y:32,Z:32>>); % inefficient before R12B
triples to bin([], Acc) ->

Acc.

In previous releases, this function was highly inefficient, because the binary constructed so far (Acc) was copied in
each recursion step. That is no longer the case. For more information, see Efficiency Guide.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 217

7.1 Introduction

7 Efficiency Guide

7.1 Introduction

7.1.1 Purpose
"Premature optimization is the root of all evil" (D.E. Knuth)

Efficient code can be well-structured and clean, based on a sound overall architecture and sound algorithms. Efficient
code can be highly implementation-code that bypasses documented interfaces and takes advantage of obscure quirks
in the current implementation.

Ideally, your code only contains the first type of efficient code. If that turns out to be too slow, profile the application
to find out where the performance bottlenecks are and optimize only the bottlenecks. Let other code stay as clean as
possible.

Fortunately, compiler and runtime optimizations introduced in Erlang/OTP R12B makes it easier to write code that is
both clean and efficient. For example, the ugly workarounds needed in R11B and earlier releases to get the most speed
out of binary pattern matching are no longer necessary. In fact, the ugly code is slower than the clean code (because
the clean code has become faster, not because the uglier code has become slower).

This Efficiency Guide cannot really teach you how to write efficient code. It can give you afew pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. This guide does not
include general tips about optimization that worksin any language, such as moving common cal cul ations out of loops.

7.1.2 Prerequisites

It is assumed that you are familiar with the Erlang programming language and the OTP concepts.

7.2 The Eight Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because "information” spreads faster from
person-to-person than a single rel ease note that says, for example, that funs have become faster.

This section triesto kill the old truths (or semi-truths) that have become myths.

7.2.1 Myth: Funs are Slow

Funs used to be very slow, slower than appl y/ 3. Originally, funs were implemented using nothing more than
compiler trickery, ordinary tuples, appl y/ 3, and agreat deal of ingenuity.

But that is history. Funswas given its own data type in R6B and was further optimized in R7B. Now the cost for afun
call falsroughly between the cost for acall to alocal function and appl y/ 3.
7.2.2 Myth: List Comprehensions are Slow

List comprehensions used to be implemented using funs, and in the old days funs were indeed slow.

Nowadays, the compiler rewrites list comprehensions into an ordinary recursive function. Using a tail-recursive
function with areverse at the end would be still faster. Or would it? That leads us to the next myth.

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 The Eight Myths of Erlang Performance

7.2.3 Myth: Tail-Recursive Functions are Much Faster Than Recursive
Functions

According to the myth, recursive functions leave references to dead terms on the stack and the garbage collector has
to copy al those dead terms, while tail-recursive functions immediately discard those terms.

That used to be true before R7B. In R7B, the compiler started to generate code that overwrites references to terms
that will never be used with an empty list, so that the garbage collector would not keep dead values any longer than
necessary.

Even after that optimization, atail-recursive function is still most of the times faster than a body-recursive function.
Why?

It has to do with how many words of stack that are used in each recursive call. In most cases, arecursive function uses
more words on the stack for each recursion than the number of words atail-recursive would allocate on the heap. As
more memory is used, the garbage collector is invoked more frequently, and it has more work traversing the stack.

In R12B and later releases, there is an optimization that in many cases reduces the number of words used on the stack
in body-recursive calls. A body-recursive list function and atail-recursive function that calls lists.reverse/1 at the end
will use the same amount of memory. | i sts: map/ 2,1 ists:filter/2,list comprehensions, and many other
recursive functions now use the same amount of space as their tail-recursive equivalents.

So, whichisfaster? It depends. On Solaris/Sparc, the body-recursive function seemsto be dightly faster, even for lists
with alot of elements. On the x86 architecture, tail-recursion was up to about 30% faster.

So, the choice is now mostly a matter of taste. If you really do need the utmost speed, you must measure. Y ou can no
longer be sure that the tail-recursive list function aways is the fastest.

Note:

A tail-recursive function that does not need to reverse the list at the end is faster than a body-recursive function,
asaretail-recursive functions that do not construct any termsat al (for example, afunction that sums all integers
inalist).

7.2.4 Myth: Operator "++" is Always Bad

The ++ operator has, somewhat undeservedly, got a bad reputation. It probably has something to do with code like
the following, which is the most inefficient way thereisto reverse alist:

DO NOT

naive reverse([H|T]) ->
naive reverse(T)++[H];
naive reverse([]) ->
[1.

Asthe ++ operator copies its |eft operand, the result is copied repeatedly, leading to quadratic complexity.
But using ++ asfollowsis not bad:
OK

naive but ok reverse([H|T], Acc) ->
naive but ok reverse(T, [H]++Acc);

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

7.3 Common Caveats

naive but ok reverse([], Acc) ->
Acc.

Each list element is copied only once. The growing result Acc is the right operand for the ++ operator, and it is not
copied.

Experienced Erlang programmers would write as follows:
DO

vanilla reverse([H|T], Acc) ->
vanilla reverse(T, [H]|Accl);
vanilla reverse([], Acc) ->
Acc.

This is dightly more efficient because here you do not build a list element only to copy it directly. (Or it would be
more efficient if the compiler did not automatically rewrite[H] ++Acc to[H Acc] .)

7.2.5 Myth: Strings are Slow

String handling can be slow if done improperly. In Erlang, you need to think a little more about how the strings are
used and choose an appropriate representation. If you use regular expressions, use the re module in STDLIB instead
of the obsoleter egexp module.

7.2.6 Myth: Repairing a Dets File is Very Slow

The repair time is till proportional to the number of records in the file, but Dets repairs used to be much slower in
the past. Dets has been massively rewritten and improved.

7.2.7 Myth: BEAM is a Stack-Based Byte-Code Virtual Machine (and
Therefore Slow)

BEAM isaregister-based virtual machine. It has 1024 virtual registersthat are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive afunction call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.

7.2.8 Myth: Use " " to Speed Up Your Program When a Variable is Not
Used

That was once true, but from R6B the BEAM compiler can see that avariable is not used.

7.3 Common Caveats

This section lists afew modules and BIFs to watch out for, not only from a performance point of view.

7.3.1 Timer Module

Creating timers using erlang:send_after/3 and erlang:start_timer/3 , is much more efficient than using the timers
provided by the timer module in STDLIB. Thet i mer module uses a separate process to manage the timers. That
process can easily become overloaded if many processes create and cancel timers frequently (especially when using
the SMP emulator).

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 Common Caveats

The functionsin the t i mer module that do not manage timers (such astiner:tc/ 3 ortiner: sl eep/ 1), do
not call the timer-server process and are therefore harmless.

7.3.2 list to_atom/1

Atoms are not garbage-collected. Once an atom is created, it is never removed. The emulator terminates if the limit
for the number of atoms (1,048,576 by default) is reached.

Therefore, converting arbitrary input strings to atoms can be dangerous in a system that runs continuougly. If only
certain well-defined atoms are allowed as input, list_to_existing_atorm/1 can be used to to guard against a denial-of-
service attack. (All atoms that are allowed must have been created earlier, for example, by simply using all of them
in amodule and loading that module.)

Using | i st _to_at oni 1 to construct an atom that is passed to appl y/ 3 asfollows, is quite expensive and not
recommended in time-critical code:

apply(list to atom("some prefix"++Var), foo, Args)

7.3.3 length/1

The time for calculating the length of alist is proportional to the length of the list, as opposed tot upl e_si ze/ 1,
byte size/ 1l,andbit_si ze/ 1, whichal executein constant time.

Normally, there is no need to worry about the speed of | engt h/ 1, because it is efficiently implemented in C. In
time-critical code, you might want to avoid it if theinput list could potentially be very long.

Some uses of | engt h/ 1 can be replaced by matching. For example, the following code:
foo(L) when length(L) >= 3 ->

can be rewritten to:
foo([_,_,_|_1=L) ->

Onedlight differenceisthat | engt h(L) failsif L isanimproper list, while the pattern in the second code fragment
accepts an improper list.

7.3.4 setelement/3

setelement/3 copies the tuple it modifies. Therefore, updating atuplein aloop using set el errent / 3 creates anew
copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give the sameresult as if the tuple was copied, the call to set el enent / 3 isreplaced with a special
destructiveset el ermrent instruction. Inthe following code sequence, thefirst set el enment / 3 call copiesthetuple
and modifies the ninth element:

multiple setelement(TO) ->
Tl = setelement(9, TO, bar),
T2 = setelement(7, T1l, foobar),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

7.3 Common Caveats

setelement (5, T2, new value).

The two following set el ement / 3 calls modify the tuplein place.
For the optimization to be applied, all the followings conditions must be true:

* Theindices must be integer literals, not variables or expressions.
* Theindices must be given in descending order.
* Theremust be no calls to another function in between the callsto set el ement / 3.

» Thetuplereturned from oneset el ermrent / 3 call must only be used in the subsequent call to
set el enent/ 3.

If the code cannot be structured asinthenul ti pl e_set el ement/ 1 example, the best way to modify multiple
elementsin alarge tupleisto convert the tuple to alist, modify the list, and convert it back to atuple.

7.3.5 size/l

si ze/ 1 returnsthe size for both tuples and binaries.

Using thenew BIFst upl e_si ze/ 1 and byt e_si ze/ 1, introduced in R12B, gives the compiler and the runtime
system more opportunities for optimization. Another advantage is that the new BIFs can help Diayzer to find more
bugsin your program.

7.3.6 split_binary/2

It is usually more efficient to split a binary using matching instead of calling the spl it _bi nary/ 2 function.
Furthermore, mixing bit syntax matching and spl i t _bi nary/ 2 can prevent some optimizations of bit syntax
matching.

DO
<<Binl:Num/binary,Bin2/binary>> = Bin,

DO NOT

{Binl,Bin2} = split binary(Bin, Num)

7.3.7 Operator "--"

The "- - " operator has a complexity proportional to the product of the length of its operands. This means that the
operator isvery slow if both of its operands are long lists:

DO NOT

HugelListl -- Hugelist2

Instead use the ordsets modulein STDLIB:
DO

HugeSetl = ordsets:from list(HugelListl),

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

HugeSet2 = ordsets:from list(HugelList2),
ordsets:subtract(HugeSetl, HugeSet2)

Obviously, that code does not work if the original order of thelistisimportant. If the order of thelist must be preserved,
do asfollows:

DO
Set = gb sets:from list(HugelList2),
[E || E <- HugelListl, not gb sets:is element(E, Set)]
Note:
This code behaves differently from "- - " if the lists contain duplicate elements (one occurrence of an element in
HugeL ist2 removes all occurrencesin Hugelist1.)
Also, this code compares lists elements using the "==" operator, while "- - " uses the "=: =" operator. If that

differenceisimportant, set s canbeusedinstead of gb_set s,butset s: from | i st/ 1 ismuch slower than
gb_sets:fromlist/1forlonglists.

Using the"- - " operator to delete an element from alist is not a performance problem:
OK

HugelListl -- [Element]

7.4 Constructing and Matching Binaries

In R12B, the most natural way to construct and match binariesis significantly faster than in earlier releases.
To construct a binary, you can simply write as follows:

DO (in R12B) / REALLY DO NOT (in earlier releases)

my list to binary(List) ->
my list to binary(List, <<>>).

my list to binary([H|T], Acc) ->

my list to binary(T, <<Acc/binary,H>>);
my list to binary([], Acc) ->

Acc.

In releases before R12B, Acc is copied in every iteration. In R12B, Acc is copied only in thefirst iteration and extra
spaceisallocated at the end of the copied binary. In the next iteration, Hiswritten into the extra space. When the extra
space runs out, the binary is reallocated with more extra space. The extra space allocated (or reallocated) is twice the
size of the existing binary data, or 256, whichever islarger.

The most natural way to match binariesis now the fastest:
DO (in R12B)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

7.4 Constructing and Matching Binaries

my binary to list(<<H,T/binary>>) ->
[Hlmy binary to list(T)];
my binary to list(<<>>) -> [].

7.4.1 How Binaries are Implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, they are called binaries because
that iswhat they are called in the emulator source code.

Four types of binary objects are available internally:
» Two are containers for binary dataand are called:
* Refc binaries (short for reference-counted binaries)
* Heap binaries
* Two are merely references to apart of abinary and are called:
e subbinaries
* match contexts
Refc Binaries
Refc binaries consist of two parts.

e Anobject stored on the process heap, called a ProcBin
» Thebinary object itself, stored outside al process heaps

The binary object can be referenced by any number of ProcBins from any number of processes. The object contains a
reference counter to keep track of the number of references, sothat it can beremoved when thelast reference disappears.

All ProcBin objects in a process are part of alinked list, so that the garbage collector can keep track of them and
decrement the reference countersin the binary when a ProcBin disappears.
Heap Binaries

Heap binaries are small binaries, up to 64 bytes, and are stored directly on the process heap. They are copied when
the process is garbage-collected and when they are sent as a message. They do not require any special handling by
the garbage collector.

Sub Binaries

The reference objects sub binaries and match contexts can reference part of arefc binary or heap binary.

A sub binaryiscreated by spl it _bi nary/ 2 and when abinary is matched out in abinary pattern. A sub binary is
areference into a part of another binary (refc or heap binary, but never into another sub binary). Therefore, matching
out abinary isrelatively cheap because the actual binary datais never copied.

Match Context

A match context issimilar to asub binary, but isoptimized for binary matching. For example, it containsadirect pointer
to the binary data. For each field that is matched out of a binary, the position in the match context is incremented.

In R11B, a match context was only used during a binary matching operation.

In R12B, the compiler triesto avoid generating code that creates a sub binary, only to shortly afterwards create a new
match context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do thisoptimization if it knows that the match context will not be shared. If it would be shared,
the functional properties (also called referential transparency) of Erlang would break.

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

7.4.2 Constructing Binaries
In R12B, appending to a binary or bitstring is specially optimized by the runtime system:

<<Binary/binary, ...>>
<<Binary/bitstring, ...>>

As the runtime system handles the optimization (instead of the compiler), there are very few circumstances in which
the optimization does not work.

To explain how it works, let us examine the following code line by line:

Bin® = <<0>>, %% 1
Binl = <<Bin@/binary,1,2,3>>, %% 2
Bin2 = <<Binl/binary,4,5,6>>, %% 3
Bin3 = <<Bin2/binary,7,8,9>>, %% 4
Bin4 = <<Binl/binary,17>>, %% 5 !
{Bin4,Bin3} %% 6

e Linel (marked with the %86 1 comment), assigns a heap binary to the Bi nO variable.

e LineZ2isan append operation. AsBi n0 has not been involved in an append operation, anew refc binary is
created and the contents of Bi n0 is copied into it. The ProcBin part of the refc binary hasits size set to the size
of the data stored in the binary, while the binary object has extra space allocated. The size of the binary object is
either twice the size of Bi n1 or 256, whichever islarger. In this caseit is 256.

» Line3ismoreinteresting. Bi n1 hasbeen used in an append operation, and it has 252 bytes of unused storage
at the end, so the 3 new bytes are stored there.

e Line4. The same applies here. There are 249 bytes left, so there is no problem storing another 3 bytes.

* Lineb. Here, something interesting happens. Notice that the result is not appended to the previous
result in Bi n3, but to Bi nl. It is expected that Bi n4 will be assigned thevalue<<0, 1, 2, 3, 17>>.
Itisalso expected that Bi n3 will retain itsvalue (<<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>). Clearly, the
runtime system cannot write byte 17 into the binary, because that would change the value of Bi n3 to
<<0,1,2,3,4,17,6,7, 8, 9>>.

The runtime system sees that Bi n1 is the result from a previous append operation (not from the latest append
operation), so it copies the contents of Bi n1 to anew binary, reserve extra storage, and so on. (Here is not explained
how the runtime system can know that it isnot allowed to writeinto Bi n1; itisleft asan exerciseto the curious reader
to figure out how it is done by reading the emulator sources, primarily er| _bits. c.)

Circumstances That Force Copying

The optimization of the binary append operation requires that there is a single ProcBin and a single reference to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens, the pointer in the ProcBin must be updated. If there would be more than one ProcBin pointing
to the binary object, it would not be possible to find and update all of them.

Therefore, certain operations on abinary mark it so that any future append operation will be forced to copy the binary.
In most cases, the binary object will be shrunk at the same time to reclaim the extra space allocated for growing.

When appending to a binary asfollows, only the binary returned from the latest append operation will support further
cheap append operations:

Bin = <<Bin@,...>>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

7.4 Constructing and Matching Binaries

In the code fragment in the beginning of this section, appending to Bi n will be cheap, while appending to Bi n0 will
force the creation of anew binary and copying of the contents of Bi nO.

If abinary issent asamessageto aprocessor port, the binary will be shrunk and any further append operation will copy
the binary datainto a new binary. For example, in the following code fragment Bi n1 will be copied in the third line:

Binl = <<Bin@,...>>,
PortOrPid ! Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The same happens if you insert a binary into an Ets table, send it to aport using er | ang: port _comrand/ 2, or
passit to enif_inspect_binary in aNIF.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bin@,...>>,
<<X,Y,Z,T/binary>> = Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The reason isthat a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data’ or in the process dictionary), the garbage collector can
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appends to a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

7.4.3 Matching Binaries
Let usrevisit the example in the beginning of the previous section:
DO (in R12B)

my binary to list(<<H,T/binary>>) ->
[H|my binary to list(T)];
my binary to list(<<>>) -> [].

Thefirsttimeny_bi nary to_|i st/ 1iscaled, amatch context is created. The match context points to the first
byte of the binary. 1 byte is matched out and the match context is updated to point to the second byte in the binary.

In R11B, at this point a sub binary would be created. In R12B, the compiler sees that there is no point in creating
a sub binary, because there will soon be a call to afunction (in thiscase, tormy_bi nary_to_|i st/ 1 itself) that
immediately will create a new match context and discard the sub binary.

Therefore, in R12B, ny_bi nary_t o_I i st/ 1 calsitself with the match context instead of with a sub binary. The
instruction that initializes the matching operation basically does nothing when it seesthat it was passed a match context
instead of abinary.

When the end of the binary is reached and the second clause matches, the match context will simply be discarded
(removed in the next garbage collection, as thereis no longer any reference to it).

To summarize, my_bi nary_to_list/1inR12B only needs to create one match context and no sub binaries. In
R11B, if the binary contains N bytes, N+ 1 match contexts and N sub binaries are created.

In R11B, the fastest way to match binariesis as follows:
DO NOT (in R12B)

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

my complicated binary to list(Bin) ->
my complicated binary to list(Bin, 0).

my complicated binary to list(Bin, Skip) ->
case Bin of
<< :Skip/binary,Byte, /binary>> ->
[Byte|my complicated binary to list(Bin, Skip+1)];
<<_:Skip/binary>> ->

end.

This function cleverly avoids building sub binaries, but it cannot avoid building a match context in each recursion
step. Therefore, in both R11B and R12B, my _conpl i cat ed_bi nary_to_|i st/ 1 builds N+1 match contexts.
(In afuture Erlang/OTP release, the compiler might be able to generate code that reuses the match context.)

Returning to ny_bi nary_to_|i st/ 1, notice that the match context was discarded when the entire binary had
been traversed. What happens if the iteration stops before it has reached the end of the binary? Will the optimization
still work?

after zero(<<0,T/binary>>) ->
T;

after zero(<< ,T/binary>>) ->
after zero(T);

after zero(<<>>) ->
<<>>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause;

after zero(<< ,T/binary>>) ->
after zero(T);

But it will generate code that builds a sub binary in the first clause:

after zero(<<0,T/binary>>) ->
T;

Therefore, af t er _zer o/ 1 buildsone match context and one sub binary (assuming it is passed abinary that contains
azero byte).

Code like the following will also be optimized:

all but zeroes to list(Buffer, Acc, 0) ->
{lists:reverse(Acc),Buffer};

all but zeroes to list(<<0,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, Acc, Remaining-1);

all but zeroes to list(<<Byte,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, [Byte|Acc], Remaining-1).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

7.4 Constructing and Matching Binaries

The compiler removes building of sub binaries in the second and third clauses, and it adds an instruction to the first
clause that converts Buf f er from amatch context to a sub binary (or do nothing if Buf f er isabinary aready).

Before you begin to think that the compiler can optimize any binary patterns, the following function cannot be
optimized by the compiler (currently, at least):

non_opt_eq([H|T1], <<H,T2/binary>>) ->
non_opt_eq(T1, T2);

non_opt_eq([_|_1, <<_,_/binary>>) ->
false;

non_opt_eq([], <<>>) ->
true.

It was mentioned earlier that the compiler can only delay creation of sub binariesif it knows that the binary will not
be shared. In this case, the compiler cannot know.

Soon it is shown how to rewrite non_opt _eq/ 2 so that the delayed sub binary optimization can be applied, and
more importantly, it is shown how you can find out whether your code can be optimized.

Option bin_opt_info

Usethebi n_opt _i nf o option to have the compiler print alot of information about binary optimizations. It can be
given either to the compiler or er | c:

erlc +bin opt info Mod.erl

or passed through an environment variable:

export ERL COMPILER OPTIONS=bin opt info

Notice that the bi n_opt _i nf o is not meant to be a permanent option added to your Makef i | es, because all
messages that it generates cannot be eliminated. Therefore, passing the option through the environment is in most
cases the most practical approach.

The warnings look as follows:

./efficiency guide.erl:60: Warning: NOT OPTIMIZED: sub binary is used or returned
./efficiency guide.erl:62: Warning: OPTIMIZED: creation of sub binary delayed

To make it clearer exactly what code the warnings refer to, the warnings in the following examples are inserted as
comments after the clause they refer to, for example:

after zero(<<0,T/binary>>) ->
%% NOT OPTIMIZED: sub binary is used or returned
T;
after zero(<< ,T/binary>>) ->
%% OPTIMIZED: creation of sub binary delayed
after zero(T);
after zero(<<>>) ->
<<>>,

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

The warning for the first clause says that the creation of a sub binary cannot be delayed, because it will be returned.
The warning for the second clause says that a sub binary will not be created (yet).

Let usrevisit the earlier example of the code that could not be optimized and find out why:

non_opt eq([H|T1], <<H,T2/binary>>) ->
%% INFO: matching anything else but a plain variable to
the left of binary pattern will prevent delayed
sub binary optimization;
SUGGEST changing argument order
%% NOT OPTIMIZED: called function non opt eq/2 does not
begin with a suitable binary matching instruction
non_opt eq(T1l, T2);
non opt eq([| 1, <<, /binary>>) ->
false;
non _opt eq([], <<>>) ->
true.

o o o°
o® o° o°

oP
o°

The compiler emitted two warnings. Thel NFOwarning refersto thefunctionnon_opt _eq/ 2 asacallee, indicating
that any function that call non_opt _eq/ 2 cannot make delayed sub binary optimization. There is also a suggestion
to change argument order. The second warning (that happens to refer to the same line) refers to the construction of
the sub binary itself.

Soon another examplewill show the difference between thel NFOand NOT OPTI M ZEDwarnings somewhat clearer,
but let usfirst follow the suggestion to change argument order:

opt eq(<<H,Tl/binary>>, [H|T2]) ->
%% OPTIMIZED: creation of sub binary delayed
opt_eq(T1, T2);
opt_eq(<<_, /binary>>, [| 1) ->
false;
opt_eq(<<>>, []) ->
true.

The compiler gives awarning for the following code fragment:

match body([0| 1, <<H, /binary>>) ->
%% INFO: matching anything else but a plain variable to
the left of binary pattern will prevent delayed
sub binary optimization;
SUGGEST changing argument order
done;

a° o° o°
o° o° o°

The warning means that if thereisacall to mat ch_body/ 2 (from another clause in mat ch_body/ 2 or another
function), the delayed sub binary optimization will not be possible. More warnings will occur for any place where a
sub binary is matched out at the end of and passed as the second argument to mat ch_body/ 2, for example:

match head(List, << :10,Data/binary>>) ->
%% NOT OPTIMIZED: called function match body/2 does not
%% begin with a suitable binary matching instruction
match body(List, Data).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

7.5 List Handling

Unused Variables
The compiler figures out if avariable is unused. The same code is generated for each of the following functions:

countl(<<_ ,T/binary>>, Count) -> countl(T, Count+l);
countl(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+l);
count2(<<>>, Count) -> Count.

count3(<< H,T/binary>>, Count) -> count3(T, Count+l);
count3(<<>>, Count) -> Count.

In each iteration, the first 8 bitsin the binary will be skipped, not matched out.

7.5 List Handling
7.5.1 Creating a List

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the "++" operator
asfollows, anew list is created that isa copy of theelementsin Li st 1, followed by Li st 2:

Listl ++ List2

Looking at how | i st s: append/ 1 or ++ would be implemented in plain Erlang, clearly thefirst list is copied:

append([H|T], Tail) ->
[H|append (T, Tail)l;

append([], Tail) ->
Tail.

When recursing and building alist, it isimportant to ensure that you attach the new elements to the beginning of the
list. In thisway, you will build one list, not hundreds or thousands of copies of the growing result list.

Let usfirst see how it is not to be done:
DO NOT

bad fib(N) ->
bad fib(N, 0, 1, []).

bad fib(®, Current, Next, Fibs) ->
Fibs;
bad fib(N, Current, Next, Fibs) ->
bad fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

Here more than one list is built. In each iteration step a new list is created that is one element longer than the new
previous list.

To avoid copying the result in each iteration, build thelist in reverse order and reverse the list when you are done:
DO

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.5 List Handling

tail recursive fib(N) ->
tail recursive fib(N, 0, 1, [1).

tail recursive fib(®, Current, Next, Fibs) ->
lists:reverse(Fibs);
tail recursive fib(N, Current, Next, Fibs) ->
tail recursive fib(N - 1, Next, Current + Next, [Current|Fibs]).

7.5.2 List Comprehensions

Lists comprehensions still have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

In recent Erlang/OTP releases (including R12B), alist comprehension:

[Expr(E) || E <- List]

isbasicaly trandated to alocal function:

‘lc™0' ([E|Taill, Expr) ->
[Expr(E)|'lc™0'(Tail, Expr)];
‘1c™0' ([1, Expr) -> [].

In R12B, if the result of the list comprehension will obviously not be used, alist will not be constructed. For example,
in this code;

[io:put chars(E) || E <- List],
ok.

or in this code:

case Var of
. =>

[io:put chars(E) || E <- List];
ce. =
end,
some_ function(...),

the value is not assigned to a variable, not passed to another function, and not returned. This means that there is no
need to construct alist and the compiler will simplify the code for the list comprehension to:

'1c™0' ([E|Tail], Expr) ->
Expr(E),
'lc”0' (Tail, Expr);
‘1c™0' ([1, Expr) -> [].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

7.5 List Handling

7.5.3 Deep and Flat Lists

lists:flatten/1 builds an entirely new list. It is therefore expensive, and even more expensive than the ++ operator
(which copiesits left argument, but not its right argument).

In the following situations, you can easily avoid callingl i sts: fl atten/ 1:

e When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

* When calling BIFs that accept deep lists, such aslist_to _binary/1 or iolist_to_binary/1.
* When you know that your list is only one level deep, you can use lists.append/1.

Port Example
DO

port command(Port, DeeplList)

DO NOT

port command(Port, lists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:
DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $0, $0, O]
port_command(Port, TerminatedStr)

Instead:
DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $0, $0], O]
port command(Port, TerminatedStr)

Append Example
DO

> lists:append([[1], [2]1, [311).
[1,2,3]

>

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

DO NOT

> lists:flatten([[1], [2], [31]).
[1,2,3]

>

7.5.4 Recursive List Functions
In Section 7.2, the following myth was exposed: Tail-Recursive Functionsare Much Faster Than Recursive Functions.

To summarize, in R12B thereis usually not much difference between a body-recursive list function and tail-recursive
function that reverses the list at the end. Therefore, concentrate on writing beautiful code and forget about the
performance of your list functions. In the time-critical parts of your code (and only there), measure before rewriting
your code.

Note:

This section is about list functions that construct lists. A tail-recursive function that does not construct alist runs
in constant space, while the corresponding body-recursive function uses stack space proportional to the length
of the list.

For example, afunction that sums alist of integers, is not to be written as follows:
DO NOT

T1) -> H+recursive sum(T);

recursive sum |
) -> 0.

([H
recursive sum([]
Instead:

DO

sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

7.6 Functions
7.6.1 Pattern Matching

Pattern matching in function head aswell asin case andr ecei ve clauses are optimized by the compiler. With a
few exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler does not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last is usually slightly faster than placing it first.

Thefollowing is arather unnatural example to show another exception:
DO NOT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

7.6 Functions

atom mapl(one) -> 1;
atom mapl(two) -> 2;
atom mapl(three) -> 3;

atom mapl(Int) when is integer(Int) -> Int;
atom mapl(four) -> 4;

atom mapl(five) -> 5;

atom mapl(six) -> 6.

The problem isthe clause with thevariable | nt . Asavariable can match anything, including the atomsf our ,f i ve,
andsi x, whichthefollowing clausesa so match, the compiler must generate suboptimal codethat executesasfollows:

» Fird, theinput value is compared to one, t wo, and t hr ee (using asingle instruction that does a binary
search; thus, quite efficient even if there are many values) to select which one of the first three clausesto
execute (if any).

« >|f none of the first three clauses match, the fourth clause match as a variable always matches.

« |Iftheguardtesti s_i nt eger (I nt) succeeds, the fourth clause is executed.

» |f theguard test fails, the input valueis compared to f our , f i ve, and si x, and the appropriate clause is
selected. (Thereisaf uncti on_cl ause exception if none of the values matched.)

Rewriting to either:
DO

atom map2(one) -> 1;
atom map2(two) -> 2;
atom map2(three) -> 3;

atom map2(four) -> 4;

atom map2(five) -> 5;

atom map2(six) -> 6;

atom map2(Int) when is integer(Int) -> Int.

or:
DO

atom map3(Int) when is integer(Int) -> Int;
atom map3(one) -> 1;

atom map3(two) -> 2;

atom map3(three) -> 3;

atom map3(four) -> 4;

atom map3(five) -> 5;

atom map3(six) -> 6.

gives dlightly more efficient matching code.
Another example:
DO NOT

map_pairsl(Map, [1, Ys) ->
Ys;
map_pairsl(Map, Xs, []1) ->
Xs;
map_pairsl(Map, [X|Xs], [Y|Ys]) ->

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

[Map(X, Y)|map pairsl(Map, Xs, Ys)].

Thefirst argument is not a problem. It isvariable, but it isavariable in all clauses. The problem isthe variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not alowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten as follows, the compiler is free to rearrange the clauses:

DO

map_pairs2(Map, [], Ys) ->
Ys;

map_pairs2(Map, [| 1=Xs, [1) ->
Xs;

map_pairs2(Map, [X|Xs], [Y|Ys]) ->
[Map(X, Y)|map _pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:
DO NOT (already done by the compiler)

explicit map pairs(Map, Xs0, Ys0) ->
case Xs0O of
[X[Xs] ->
case YsO of
[Y|Ys] ->
[Map(X, Y)|explicit map_pairs(Map, Xs, Ys)l;
[1 ->
Xs0
end;
[1 ->
YsO
end.

Thisis dlightly faster for probably the most common case that the input lists are not empty or very short. (Another
advantage isthat Dialyzer can deduce a better type for the Xs variable.)

7.6.2 Function Calls

This is an intentionally rough guide to the relative costs of different calls. It is based on benchmark figures run on
Solaris/Sparc:
e Cadllstolocal or external functions (f oo() , m f oo()) are the fastest calls.

e Cdling or applying afun (Fun() ,appl y(Fun, [])) isabout threetimes as expensive as calling alocal
function.

« Applying an exported function (Mod: Nare() , appl y(Md, Nanme, [])) isabouttwice asexpensive as
calling afun or about six times as expensive as calling alocal function.

Notes and Implementation Details

Calling and applying afun does not involve any hash-table lookup. A fun contains an (indirect) pointer to the function
that implements the fun.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

7.6 Functions

Warning:

Tuples are not fun(s). A "tuple fun”, { Modul e, Funct i on}, isnot afun. The cost for calling a "tuple fun" is
similar to that of appl y/ 3 or worse. Using "tuple funs" is strongly discouraged, as they might not be supported
in a future Erlang/OTP release, and because there exists a superior alternative from R10B, namely the f un
Modul e: Function/ Ari ty syntax.

app! y/ 3 must look up the code for the function to execute in a hash table. It istherefore always slower than a direct
cal or afuncal.

It no longer matters (from a performance point of view) whether you write:

Module:Function(Argl, Arg2)

or:

apply(Module, Function, [Argl,Arg2])

The compiler internally rewrites the latter code into the former.
The following codeis dlightly slower because the shape of the list of arguments is unknown at compile time.

apply(Module, Function, Arguments)

7.6.3 Memory Usage in Recursion

When writing recursive functions, it is preferable to make them tail-recursive so that they can execute in constant
memory space:

DO

list length(List) ->
list length(List, 0).

list length([], AccLen) ->
AcclLen; % Base case

list length([|Taill, AccLen) ->
list length(Tail, AccLen + 1). % Tail-recursive

DO NOT

list length([]) ->
0. % Base case
list length([| Taill]) ->
list length(Tail) + 1. % Not tail-recursive

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and Databases

7.7 Tables and Databases
7.7.1 Ets, Dets, and Mnesia

Every exampleusing Ets hasacorresponding examplein Mnesia. In general, all Etsexamplesalso apply to Detstables.

Select/Match Operations

Select/match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. Try to structure the data to minimize the need for select/match operations. However, if you require
a select/match operation, it is still more efficient than usingt ab2!1 i st . Examples of thisand of how to avoid select/
match are provided in the following sections. The functions et s: sel ect/ 2 and mesi a: sel ect/ 3 areto be
preferred over et s: mat ch/ 2, et s: mat ch_obj ect/ 2, and mesi a: mat ch_obj ect / 3.

In some circumstances, the select/match operations do not need to scan the complete table. For example, if part of the
key is bound when searching an or der ed_set table, or if it isaMnesiatable and there is a secondary index on the
field that is selected/matched. If the key is fully bound, there is no point in doing a select/match, unless you have a
bag table and are only interested in a subset of the elements with the specific key.

When creating arecord to be used in a select/match operation, you want most of the fields to havethevalue" . The
easiest and fastest way to do that is as follows:

#person{age = 42, = '}.

Deleting an Element

The del et e operation is considered successful if the element was not present in the table. Hence al attempts to
check that the element is present in the EtsMnesia table before deletion are unnecessary. Here follows an example
for Etstables:

DO

é%é:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
[1r->
ok;
|1 ->
ets:delete(Tab, Key)
end,

Fetching Data
Do not fetch data that you already have.

Consider that you have a module that handles the abstract data type Per son. You export the interface
function print _person/ 1, which uses the interna functions print_nane/1, print_age/1, and
print_occupation/1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

7.7 Tables and Databases

Note:

If thefunctionpri nt _nane/ 1, and so on, had been interface functions, the situation would have been different,
as you do not want the user of the interface to know about the internal data representation.

DO

%%% Interface function
print person(Personld) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print_name(Person),
print_age(Person),
print occupation(Person);
[1->
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functions
print name(Person) ->
io:format("No person ~p~n", [Person#person.name]).

print age(Person) ->
io:format("No person ~p~n", [Person#person.age]).

print occupation(Person) ->
io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
print person(Personld) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print name(PersonID),
print age(PersonID),
print occupation(PersonID);
[1 ->
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functionss
print name(PersonID) ->
[Person] = ets:lookup(person, PersonId),

io:format("No person ~p~n", [Person#person.name]).

print age(PersonID) ->
[Person] = ets:lookup(person, PersonId),

io:format("No person ~p~n", [Person#person.age]).

print occupation(PersonID) ->
[Person] = ets:lookup(person, PersonId),

io:format("No person ~p~n", [Person#person.occupation]).

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and Databases

Non-Persistent Database Storage

For non-persistent database storage, prefer Ets tables over Mnesia | ocal _cont ent tables. Even the Mnesia
dirty_wit e operationscarry afixed overhead compared to Etswrites. Mnesiamust check if thetableisreplicated
or has indices, thisinvolves at least one Ets lookup for each di rty_wri t e. Thus, Etswrites is always faster than
Mnesiawrites.

tab2list

Assuming an Etstable that usesi dno as key and contains the following:

[#person{idno = 1, name = "Adam", age = 31, occupation = "mailman"},
#person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
#person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
#person{idno = 4, name = "Carl", age = 25, occupation = "mailman"}]

If you must return all data stored in the Ets table, you can use et s: t ab2l i st/ 1. However, usually you are only
interested in a subset of the information in which caseet s: t ab2l i st/ 1 isexpensive. If you only want to extract
one field from each record, for example, the age of every person, then:

DO

ets:select(Tab, [{ #person{idno="' "',
name="'_",
age="'$1',
occupation = ' '},
[1,

['$1'1}1),

DO NOT

TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TablList),

If you are only interested in the age of all persons named "Bryan”, then:
DO

é%é:select(Tab,[{ #person{idno="_"',
name="Bryan",
age='$1',
occupation = ' '},

[1,

['$1'1}1),

DO NOT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 239

7.7 Tables and Databases

TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of
"Bryan" ->
[X#person.age|Accl;
->

Acc
end
end, [], TablList),
REALLY DO NOT
féBList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,

TabList),
lists:map(fun(X) -> X#person.age end, BryanList),

If you need al information stored in the Ets table about persons named "Bryan”, then:
DO

ets:select(Tab, [{#person{idno='_",
name="Bryan",

age='_',
occupation = ' '}, [I, ['$_"1}1),

DO NOT

TablList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TablList),

Ordered_set Tables

If the data in the table is to be accessed so that the order of the keys in the table is significant, the table type
order ed_set can be used instead of the more usual set table type. An or der ed_set isaways traversed in
Erlang term order regarding the key field so that the return values from functionssuch assel ect , mat ch_obj ect ,
andf ol dl areordered by the key values. Traversing an or der ed_set withthefir st and next operationsalso
returns the keys ordered.

Note:

An or der ed_set only guarantees that objects are processed in key order. Results from functions such as
et s: sel ect/ 2 appear in key order even if the key is not included in the result.

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and Databases

7.7.2 Ets-Specific

Using Keys of Ets Table

An Etstable is a single-key table (either a hash table or a tree ordered by the key) and is to be used as one. In other
words, use the key to look up things whenever possible. A lookup by aknown key inaset Etstableisconstant and
foranor der ed_set EtstableitisO(logN). A key lookup is always preferable to a call where the whole table has
to be scanned. In the previous examples, the field i dno isthe key of the table and all lookups where only the name
is known result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the nanre field asthe key instead of thei dno field, but that would cause problems
if the names were not unique. A more general solution would be to create a second table with nane askey and i dno
as data, that is, to index (invert) the table regarding the nane field. Clearly, the second table would have to be kept
consistent with the master table. Mnesiacan do thisfor you, but ahome brew index tabl e can be very efficient compared
to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and can have the following contents:

[#index_entry{name="Adam", idno=1},
#index_entry{name="Bryan", idno=2},
#index_entry{name="Bryan", idno=3},
#index entry{name="Carl", idno=4}]

Given thisindex table, alookup of the age fields for all persons named "Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index _entry{idno = ID}) ->
[#person{age = Age}] = ets:lookup(PersonTable, ID),
Age
end,
MatchingIDs),

Notice that this code never uses et s: mat ch/ 2 but instead uses the et s: | ookup/ 2 call. Thel i sts: map/ 2
cal is only used to traverse the i dnos matching the name "Bryan" in the table; thus the number of lookups in the
master table is minimized.

K eeping an index tabl e introduces some overhead when inserting recordsin the table. The number of operations gained
from the table must therefore be compared against the number of operations inserting objects in the table. However,
notice that the gain is significant when the key can be used to lookup elements.

7.7.3 Mnesia-Specific

Secondary Index

If you frequently do alookup on afield that is not the key of the table, you lose performance using "mnesia:select/
match_object" as this function traverses the whole table. You can create a secondary index instead and use
"mnesia:iindex_read" to get faster access, however this requires more memory.

Example

-record(person, {idno, name, age, occupation}).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 241

7.8 Processes

{atomic, ok} =
mnesia:create table(person, [{index, [#person.age]},
{attributes,
record info(fields, person)}l),
{atomic, ok} = mnesia:add table index(person, age),

PersonsAge42 =
mnesia:dirty index read(person, 42, #person.age),

Transactions

Using transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when many
different processes updateit in parallel. However, if you have real-timerequirementsit isrecommendedtousedi rty
operations instead of transactions. When using di r t y operations, you lose the consistency guarantee; thisis usually
solved by only letting one process update the table. Other processes must send update requests to that process.

Example

% Using transaction
Fun = fun() ->
[mnesia:read({Table, Key}),
mnesia:read({Table2, Key2})]
end,

{atomic, [Resultl, Result2]} = mnesia:transaction(Fun),
% Same thing using dirty operations

Resultl
Result2

mnesia:dirty read({Table, Key}),
mnesia:dirty read({Table2, Key2}),

7.8 Processes

7.8.1 Creating an Erlang Process
An Erlang processis lightweight compared to threads and processes in operating systems.

A newly spawned Erlang process uses 309 words of memory in the non-SMP emulator without HiPE support. (SMP
support and HiPE support both add to this size.) The size can be found as follows:

Erlang (BEAM) emulator version 5.6 [async-threads:0] [kernel-poll:false]

Eshell V5.6 (abort with ~G)

1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>

2> { ,Bytes} = process info(spawn(Fun), memory).
{memory, 1232}

3> Bytes div erlang:system info(wordsize).

309

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.8 Processes

The size includes 233 words for the heap area (which includes the stack). The garbage collector increases the heap
as needed.

The main (outer) loop for a process must be tail-recursive. Otherwise, the stack grows until the process terminates.
DO NOT

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
loop()
end,
io:format("Message is processed~n", []).

Thecall toi o: f or mat / 2 will never be executed, but a return address will still be pushed to the stack each time
| oop/ 0 iscalled recursively. The correct tail-recursive version of the function looks as follows:

DO

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
Loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
loop()
end.

Initial Heap Size

The default initial heap size of 233 words is quite conservative to support Erlang systems with hundreds of thousands
or even millions of processes. The garbage collector grows and shrinks the heap as needed.

In a system that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the m n_heap_si ze option for
Spawn_opt/4.

The gainistwofold:

« Although the garbage collector grows the heap, it grows it step-by-step, which is more costly than directly
establishing alarger heap when the process is spawned.

» The garbage collector can also shrink the heap if it is much larger than the amount of data stored on it; setting
the minimum heap size prevents that.

Warning:

The emulator probably uses more memory, and because garbage collections occur less frequently, huge binaries
can be kept much longer.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

7.8 Processes

In systemswith many processes, computation tasksthat run for ashort time can be spawned off into anew processwith
a higher minimum heap size. When the process is done, it sends the result of the computation to another process and
terminates. If the minimum heap size is calcul ated properly, the process might not have to do any garbage collections
at all. This optimization is not to be attempted without proper measurements.

7.8.2 Process Messages
All datain messages between Erlang processes is copied, except for refc binaries on the same Erlang node.

When a message is sent to a process on another Erlang node, it is first encoded to the Erlang External Format before
being sent through a TCP/IP socket. The receiving Erlang node decodes the message and distributesiit to the correct
process.

Constant Pool

Constant Erlang terms (also called literals) are now kept in constant pools; each loaded module hasits own pool. The
following function does no longer build the tuple every timeit is called (only to have it discarded the next time the
garbage collector was run), but the tupleis located in the modul€e's constant pool:

DO (in R12B and later)

days _in _month(M) ->
element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

But if aconstant is sent to another process (or stored in an Etstable), it is copied. The reason isthat the runtime system
must be able to keep track of all referencesto constants to unload code containing constants properly. (When the code
is unloaded, the constants are copied to the heap of the processes that refer to them.) The copying of constants might
be eliminated in a future Erlang/OTP release.

Loss of Sharing
Shared subterms are not preserved in the following cases:

* When aterm is sent to another process
e When aterm is passed as the initial process argumentsin the spawn call
* When atermisstored in an Etstable

That is an optimization. Most applications do not send messages with shared subterms.

The following example shows how a shared subterm can be created:

kilo byte() ->
kilo byte(10, [42]).

kilo byte(0, Acc) ->
Acc;
kilo byte(N, Acc) ->
kilo byte(N-1, [Acc|Acc]).

kil o_byte/ 1l createsadeep list. If | i st _t o_bi nary/ 1 is called, the deep list can be converted to a binary
of 1024 bytes:

1> byte size(list to binary(efficiency guide:kilo byte())).
1024

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.9 Drivers

Usingtheerts_debug: si ze/ 1 BIF, it can be seen that the deep list only requires 22 words of heap space:

2> erts debug:size(efficiency guide:kilo byte()).
22

Using theerts_debug: fl at _si ze/ 1 BIF, the size of the deep list can be calculated if sharing is ignored. It
becomes the size of the list when it has been sent to another process or stored in an Ets table:

3> erts debug:flat size(efficiency guide:kilo byte()).
4094

It can be verified that sharing will be lost if the datais inserted into an Ets table:

4> T = ets:new(tab, []).

17

5> ets:insert(T, {key,efficiency guide:kilo byte()}).

true

6> erts debug:size(element(2, hd(ets:lookup(T, key)))).

4094

7> erts debug:flat size(element(2, hd(ets:lookup(T, key)))).
4094

When the data has passed through an Etstable, ert s_debug: si ze/ 1anderts_debug: fl at _si ze/ 1 return
the same value. Sharing has been lost.

In afuture Erlang/OTP release, it might be implemented away to (optionally) preserve sharing. There are no plansto
make preserving of sharing the default behaviour, as that would penalize the vast mgjority of Erlang applications.

7.8.3 SMP Emulator

The SMP emulator (introduced in R11B) takes advantage of a multi-core or multi-CPU computer by running severa
Erlang schedul er threads (typically, the same asthe number of cores). Each scheduler thread schedul es Erlang processes
in the same way as the Erlang scheduler in the non-SMP emulator.

To gain performance by using the SMP emulator, your application must have more than one runnable Erlang process
most of the time. Otherwise, the Erlang emulator can still only run one Erlang process at the time, but you must still
pay the overhead for locking. Although Erlang/OTP tries to reduce the locking overhead as much as possible, it will
never become exactly zero.

Benchmarks that appear to be concurrent are often sequential. The estone benchmark, for example, is entirely
sequential. So isthe most common implementation of the "ring benchmark™; usually one processis active, while the
otherswaitinar ecei ve statement.

The percept application can be used to profile your application to see how much potential (or lack thereof) it has for
concurrency.

7.9 Drivers
This section provides a brief overview on how to write efficient drivers.
It is assumed that you have a good understanding of drivers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

7.9 Drivers

7.9.1 Drivers and Concurrency
The runtime system always takes alock before running any code in adriver.

By default, that lock is at the driver level, that is, if several ports have been opened to the same driver, only code for
one port at the same time can be running.

A driver can be configured to have one lock for each port instead.

If adriver is used in a functional way (that is, holds no state, but only does some heavy calculation and returns a
result), severa ports with registered names can be opened beforehand, and the port to be used can be chosen based
on the scheduler ID asfollows:

-define (PORT NAMES(),

{some driver 01, some driver 02, some driver 03, some driver 04,
some driver 05, some driver 06, some driver 07, some driver 08,
some driver 09, some driver 10, some driver 11, some driver 12,
some driver 13, some driver 14, some driver 15, some driver 16}).

client port() ->
element(erlang:system info(scheduler id) rem tuple size(?PORT NAMES()) + 1,
?PORT NAMES()) .

Aslong asthere are no more than 16 schedulers, there will never be any lock contention on the port lock for the driver.

7.9.2 Avoiding Copying Binaries When Calling a Driver
There are basically two ways to avoid copying a binary that is sent to adriver:

» If the Dat a argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the
binary and the binary will not be copied. If the Dat a argument isan iolist (list of binaries and lists), al binaries
intheiolist will be copied.

Therefore, if you want to send both a pre-existing binary and some extra data to a driver without copying the
binary, you must call port _cont r ol / 3 twice; once with the binary and once with the extra data. However,
that will only work if there is only one process communicating with the port (because otherwise another process
can cal the driver in-between the calls).

e Implement an out put v callback (instead of an out put callback) in the driver. If adriver has an out put v
callback, refc binaries passed in aniolist in the Dat a argument for port_command/2 will be passed as references
to the driver.

7.9.3 Returning Small Binaries from a Driver

The runtime system can represent binaries up to 64 bytes as heap binaries. They are aways copied when sent in
messages, but they require less memory if they are not sent to another process and garbage collection is cheaper.

If you know that the binaries you return are always small, you are advised to use driver API calls that do not require
a pre-allocated binary, for example, driver_output() or erl_drv_output_term(), using the ERL_DRV_BUF2BI NARY
format, to allow the runtime to construct a heap binary.

7.9.4 Returning Large Binaries without Copying from a Driver

To avoid copying data when a large binary is sent or returned from the driver to an Erlang process, the driver must
first allocate the binary and then send it to an Erlang process in some way.

Usedriver_alloc_binary() to allocate a binary.
There are several waysto send abinary created with dri ver _al | oc_bi nary():

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.10 Advanced

e« Fromthecont r ol calback, abinary can be returned if set_port_control_flags() has been called with the flag

value PORT_CONTROL_FLAG Bl NARY.

e A single binary can be sent with driver_output_binary().
e Usingerl_drv_output_term() or erl_drv_send term(), abinary can beincluded in an Erlang term.

7.10 Advanced
7.10.1 Memory

A good start when programming efficiently isto know how much memory different data types and operations require.
It isimplementation-dependent how much memory the Erlang data types and other items consume, but the following
table shows some figuresfor theer t s- 5. 2 system in R9B. There have been no significant changesin R13.

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation. A word istherefore

4 bytes or 8 bytes, respectively.

Data Type

Memory Sze

Small integer

1 word.

On 32-bit architectures: -134217729 < i < 134217728
(28 hits).

On 64-bit architectures. -576460752303423489 < i <
576460752303423488 (60 bits).

Large integer

3..N words.

Atom

1 word.

An atom refersinto an atom table, which aso consumes
memory. The atom text is stored once for each unique
atom in thistable. The atom tableis not garbage-
collected.

Float

On 32-hit architectures; 4 words.
On 64-bit architectures. 3 words.

Binary

3..6 words + data (can be shared).

List

1 word + 1 word per element + the size of each element.

String (isthe same as alist of integers)

1 word + 2 words per character.

Tuple

2 words + the size of each element.

Pid

1 word for a process identifier from the current local
node + 5 words for a process identifier from another
node.

A process identifier refersinto a process table and a
node table, which also consumes memory.

1 word for a port identifier from the current local node +
5 words for a port identifier from another node.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

7.10 Advanced

A port identifier refersinto a port table and a node table,
which also consumes memory.

On 32-hit architectures: 5 words for a reference from
the current local node + 7 words for areference from
another node.

On 64-bit architectures: 4 words for areference from
the current local node + 6 words for areference from
another node.

A reference refersinto a node table, which also
consumes memory.

Reference

9..13 words + the size of environment.
Fun A fun refersinto a fun table, which also consumes
memory.

Initially 768 words + the size of each element (6 words
Etstable + the size of Erlang data). The table grows when
necessary.

327 words when spawned, including a heap of 233

Erlang process words.

Table 10.1: Memory Size of Different Data Types

7.10.2 System Limits

The Erlang language specification puts no limits on the number of processes, length of atoms, and so on. However,
for performance and memory saving reasons, there will always be limitsin a practical implementation of the Erlang
language and execution environment.

The maximum number of simultaneously alive Erlang
processes is by default 32,768. This limit can be
Processes configured at startup. For more information, see the
+P command-lineflagintheer | (1) manual pagein
erts.

A remote node Y must be known to node X if there
exists any pids, ports, references, or funs (Erlang data
types) fromY on X, or if X and Y are connected. The
maximum number of remote nodes simultaneously/ever
known to anode is limited by the maximum number of
atoms available for node names. All data concerning
remote nodes, except for the node name atom, are
garbage-collected.

Known nodes

The maximum number of simultaneously connected
nodesis limited by either the maximum number of
Connected nodes simultaneously known remote nodes, the maximum
number of (Erlang) ports available, or the maximum
number of sockets available.

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.10 Advanced

Charactersin an atom 255.

By default, the maximum number of atomsis 1,048,576.

Atoms Thislimit can be raised or lowered using the +t option.

Default is 1400. It can be changed with the environment

Etstables variable ERL_MAX_ETS_TABLES.

The maximum number of elementsinatupleis
67,108,863 (26-hit unsigned integer). Clearly, other
factors such as the available memory can make it
difficult to create atuple of that size.

Elementsin atuple

In the 32-bit implementation of Erlang, 536,870,911
bytesisthe largest binary that can be constructed

or matched using the bit syntax. In the 64-

bit implementation, the maximum sizeis
2,305,843,009,213,693,951 bytes. If the limit

is exceeded, bit syntax construction fails with a
system | i m t exception, while any attempt to
match a binary that istoo largefails. Thislimit is
enforced starting in R11B-4.

In earlier Erlang/OTP releases, operations on too large
binariesin general either fail or give incorrect results.
In future releases, other operations that create binaries
(suchaslist_to_binary/ 1) will probably also
enforce the same limit.

Size of binary

The Erlang runtime system can use the complete 32-bit
Total amount of data allocated by an Erlang node (or 64-hit) address space, but the operating system often
limits asingle process to use |ess than that.

An Erlang node name has the form host@shortname
or host@longname. The node nameis used as an atom
within the system, so the maximum size of 255 holds
also for the node name.

Length of a node name

The maximum number of simultaneously open Erlang
portsis often by default 16,384. Thislimit can be
Open ports configured at startup. For more information, see the
+Qcommand-lineflagintheer | (1) manual pagein
erts.

The maximum number of simultaneously open files
and sockets depends on the maximum number of Erlang
ports available, aswell as on operating system-specific
settings and limits.

Open files and sockets

Number of argumentsto afunction or fun 255

Each scheduler thread has its own set of references,

Unique References on a Runtime System Instance and all other threads have a shared set of references.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

7.11 Profiling

Each set of references consist of 2## - 1 unique
references. That isthe total amount of unique references
that can be produced on a runtime system instance
is(NoSchedul ers + 1) * (2## - 1).If

a scheduler thread create a new reference each nano
second, references will at earliest be reused after more
than 584 years. That is, for the foreseeable future they
are unique enough.

There are two types of unique integers both created
using the erlang:unique_integer() BIF. Unique integers
created:
with the nonot oni ¢ modifier
consist of aset of 2## - 1 uniqueintegers.
without the nonot oni ¢ modifier
consist of aset of 2## - 1 uniqueintegers
per scheduler thread and a set of 2## - 1
unique integers shared by other threads. That is
the total amount of unique integers without the
nmonot oni ¢ modifieris(NoSchedul ers +
1) * (2## - 1)
If aunique integer is created each nano second, unique
integerswill at earliest be reused after more than 584
years. That is, for the foreseeable future they are unique
enough.

Unique Integers on a Runtime System Instance

Table 10.2: System Limits

7.11 Profiling

7.11.1 Do Not Guess About Performance - Profile

Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs. Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing
them.

Erlang/OTP contains several tools to help finding bottlenecks:

« fprof providesthe most detailed information about where the program time is spent, but it significantly slows
down the program it profiles.

« eprof providestimeinformation of each function used in the program. No call graph is produced, but epr of
has considerable less impact on the program it profiles.
If the program istoo largeto be profiled by f pr of or epr of ,thecover and cpr of toolscan be used to locate
code parts that are to be more thoroughly profiled using f pr of or epr of .

e cover provides execution counts per line per process, with less overhead than f pr of . Execution counts can,
with some caution, be used to locate potential performance bottlenecks.

e cprof isthe most lightweight tool, but it only provides execution counts on a function basis (for all processes,
not per process).

Thetools are further described in Tools.

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.11 Profiling

7.11.2 Large Systems

For alarge system, it can beinteresting to run profiling on asimulated and limited scenario to start with. But bottlenecks
have a tendency to appear or cause problems only when many things are going on at the same time, and when many
nodes are involved. Therefore, it is also desirable to run profiling in a system test plant on areal target system.

For alarge system, you do not want to run the profiling tools on the whole system. Instead you want to concentrate
on central processes and modules, which contribute for abig part of the execution.

7.11.3 What to Look For

When analyzing the result file from the profiling activity, look for functions that are called many times and have a
long "own" execution time (time excluding calls to other functions). Functions that are called a lot of times can also
be interesting, as even small things can add up to quite a bit if repeated often. Also ask yourself what you can do to
reduce this time. The following are appropriate types of questions to ask yourself:

» Isit possible to reduce the number of times the function is called?

e Canany test be run less often if the order of testsis changed?

e Can any redundant tests be removed?

» Doesany calculated expression give the same result each time?

» Arethere other waysto do this that are equivalent and more efficient?

* Can another internal data representation be used to make things more efficient?

These questions are not always trivial to answer. Some benchmarks might be needed to back up your theory and to
avoid making things slower if your theory iswrong. For details, see Benchmarking.

7.11.4 Tools
fprof

f pr of measures the execution time for each function, both own time, that is, how much time a function has used
for its own execution, and accumulated time, that is, including called functions. The values are displayed per process.
Y ou also get to know how many times each function has been called.

f pr of isbased on trace to file to minimize runtime performance impact. Using f pr of isjust a matter of calling a
few library functions, see the fprof manual pageint ool s .f pr of wasintroduced in R8.
eprof

epr of isbased onthe Erlangt race_i nf o BIFs. epr of shows how much time has been used by each process,
and in which function calls this time has been spent. Timeis shown as percentage of total time and absolute time. For
more information, see the eprof manual pageint ool s.

cover

The primary use of cover is coverage analysis to verify test cases, making sure that all relevant code is covered.
cover counts how many times each executableline of codeis executed when aprogram isrun, on aper module basis.

Clearly, thisinformation can be used to determine what code is run very frequently and can therefore be subject for
optimization. Using cover isjust amatter of calling afew library functions, see the cover manual pageint ool s.
cprof

cpr of issomething in between f pr of and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cpr of has alow performance degradation effect (compared
with f pr of) and does not need to recompile any modules to profile (compared with cover). For more information,
see the cprof manual pageint ool s.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

7.11

Profiling

Tool Summary

. Effects on Records Records Records
Szeof Program . Records
Tool Results Result Execution Number of | Execution Called b Garbage
: Calls Time Y | Collection
Time
Per process .
f pr of to screen/ Large Significant Yes Total and Yes Yes
file slowdown own
Per process/ Small
epr of functionto | Medium Yes Only total No No
: slowdown
screenffile
Per module
cover to screen/ Small Moderate Yes, per line | No No No
file slowdown
Per module Small
cpr of to caller Small Jowdown Yes No No No
Table 11.1: Tool Summary

7.11.5 Benchmarking

The main purpose of benchmarking isto find out which implementation of a given algorithm or function isthe fastest.
Benchmarking isfar from an exact science. Today's operating systems generally run background tasksthat are difficult
to turn off. Caches and multiple CPU cores does not facilitate benchmarking. It would be best to run UNIX computers
in single-user mode when benchmarking, but that is inconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

timer:tc/3 measures wall-clock time. The advantage with wall-clock timeisthat 1/0, swapping, and other
activities in the operating system kernel are included in the measurements. The disadvantage is that the
measurements vary alot. Usually it is best to run the benchmark several times and note the shortest time, which
isto be the minimum time that is possible to achieve under the best of circumstances.

statistics/1 with argument r unt i ne measures CPU time spent in the Erlang virtual machine. The advantage
with CPU time isthat the results are more consistent from run to run. The disadvantage is that the time spent
in the operating system kernel (such as swapping and 1/0) is not included. Therefore, measuring CPU timeis
midleading if any 1/O (file or socket) isinvolved.

Itis probably agood ideato do both wall-clock measurements and CPU time measurements.
Some final advice:

The granularity of both measurement types can be high. Therefore, ensure that each individual measurement
lastsfor at least several seconds.

To make the test fair, each new test runisto runin its own, newly created Erlang process. Otherwise, if all tests
run in the same process, the later tests start out with larger heap sizes and therefore probably do fewer garbage
collections. Also consider restarting the Erlang emulator between each test.

Do not assume that the fastest implementation of a given algorithm on computer architecture X is also the
fastest on computer architecture Y.

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.1 Introduction

8 Interoperability Tutorial

8.1 Introduction

This section informs on interoperability, that is, information exchange, between Erlang and other programming
languages. The included examples mainly treat interoperability between Erlang and C.

8.1.1 Purpose

The purpose of this tutorial is to describe different interoperability mechanisms that can be used when integrating a
program written in Erlang with a program written in another programming language, from the Erlang programmer's
perspective.

8.1.2 Prerequisites

It is assumed that you are a skilled Erlang programmer, familiar with concepts such as Erlang data types, processes,
messages, and error handling.

Toillustrate the interoperability principles, C programsrunning in aUNIX environment have been used. It is assumed
that you have enough knowledge to apply these principles to the relevant programming languages and platforms.

Note:

For readability, the example code is kept as ssmple as possible. For example, it does not include error handling,
which might be vital in areal-life system.

8.2 Overview

8.2.1 Built-In Mechanisms

Two interoperability mechanisms are built into the Erlang runtime system, distributed Erlang and ports. A variation
of portsislinked-in drivers.
Distributed Erlang

An Erlang runtime system is made adistributed Erlang node by giving it aname. A distributed Erlang node can connect
to, and monitor, other nodes. It can also spawn processes at other nodes. M essage passing and error handling between
processes at different nodes are transparent. A number of useful STDLIB modules are available in adistributed Erlang
system. For example, gl obal , which provides global name registration. The distribution mechanism isimplemented
using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for Erlang-Erlang communication. It can aso be used for
communication between Erlang and C, if the C program isimplemented as a C node, see C and Java Libraries.

Where to read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.

For more information, see Distributed Programming.

Relevant manual pages are the following:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

8.2 Overview

e erlang manual pagein ERTS (describes the BIFs)
* global manua pagein Kernel

e net_admmanua pagein Kernel

* pg2 manua pagein Kernel

* rpc manua pagein Kernel

e pool manual pagein STDLIB

» davemanual pagein STDLIB

Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. The ports
provide a byte-oriented interface to an external program. When a port is created, Erlang can communicate with it by
sending and receiving lists of bytes (not Erlang terms). This meansthat the programmer might have to invent asuitable
encoding and decoding scheme.

The implementation of the port mechanism depends on the platform. For UNIX, pipes are used and the external
program is assumed to read from standard input and write to standard output. The external program can be written
in any programming language as long as it can handle the interprocess communication mechanism with which the
port isimplemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable. Consider, for example, driverswith very hard time requirements. It istherefore possible to write aprogram
in C according to certain principles, and dynamically link it to the Erlang runtime system. This is called a linked-
indriver.

When to use: Ports can be used for al kinds of interoperability situations where the Erlang program and the other
program runs on the same machine. Programming is fairly straight-forward.

Linked-in driversinvolveswriting certain call-back functionsin C. Thisrequires very good skills asthe codeislinked
to the Erlang runtime system.

Warning:

A faulty linked-in driver causes the entire Erlang runtime system to leak memory, hang, or crash.

Where to read more: Ports are described in section "Miscellaneous Items" of the Erlang book. Linked-in drivers are
described in Appendix E.

The BIF open_port/ 2 isdocumented in the erlang manual pagein ERTS.
For linked-in drivers, the programmer needs to read the erl_ddll manual page in Kernel.
Examples: Port examplein Ports.

8.2.2 C and Java Libraries

Erl_Interface

The program at the other side of a port is often a C program. To help the C programmer, the Erl_Interface library has
been developed, including the following five parts:

e erl_marshal ,erl _etermerl _format,anderl| _mal | oc: Handling of the Erlang external term
format

e erl _connect : Communication with distributed Erlang, see C nodes below

e erl _error:Error print routines

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.2 Overview

e erl _gl obal : Access globally registered names
e Regi stry: Store and backup of key-value pairs

The Erlang external term format is a representation of an Erlang term as a sequence of bytes, that is, a binary.
Conversion between the two representations is done using the following BIFs:

Binary
Term =

= term _to binary(Term)
binary to term(Binary)

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into astruct similar to an Erlang term.
Such a struct can be manipulated in different ways, be converted to the Erlang external format, and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Whereto read more: Seethe Erlang Interface User's Guide, Command Reference, and Library Reference. In Erlang/
OTP R5B, and earlier versions, the information is part of the Kernel application.

Examples: Erl_Interface examplein Erl_Interface.

C Nodes

A Cprogram that usesthe Erl_Interface functionsfor setting up aconnection to, and communicating with, adistributed
Erlang nodeis called a C node, or a hidden node. The main advantage with a C node is that the communication from
the Erlang programmer's perspective is extremely easy, as the C program behaves as a distributed Erlang node.

When to use: C hodes can typically be used on device processors (as opposed to control processors) where C isabetter
choice than Erlang due to memory limitations or application characteristics, or both.

Wheretoread more: Seetheer | _connect part of the Erl_Interface documentation. The programmer also needsto
be familiar with TCP/IP sockets, see Sockets in Sandard Protocols and Distributed Erlang in Built-In Mechanisms.

Example: C node examplein C Nodes.

Jinterface

In Erlang/OTP R6B, alibrary similar to Erl_Interface for Java was added called jinterface. It provides atool for Java
programs to communicate with Erlang nodes.

8.2.3 Standard Protocols

Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets: as follows:

« SNMP
. HTTP
« 1IOP(CORBA)

Using one of the latter three requires good knowledge about the protocol and is not covered by this tutorial. See the
SNMP, Inets, and Orber applications, respectively.
Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at a
certain host with a certain port number. A connector socket ("client"), which is aware of the initiator host name and
port number, can connect to it and data can be sent between them.

Connection-less socket communication (UDP) consistsof aninitiator socket at acertain host with acertain port number
and a connector socket sending datato it.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 255

8.3 Problem Example

For a detailed description of the socket concept, refer to a suitable book about network programming. A suggestion
is UNIX Network Programming, Volume 1: Networking APIs - Sockets and XTI by W. Richard Stevens, |SBN:
013490012X.

In Erlang/OTP, access to TCP/IP and UDP sockets is provided by the modulesgen_t cp and gen_udp in Kernel.
Both are easy to use and do not require detailed knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.
Where to read more: Seethe gen_tcp and the gen_udp manual pagesin Kernel.

8.2.4 IC

IC (Erlang IDL Compiler) isaninterface generator that, given an IDL interface specification, automatically generates
stub code in Erlang, C, or Java. Seethe IC User's Guide and |C Reference Manual.

For details, see theic manual pagein IC.

8.2.5 Old Applications

Two old applications are of interest regarding interoperability. Both have been replaced by |C and are mentioned here
for reference only:

* 1G - Removed from Erlang/OTP R6B.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang
program and a C program, given a C header file with certain keywords.

* Jive- Removed from Erlang/OTP R7B.
Jive provided a simple interface between an Erlang program and a Java program.

8.3 Problem Example

8.3.1 Description

A common interoperability situation is when you want to incorporate a piece of code, solving a complex problem,
in your Erlang program. Suppose for example, that you have the following C functions that you would like to call
from Erlang:

/* complex.c */

int foo(int x) {
return x+1;

}

int bar(int y) {
return y*2;

}

The functions are deliberately kept as simple as possible, for readability reasons.

From an Erlang perspective, it is preferable to be able to call f 0o and bar without having to bother about that they
are C functions:

% Erlang code

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

Res = complex:foo(X),

Here, the communication with C is hidden in the implementation of conpl ex. er | . In the following sections, it is
shown how this module can be implemented using the different interoperability mechanisms.

8.4 Ports

This section outlines an example of how to solve the example problem in the previous section by using a port.

The scenario isillustrated in the following figure:

ERTS External program

: EEEEE——
H—h Farl
B EEEsE—

I:l Q5 proceas

o Erlangprocess
—* Communicabion

Figure 4.1: Port Communication

8.4.1 Erlang Program

All communication between Erlang and C must be established by creating the port. The Erlang process that creates
aport is said to be the connected process of the port. All communication to and from the port must go through the
connected process. If the connected process terminates, the port also terminates (and the external program, if it is
written properly).

Theport iscreated using the BIF open_por t / 2 with{ spawn, Ext Pr g} asthefirst argument. Thestring Ext Pr g
isthe name of the external program, including any command line arguments. The second argument isalist of options, in
thiscaseonly { packet , 2} . Thisoption saysthat a2 bytelength indicator isto be used to simplify the communication
between C and Erlang. The Erlang port automatically adds the length indicator, but this must be done explicitly in
the external C program.

The process is also set to trap exits, which enables detection of failure of the external program:

-module(complexl).
-export([start/1, init/1]).

start(ExtPrg) ->
spawn (?MODULE, init, [ExtPrgl).

init(ExtPrg) ->

register(complex, self()),
process flag(trap exit, true),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

8.4 Ports

Port = open port({spawn, ExtPrg}, [{packet, 2}]),
loop(Port) .

Now conpl ex1: f oo/ 1 and conpl ex1: bar/ 1 can be implemented. Both send a message to the conpl ex
process and receive the following replies:

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process does the following:

» Encodes the message into a sequence of bytes.
e Sendsit to the port.

* Waitsfor areply.

e Decodesthereply.

* Sendsit back to the caler:

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port)
end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 isrepresented by byte 1, bar is represented by 2, and the argument/result
is represented by a single byte aswell:

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.
The resulting Erlang program, including functionality for stopping the port and detecting port failures, is as follows:
-module(complexl).

-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),

Port = open port({spawn, ExtPrg}, [{packet, 2}]),

loop(Port) .

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

8.4.2 C Program

On the C side, it is necessary to write functions for receiving and sending data with 2 byte length indicators from/to
Erlang. By default, the C program is to read from standard input (file descriptor 0) and write to standard output (file

descriptor 1). Examples of such functions, read_cnd/ 1 andw i t e_cnd/ 2, follows:

/* erl _comm.c */

typedef unsigned char byte;
read_cmd(byte *buf)

{

int len;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

8.4 Ports

if (read exact(buf, 2) !I= 2)
return(-1);

len = (buf[0@] << 8) | buf[l];

return read exact(buf, len);

}

write cmd(byte *buf, int 1len)

{
byte 1i;

1i = (len >> 8) & Oxff;
write exact(&li, 1);

1li = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

}

read exact(byte *buf, int 1len)

{
int i, got=0;

do {
if ((i = read(0, buf+got, len-got)) <= 0)
return(i);
got += 1i;
} while (got<len);

return(len);

}

write exact(byte *buf, int len)
{
int i, wrote = 0;
do {
if ((i = write(1l, buf+wrote, len-wrote)) <= 0)
return (i);
wrote += i;
} while (wrote<len);

return (len);

Noticethat st di nandst dout arefor buffered input/output and must not be used for the communi cation with Erlang.

In the mai n function, the C program isto listen for a message from Erlang and, according to the selected encoding/
decoding scheme, use thefirst byte to determine which function to call and the second byte as argument to the function.
The result of calling the function is then to be sent back to Erlang:

/* port.c */
typedef unsigned char byte;
int main() {

int fn, arg, res;

byte buf[100];

while (read cmd(buf) > 0) {

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

fn = buf[0];
arg = buf[1];
if (fn = 1) {

res = foo(arg);
} else if (fn == 2) {
res = bar(arg);

}
buf[0] = res;
write cmd(buf, 1);

Notice that the C program isin awhi | e-loop, checking for the return value of r ead_cnd/ 1. Thisis because the
C program must detect when the port closes and terminates.

8.4.3 Running the Example
Sep 1. Compile the C code:

unix> gcc -o extprg complex.c erl comm.c port.c

Sep 2. Start Erlang and compile the Erlang code:

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)
1> c(complexl).
{ok, complex1}

Sep 3. Run the example:

2> complexl:start("extprg").
<0.34.0>

3> complexl:foo(3).

4

4> complexl:bar(5).

10

5> complexl:stop().

stop

8.5 Erl_Interface

This section outlines an example of how to solve the example problem in Problem Example by using a port and
Erl_Interface. It is necessary to read the port example in Ports before reading this section.

8.5.1 Erlang Program

Thefollowing exampl e shows an Erlang program communicating with a C program over aplain port with home made
encoding:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

8.5 Erl_Interface

-module(complexl).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]1).

start (ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}]),
loop(Port) .

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the example in Ports, using only the
plain port:
* AsErl_Interface operates on the Erlang external term format, the port must be set to use binaries.

» Instead of inventing an encoding/decoding scheme, thet erm t o_bi nary/ 1 andbinary to term 1
BIFs are to be used.

That is:

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

open _port({spawn, ExtPrg}, [{packet, 2}1)

is replaced with:

open port({spawn, ExtPrg}, [{packet, 2}, binaryl])

And:

Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end

is replaced with:

Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end

The resulting Erlang programis as follows:

-module(complex2).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/11).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}, binaryl]),
loop(Port).

loop(Port) ->

receive
{call, Caller, Msg} ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

8.5 Erl_Interface

Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

Notice that calling conpl ex2: f oo/ 1 and conpl ex2: bar/ 1 resultsin thetuple { f oo, X} or { bar, Y} being
sent to theconpl ex process, which codes them as binaries and sends them to the port. This meansthat the C program
must be able to handle these two tuples.

8.5.2 C Program

Thefollowing example shows a C program communi cating with an Erlang program over aplain port with home made
encoding:

/* port.c */
typedef unsigned char byte;
int main() {

int fn, arg, res;

byte buf[100];

while (read cmd(buf) > 0) {

fn = buf[0];
arg = buf[1];
if (fn == 1) {

res = foo(arg);
} else if (fn == 2) {
res = bar(arg);

}
buf[0] = res;
write cmd(buf, 1);

Compared to the C program in Ports, using only the plain port, the whi | e-loop must be rewritten. M essages coming
from the port is on the Erlang external term format. They must be converted into an ETERMstruct, which isa C struct
similar to an Erlang term. Theresult of callingf oo() orbar () must be converted to the Erlang external term format
before being sent back to the port. But before calling any other Erl_Interface function, the memory handling must
beinitiated:

erl init(NULL, 0);

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5

Erl_Interface

The following functions, r ead_cnd() andwite_cnd(), fromtheer|l _comm c examplein Ports can still be

used for reading from and writing to the port:

/* erl _comm.c */
typedef unsigned char byte;
read_cmd(byte *buf)

int len;

if (read exact(buf, 2) I= 2)
return(-1);
len = (buf[0] << 8) | buf[1];
return read exact(buf, len);
}

write cmd(byte *buf, int len)
{
byte 1i;

1li = (len >> 8) & Oxff;
write exact(&li, 1);

1li = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

}
read exact(byte *buf, int len)
{

int i, got=0;

do {

if ((i = read(0, buf+got, len-got)) <= 0)

return(i);
got += i;
} while (got<len);

return(len);

}
write exact(byte *buf, int len)
{

int i, wrote = 0;

do {

if ((i = write(1l, buf+wrote, len-wrote)) <= 0)

return (i);
wrote += 1i;
} while (wrote<len);

return (len);

}

Thefunctioner| _decode() fromer| _mar shal convertsthe binary into an ETERMstruct:

int main() {

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

8.5 Erl_Interface

ETERM *tuplep;

while (read cmd(buf) > 0) {
tuplep = erl decode(buf);

Here, t upl ep points to an ETERMstruct representing a tuple with two elements; the function name (atom) and the
argument (integer). Using the function er | _el enent () fromer| _et er m these elements can be extracted, but
they must also be declared as pointers to an ETERMstruct:

fnp = erl element(1l, tuplep);
argp = erl element(2, tuplep);

The macros ERL_ATOM PTRand ERL_| NT_VALUE fromer | _et er mcan be used to obtain the actual values of
the atom and the integer. The atom value is represented as a string. By comparing this value with the strings "foo"
and "bar", it can be decided which function to call:

if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL_INT VALUE(argp));

}

Now an ETERMstruct that represents the integer result can be constructed using the functioner | _nk_i nt () from
erl _eterm Thefunctioner!| _format () fromthemoduleer| _f or mat can also be used:

intp = erl mk int(res);

The resulting ETERM struct is converted into the Erlang external term format using the function er | _encode()
fromer| _mar shal and sentto Erlangusingwri te_cnd():

erl encode(intp, buf);
write cmd(buf, erl eterm len(intp));

Finally, the memory allocated by the ETERMcreating functions must be freed:

erl free compound(tuplep);
erl free term(fnp);
erl free term(argp);
erl free term(intp);

Theresulting C program is as follows:

/* ei.c */

#include "erl interface.h"
#include "ei.h"

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

typedef unsigned char byte;

int main() {
ETERM *tuplep, *intp;
ETERM *fnp, *argp;
int res;
byte buf[100];
long allocated, freed;

erl init(NULL, 0);

while (read cmd(buf) > 0) {
tuplep = erl decode(buf);
fnp = erl _element(1l, tuplep);
argp = erl element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL _INT VALUE(argp));

}

intp = erl mk int(res);
erl encode(intp, buf);
write cmd(buf, erl term len(intp));

erl free compound(tuplep);
erl free term(fnp);
erl free term(argp);
erl free term(intp);

8.5.3 Running the Example

Sep 1. Compile the C code. This provides the paths to the include fileser | _i nterface. handei . h, and also
tothelibrarieser| i nterface andei :

unix> gcc -o extprg -I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/lib \\
complex.c erl comm.c ei.c -lerl interface -lei

In Erlang/OTP R5B and later versionsof OTP, thei ncl ude and! i b directoriesare situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr /| ocal / ot p inthe
recent example) and VSNis the version of the Erl_interface application (3.2.1 in the recent example).

In R4B and earlier versions of OTP, i ncl ude and| i b are situated under OTPROOT/ usr .
Sep 2. Start Erlang and compile the Erlang code:

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)

1> c(complex2).
{ok, complex2}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

8.6 Port Drivers

Sep 3. Run the example:

2> complex2:start("extprg").
<0.34.0>

3> complex2:foo(3).

4

4> complex2:bar(5).

10

5> complex2:bar(352).

704

6> complex2:stop().

stop

8.6 Port Drivers

This section outlines an example of how to solve the example problem in Problem Example by using a linked-in port
driver.

A port driver is alinked-in driver that is accessible as a port from an Erlang program. It is a shared library (SO in
UNIX, DLL in Windows), with specia entry points. The Erlang runtime system calls these entry points when the
driver is started and when data is sent to the port. The port driver can also send data to Erlang.

Asaport driver isdynamically linked into the emulator process, thisisthe fastest way of calling C-code from Erlang.
Calling functions in the port driver requires no context switches. But it is also the least safe way, because a crash in
the port driver brings the emulator down too.

The scenario isillustrated in the following figure:

emulator .
Fort driver
Connected shared librar
process Port /
(S process

O Erlang process
—= Comnmnication

Figure 6.1: Port Driver Communication

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port Drivers

8.6.1 Erlang Program

Like a port program, the port communicates with an Erlang process. All communication goes through one Erlang
process that is the connected process of the port driver. Terminating this process closes the port driver.

Before the port is created, the driver must be loaded. This is done with the functioner| _dI | : | oad_dri ver/ 1,
with the name of the shared library as argument.

The port is then created using the BIF open_port/ 2, with the tuple { spawn, Dri ver Nane} as the first
argument. The string Shar edLi b is the name of the port driver. The second argument is a list of options, none in
this case:

-module(complex5) .
-export([start/1, init/1]).

start(SharedLib) ->
case erl ddll:load driver(".", SharedLib) of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
spawn (?MODULE, init, [SharedlLibl]).

init(SharedLib) ->
register(complex, self()),
Port = open port({spawn, SharedLib}, []),
loop(Port).

Now conpl ex5: f oo/ 1 and conpl ex5: bar/ 1 can be implemented. Both send a message to the conpl ex
process and receive the following reply:

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process performs the following:

» Encodes the message into a sequence of bytes.
e Sendsit to the port.

* Waitsfor areply.

» Decodesthereply.

e Sendsit back to the caller:

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 269

8.6 Port Drivers

receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port)
end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 is represented by byte 1, bar is represented by 2, and the argument/result
is represented by a single byte aswell:

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

The resulting Erlang program, including functions for stopping the port and detecting port failures, is as follows:

-module(complex5) .
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(SharedLib) ->
case erl ddll:load driver(".", SharedLib) of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
spawn (?MODULE, init, [SharedLibl]).

init(SharedLib) ->
register(complex, self()),
Port = open port({spawn, SharedLib}, []),
loop(Port).

stop() ->
complex ! stop.

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

loop(Port) ->
receive
{call, Caller, Msg} ->

Port ! {self(), {command, encode(Msg)}},

receive
{Port, {data, Data}} ->

Caller ! {complex, decode(Data)}

end,

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port Drivers

loop(Port);

stop ->
Port ! {self(), close},
receive

{Port, closed} ->
exit(normal)
end;

{'EXIT', Port, Reason} ->
io:format("~p ~n", [Reason]),
exit(port terminated)

end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

8.6.2 C Driver

The C driver is amodule that is compiled and linked into a shared library. It uses a driver structure and includes the
header fileer| _dri ver. h.

The driver structure is filled with the driver name and function pointers. It is returned from the specia entry point,
declared with the macro DRI VER_| NI T(<dri ver _nane>).

The functions for receiving and sending data are combined into a function, pointed out by the driver structure. The
data sent into the port is given as arguments, and the replied datais sent with the C-functiondr i ver _out put .

Asthedriver is ashared module, not a program, no main function is present. All function pointers are not used in this
example, and the corresponding fieldsinthedr i ver _ent ry structure are set to NULL.

All functionsin the driver takes ahandle (returned from st ar t) that is just passed along by the Erlang process. This
must in some way refer to the port driver instance.

The exanpl e_drv_start, isthe only function that is called with a handle to the port instance, so this must be
saved. Itiscustomary to use an allocated driver-defined structure for this one, and to pass a pointer back asareference.

It is not a good idea to use a global variable as the port driver can be spawned by multiple Erlang processes. This
driver-structure is to be instantiated multiple times:

/* port driver.c */

#include <stdio.h>
#include "erl driver.h"

typedef struct {
ErlDrvPort port;
} example data;

static ErlDrvData example drv_start(ErlDrvPort port, char *buff)

{
example data* d = (example data*)driver alloc(sizeof(example data));
d->port = port;
return (ErlDrvData)d;
}
static void example drv_stop(ErlDrvData handle)
{
driver free((char*)handle);
}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

8.6 Port Drivers

static void example drv output(ErlDrvData handle, char *buff,
ErlDrvSizeT bufflen)

{
example data* d = (example data*)handle;
char fn = buff[0], arg = buff[1], res;
if (fn = 1) {
res = foo(arg);
} else if (fn == 2) {
res = bar(arg);
¥
driver output(d->port, &res, 1);
}

ErlDrvEntry example driver entry = {
NULL, /*¥ F PTR init, called when driver is loaded */
example drv_start, /* L PTR start, called when port is opened */
example drv_stop, /* F PTR stop, called when port is closed */
example drv_output, /* F PTR output, called when erlang has sent */
NULL, /*¥ F_PTR ready input, called when input descriptor ready */
NULL, /* F_PTR ready output, called when output descriptor ready */

"example drv", /* char *driver name, the argument to open port */
NULL, /*¥ F_PTR finish, called when unloaded */
NULL, /* void *handle, Reserved by VM */

NULL, /* F_PTR control, port command callback */
NULL, /* F_PTR timeout, reserved */
NULL, /* F_PTR outputv, reserved */

NULL, /* F_PTR ready async, only for async drivers */
NULL, /*¥ F_PTR flush, called when port is about
to be closed, but there is data in driver
queue */
NULL, /*¥ F_PTR call, much like control, sync call
to driver */
NULL, /* F_PTR event, called when an event selected
by driver event() occurs. */
ERL DRV _EXTENDED MARKER, /* int extended marker, Should always be

set to indicate driver versioning */
ERL DRV _EXTENDED MAJOR VERSION, /* int major version, should always be
set to this value */
ERL DRV _EXTENDED MINOR VERSION, /* int minor version, should always be
set to this value */

0, /* int driver flags, see documentation */

NULL, /* void *handle2, reserved for VM use */

NULL, /* F_PTR process exit, called when a
monitored process dies */

NULL /* F_PTR stop select, called to close an

event object */

}i

DRIVER INIT(example drv) /* must match name in driver entry */
{

}

return &example driver entry;

8.6.3 Running the Example
Sep 1. Compile the C code:

unix> gcc -o exampledrv -fpic -shared complex.c port driver.c
windows> cl -LD -MD -Fe exampledrv.dll complex.c port driver.c

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

Sep 2. Start Erlang and compile the Erlang code:

> erl
Erlang (BEAM) emulator version 5.1

Eshell V5.1 (abort with ~G)
1> c(complex5).
{ok, complex5}

Sep 3. Run the example:

2> complex5:start("example drv").
<0.34.0>

3> complex5:foo(3).

4

4> complex5:bar(5).

10

5> complex5:stop().

stop

8.7 C Nodes

This section outlines an example of how to solve the example problem in Problem Example by using a C node. Notice
that a C nodeis not typically used for solving simple problems like this, a port is sufficient.

8.7.1 Erlang Program

From Erlang's point of view, the C nodeistreated like anormal Erlang node. Thus, calling the functionsf oo and bar
only involves sending a message to the C node asking for the function to be called, and receiving the result. Sending a
message requires arecipient, that is, aprocessthat can be defined using either apid or atuple, consisting of aregistered
name and a node name. In this case, atuple isthe only alternative as no pid is known:

{RegName, Node} ! Msg

The node name Node isto be the name of the C node. If short node names are used, the plain name of the nodeiscN,
where Nis an integer. If long node names are used, there is no such restriction. An example of a C node name using
short node namesisthusc1@dri | , an example using long node namesiscnode@dri | . eri csson. se.

The registered name, RegNane, can be any atom. The name can be ignored by the C code, or, for example, be used
to distinguish between different types of messages. An example of Erlang code using short node names follows:

-module(complex3).
-export([foo/1, bar/11).

foo(X) ->
call cnode({foo, X}).
bar(Y) ->

call cnode({bar, Y}).

call cnode(Msg) ->
{any, cl@idril} ! {call, self(), Msg},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

8.7 C Nodes

receive

{cnode, Result} ->
Result
end.

When using long node names, the code is dightly different as shown in the following example:

-module(complex4).
-export([foo/1, bar/11).

foo(X) ->
call cnode({foo, X}).
bar(Y) ->

call cnode({bar, Y}).

call cnode(Msg) ->
{any, 'cnode@idril.du.uab.ericsson.se'} ! {call, self(), Msg},
receive
{cnode, Result} ->
Result
end.

8.7.2 C Program

Setting Up Communication
Before calling any other function in Erl_Interface, the memory handling must be initiated:

erl init(NULL, 0);

Now the C node can beinitiated. If short node names are used, thisisdone by callinger| _connect _init():

erl connect init(1, "secretcookie", 0);

Here:
* Thefirst argument is the integer used to construct the node name.

In the example, the plain node nameiscl.
e The second argument is a string defining the magic cookie.
e Thethird argument is an integer that is used to identify a particular instance of a C node.

If long node node names are used, initiation isdone by callinger | _connect _xinit():

erl connect xinit("idril", "cnode", "cnode@idril.ericsson.se",
&addr, "secretcookie", 0);

Here:

e Thefirst argument is the host name.
* Thesecond argument isthe plain node name.

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

e Thethird argument is the full node name.

e Thefourth argument isapointer to ani n_addr struct with the IP address of the host.
e Thefifth argument is the magic cookie.

e Thesixth argument is the instance number.

The C node can act asa server or aclient when setting up the Erlang-C communication. If it actsasaclient, it connects
to an Erlang node by callinger| _connect (), which returns an open file descriptor at success:

fd = erl connect("el@idril");

If the C node acts as a server, it must first create a socket (call bi nd() and | i st en()) listening to a certain port
number por t . It then publishes its name and port number with epnd, the Erlang port mapper daemon. For details,
see the epmd manual pagein ERTS:

erl publish(port);

Now the C node server can accept connections from Erlang nodes:

fd = erl _accept(listen, &conn);

Thesecondargumenttoer | _accept isastruct Er | Connect which containsuseful information when aconnection
has been established, for example, the name of the Erlang node.

Sending and Receiving Messages

The C node can receive amessage from Erlang by callinger | _r ecei ve nsg() . Thisfunction reads datafrom the
open file descriptor f d into a buffer and puts the result in an Er | Message struct ensg. Er | Message hasafield
t ype defining what kind of dataisreceived. In this case, the type of interestisERL_REG_SEND which indicates that
Erlang sent a message to aregistered process at the C node. The actual message, an ETERM isin thensg field.

It isalso necessary to take care of the types ERL_ ERROR (an error occurred) and ERL_TI CK (alive check from other
node, isto be ignored). Other possible types indicate process events such as link, unlink, and exit:

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0; /* exit while loop */
} else {
if (emsg.type == ERL REG SEND) {

As the message is an ETERM struct, Erl_Interface functions can be used to manipulate it. In this case, the message
becomes a 3-tuple, because that is how the Erlang code iswritten. The second element will be the pid of the caller and
the third element will bethetuple{ Funct i on, Ar g} determining which function to call, and with which argument.
Theresult of calling the function is made into an ETERMstruct as well and sent back to Erlang usinger | _send(),
which takes the open file descriptor, a pid, and aterm as arguments:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 275

8.7 C Nodes

fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl _element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL _INT VALUE(argp));

}

resp = erl format("{cnode, ~i}", res);
erl send(fd, fromp, resp);

Finally, the memory allocated by the ETERMcreating functions (includinger | _recei ve_nsg() must be freed:

erl free term(emsg.from); erl free term(emsg.msg);
erl free term(fromp); erl free term(tuplep);

erl free term(fnp); erl free term(argp);
erl free term(resp);

The following examples show the resulting C programs. First a C node server using short node names:

/* cnode_s.c */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {

int port; /* Listen port number */

int listen; /* Listen socket */

int fd; /* fd to Erlang node */
ErlConnect conn; /* Connection data */

int loop = 1; /* Loop flag */

int got; /* Result of receive */

unsigned char buf[BUFSIZE]; /* Buffer for incoming message */
ErlMessage emsg; /* Incoming message */

ETERM *fromp, *tuplep, *fnp, *argp, *resp;
int res;

port = atoi(argv[1]);
erl_init(NULL, 0);

if (erl connect init(1, "secretcookie", 0) == -1)
erl err quit("erl connect init");

/* Make a listen socket */

if ((listen = my listen(port)) <= 0)
erl err quit("my listen");

276 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7

C Nodes

if (erl publish(port) == -1)
erl_err quit("erl publish");

if ((fd = erl accept(listen, &conn)) == ERL _ERROR)
erl err quit("erl accept");
fprintf(stderr, "Connected to %s\n\r", conn.nodename);

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL ERROR) {
loop = 0;
} else {

if (emsg.type == ERL REG SEND) {
fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl _element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL _INT VALUE(argp));

}

resp = erl format("{cnode, ~i}", res);
erl send(fd, fromp, resp);

erl free term(emsg.from); erl free term(emsg.msg);
erl free term(fromp); erl free term(tuplep);

erl free term(fnp); erl free term(argp);
erl free term(resp);

}

}
} /* while */
I

int my listen(int port) {
int listen fd;
struct sockaddr in addr;
int on = 1;

if ((listen fd = socket(AF_INET, SOCK STREAM, 0)) < 0)
return (-1);

setsockopt(listen fd, SOL SOCKET, SO REUSEADDR, &on, sizeof(on));

memset ((void*) &addr, 0, (size t) sizeof(addr));
addr.sin family = AF_INET;

addr.sin port = htons(port);

addr.sin addr.s addr = htonl(INADDR ANY);

if (bind(listen fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen fd, 5);
return listen fd;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 277

8.7 CNo

des

A C node server using long node names:

/* cnode

#include
#include
#include
#include

#include
#include

#define B

int main(
struct
int por
int lis
int fd;
ErlConn

int loo
int got

s2.c */

<stdio.h>
<sys/types.h>
<sys/socket.h>
<netinet/in.h>

"erl interface.

"ei.h"

UFSIZE 1000
int argc, char
in_addr addr;
t;

ten;

ect conn;

p=1;

’

h"

**argv) {

unsigned char buf[BUFSIZE];

ErlMess

age emsg;

ETERM *fromp, *tuplep, *fnp, *argp, *resp;

int res
port =

erl ini
addr.s |

&addr,

atoi(argv([l1]);

t(NULL, 0);

addr = inet addr("134.138.177.89");
if (erl connect xinit("idril",

"secretcookie", 0) == -1)
erl err quit("erl connect xinit");

/* Make a listen socket */

if ((1i

sten = my listen(port)) <= 0)

erl err quit("my listen");

if (erl_publish(port) == -1)
erl_err quit("erl publish");

32-bit IP number of host */
Listen port number */
Listen socket */

fd to Erlang node */
Connection data */

Loop flag */

Result of receive */

Buffer for incoming message */
Incoming message */

"cnode@idril.du.uab.ericsson.se",

if ((fd = erl _accept(listen, &conn)) == ERL_ERROR)
erl err quit("erl accept");
(stderr, "Connected to %s\n\r", conn.nodename);

fprintf
while (
got =

if (g
/*

} else if (got == ERL ERROR) {

loo
} els

if (emsg.type == ERL REG SEND) {
fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);

Loop) {

erl receive msg(fd, buf, BUFSIZE, &emsg);
ot == ERL TICK) {

ignore */

p=0;
e {

fnp = erl _element(1, tuplep);

278 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

argp = erl _element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL _INT VALUE(argp));

}

resp = erl format("{cnode, ~i}", res);
erl send(fd, fromp, resp);

erl free term(emsg.from); erl free term(emsg.msg);
erl free term(fromp); erl free term(tuplep);
erl_free term(fnp); erl free term(argp);
erl free term(resp);
)
}
I
I

int my listen(int port) {
int listen fd;
struct sockaddr in addr;
int on = 1;

if ((listen fd = socket(AF_INET, SOCK STREAM, 0)) < 0)
return (-1);

setsockopt(listen fd, SOL SOCKET, SO REUSEADDR, &on, sizeof(on));
memset ((void*) &addr, 0, (size t) sizeof(addr));

addr.sin family = AF_INET;

addr.sin port = htons(port);

addr.sin addr.s addr = htonl(INADDR ANY);

if (bind(listen fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen fd, 5);
return listen fd;

Finally, the code for the C node client:

/* cnode c.c */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {
int fd; /* fd to Erlang node */

int loop = 1; /* Loop flag */

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 279

8.7 C Nodes

int got; /* Result of receive */
unsigned char buf[BUFSIZE]; /* Buffer for incoming message */
ErlMessage emsg; /* Incoming message */

ETERM *fromp, *tuplep, *fnp, *argp, *resp;
int res;

erl init(NULL, 0);

if (erl connect init(1l, "secretcookie", 0) == -1)
erl err quit("erl connect init");

if ((fd = erl connect("el@idril")) < 0)
erl err quit("erl connect");
fprintf(stderr, "Connected to ei@idril\n\r");

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL ERROR) {
loop = 0;
} else {

if (emsg.type == ERL REG SEND) {
fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl _element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL _INT VALUE(argp));

}

resp = erl format("{cnode, ~i}", res);

erl send(fd, fromp, resp);

erl free term(emsg.from); erl free term(emsg.msg);
erl free term(fromp); erl free term(tuplep);
erl free term(fnp); erl free term(argp);
erl free term(resp);
h
}
}
I

8.7.3 Running the Example

Sep 1. Compilethe C code. This providesthe pathsto the Erl_Interfaceinclude filesand libraries, and to thesocket
and nsl libraries:

> gcc -0 cserver \\

-I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/lib \\
complex.c cnode s.c \\

-lerl interface -lei -lsocket -1lnsl

unix> gcc -o cserver2 \\
-I/usr/local/otp/lib/erl interface-3.2.1/include \\

280 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

-L/usr/local/otp/lib/erl interface-3.2.1/1ib \\
complex.c cnode s2.c \\
-lerl interface -lei -lsocket -lnsl

unix> gcc -o cclient \\

-I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/1ib \\
complex.c cnode c.c \\

-lerl interface -lei -lsocket -lnsl

In Erlang/OTP R5B and later versionsof OTP, thei ncl ude and! i b directoriesaresituated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr/ | ocal / ot p inthe
recent example) and VSN is the version of the Erl_Interface application (3.2.1 in the recent example).

In R4B and earlier versions of OTP, i ncl ude and | i b are situated under OTPROOT/ usr .
Sep 2. Compile the Erlang code:

unix> erl -compile complex3 complex4

Sep 3. Run the C node server example with short node names.
Do asfollows:
« Start the C program cser ver and Erlang in different windows.

e cserver takesaport number as argument and must be started before trying to call the Erlang functions.

e TheErlang nodeisto be given the short name e1 and must be set to use the same magic cookie as the C node,
secret cooki e:

unix> cserver 3456

unix> erl -sname el -setcookie secretcookie
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G)
(el@idril)1> complex3:foo(3).

4

(el@idril)2> complex3:bar(5).

10

Sep 4. Run the C node client example. Terminate cser ver , but not Erlang, and start ccl i ent . The Erlang node
must be started before the C node client:

unix> cclient
el@idril)3> complex3:foo(3).

el@idril)4> complex3:bar(5).
0

=~ s~

Sep 5. Run the C node server example with long node names:

unix> cserver2 3456

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 281

8.8 NIFs

unix> erl -name el -setcookie secretcookie
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)
(el@idril.du.uab.ericsson.se)1> complex4:foo(3).

4

(el@idril.du.uab.ericsson.se)2> complex4:bar(5).
10

8.8 NIFs

This section outlines an example of how to solve the example problem in Problem Example by using Native
Implemented Functions (NIFs).

NIFs were introduced in Erlang/OTP R13B03 as an experimental feature. It is a simpler and more efficient way of
calling C-code than using port drivers. NIFs are most suitable for synchronous functions, such asf oo and bar inthe
example, that do some relatively short calculations without side effects and return the result.

A NIFisafunction that isimplemented in C instead of Erlang. NIFs appear as any other functionsto the callers. They
belong to amodule and are called like any other Erlang functions. The NIFs of amodule are compiled and linked into
adynamic loadable, shared library (SO in UNIX, DLL in Windows). The NIF library must be loaded in runtime by
the Erlang code of the module.

AsaNIF library isdynamically linked into the emulator process, thisisthe fastest way of calling C-code from Erlang
(alongside port drivers). Calling NIFs requires no context switches. But it is also the least safe, because acrash in a
NIF brings the emulator down too.

8.8.1 Erlang Program
Even if dl functions of amodule are NIFs, an Erlang module is still needed for two reasons.

* TheNIF library must be explicitly loaded by Erlang code in the same module.
e All NIFs of amodule must have an Erlang implementation as well.

Normally these are minimal stub implementations that throw an exception. But they can also be used as fallback
implementations for functions that do not have native implemenations on some architectures.

NIF libraries are loaded by calling er | ang: | oad_ni f/ 2, with the name of the shared library as argument. The
second argument can be any term that will be passed on to the library and used for initialization:

-module(complex6) .
-export([foo/1, bar/1]).
-on_load(init/0).
init ->

()
ok = erlang:load nif("./complex6 nif", 0).

foo(X) ->
exit(nif library not loaded).

bar(Y) ->
exit(nif library not loaded).

Here, the directive on_| oad is used to get functioni ni t to be automatically called when the module is loaded. If
i nit returns anything other than ok, such when the loading of the NIF library failsin this example, the module is
unloaded and calls to functions within it, fail.

282 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 NIFs

Loading the NIF library overrides the stub implementations and cause callsto f 00 and bar to be dispatched to the
NIF implementations instead.

8.8.2 NIF Library Code

TheNIFs of themoduleare compiled and linked into ashared library. Each NIF isimplemented asanormal C function.
The macro ERL_NI F_I NI T together with an array of structures defines the names, arity, and function pointers of
all the NIFsin the module. The header fileer | _ni f. h must be included. As the library is a shared module, not a
program, no main function isto be present.

The function arguments passed to aNIF appearsin an array ar gv, with ar gc asthe length of the array, and thus the
arity of thefunction. The Nth argument of the function can beaccessed asar gv[N- 1] . NIFsalso take an environment
argument that serves as an opaque handle that is needed to be passed on to most API functions. The environment
contains information about the calling Erlang process:

#include "erl nif.h"

extern int foo(int x);
extern int bar(int y);

static ERL NIF TERM foo nif(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{

int x, ret;
if (!enif get int(env, argv[0], &x)) {
return enif make badarg(env);

}
ret = foo(x);
return enif make int(env, ret);

}

static ERL NIF TERM bar nif(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{

int y, ret;
if (!enif get int(env, argv[0], &y)) {
return enif make badarg(env);

ret = bar(y);
return enif make int(env, ret);

}

static EriNifFunc nif funcs[] = {
{"foo", 1, foo nif},
{"bar", 1, bar nif}

};

ERL NIF INIT(complex6, nif funcs, NULL, NULL, NULL, NULL)

Here,ERL_NI F_I| NI T has the following arguments:

e Thefirst argument must be the name of the Erlang module as a C-identifier. It will be stringified by the macro.

e Thesecond argument isthe array of Er | Ni f Func structures containing name, arity, and function pointer of
each NIF.

* Theremaining arguments are pointers to callback functions that can be used to initialize the library. They are
not used in this simple example, hence they are all set to NULL.

Function arguments and return values are represented as values of type ERL_NI F_TERM Here, functions like
eni f _get _int and eni f _nmake_i nt are used to convert between Erlang term and C-type. If the function

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 283

8.8 NIFs

argument ar gv[O] isnotaninteger,eni f _get i nt returnsfalse, in which caseit returns by throwing abadar g-
exception witheni f _nake_badar g.

8.8.3 Running the Example
Sep 1. Compile the C code:

unix> gcc -o complex6 nif.so -fpic -shared complex.c complex6 nif.c
windows> cl -LD -MD -Fe complex6 nif.dll complex.c complex6 nif.c

Sep 2: Start Erlang and compile the Erlang code:

> erl
Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.5 (abort with ~G)

1> c(complex6) .
{ok,complex6}

Sep 3: Run the example:

3> complex6:foo(3).

4> complex6:bar(5).

5> complex6:foo("not an integer").
** exception error: bad argument

in function complex6:foo/1
called as comlpex6:foo("not an integer")

284 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

9 OTP Design Principles

9.1 Overview

The OTP design principles define how to structure Erlang code in terms of processes, modules, and directories.

9.1.1 Supervision Trees

A basic concept in Erlang/OTPisthe supervision tree. Thisisaprocess structuring model based on the idea of workers

and supervisors:

» Workers are processes that perform computations, that is, they do the actual work.

e Supervisors are processes that monitor the behaviour of workers. A supervisor can restart aworker if something
goes wrong.

» Thesupervision treeisahierarchical arrangement of code into supervisors and workers, which makes it
possible to design and program fault-tolerant software.

In the following figure, square boxes represents supervisors and circles represent workers:

]
~I=

Figure 1.1: Supervision Tree

9.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the
supervisors are similar in structure. The only difference between them is which child processes they supervise. Many
of the workers are serversin a server-client relation, finite-state machines, or event handlers such as error loggers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 285

9.1 Overview

Behaviours are formalizations of these common patterns. The ideaisto divide the code for a processin a generic part
(abehaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only has to
implement the callback module which isto export a pre-defined set of functions, the callback functions.

The following example illustrate how code can be divided into a generic and a specific part. Consider the following
code (written in plain Erlang) for a simple server, which keeps track of a number of "channels'. Other processes can
allocate and free the channels by calling the functionsal |1 oc/ 0 and f r ee/ 1, respectively.

-module(chl).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0]).

start() ->
spawn(chl, init, [1).
alloc() ->
chl ! {self(), alloc},
receive
{chl, Res} ->
Res
end.
free(Ch) ->
chl ! {free, Ch},
ok.
init() ->

register(chl, self()),
Chs = channels(),
loop(Chs).

loop(Chs) ->
receive
{From, alloc} ->
{Ch, Chs2} = alloc(Chs),
From ! {chl, Ch},
loop(Chs2);
{free, Ch} ->
Chs2 = free(Ch, Chs),
loop(Chs2)
end.

The code for the server can be rewritten into a generic part server . erl ;

-module(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start(Mod) ->
spawn(server, init, [Mod]).

call(Name, Req) ->
Name ! {call, self(), Req},
receive
{Name, Res} ->
Res

286 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

end.

cast(Name, Req) ->
Name ! {cast, Req},
ok.

init(Mod) ->
register(Mod, self()),
State = Mod:init(),
loop(Mod, State).

loop(Mod, State) ->
receive
{call, From, Req} ->
{Res, State2} = Mod:handle call(Req, State),
From ! {Mod, Res},
loop(Mod, State2);
{cast, Req} ->
State2 = Mod:handle cast(Req, State),
loop(Mod, State2)
end.

And acallback modulech?2. er | :

-module(ch2).

-export([start/0]).

-export([alloc/0, free/1]).

-export([init/0, handle call/2, handle cast/2]).

start() ->
server:start(ch2).

alloc() ->
server:call(ch2, alloc).

free(Ch) ->
server:cast(ch2, {free, Ch}).

init() ->
channels().

handle call(alloc, Chs) ->
alloc(Chs). % => {Ch,Chs2}

handle cast({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Notice the following:

e« Thecodeinserver can be reused to build many different servers.

e Theserver name, in this example the atom ch2, is hidden from the users of the client functions. This means
that the name can be changed without affecting them.

* Theprotocol (messages sent to and received from the server) is also hidden. Thisis good programming practice
and allows one to change the protocol without changing the code using the interface functions.

e Thefunctionality of ser ver can be extended without having to change ch2 or any other callback module.

In chl.erl and ch2.erl above, the implementation of channel s/ 0, all oc/ 1, and free/ 2 has been
intentionally left out, as it is not relevant to the example. For completeness, one way to write these functions are

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 287

9.1 Overview

given below. Thisis an example only, a realistic implementation must be able to handle situations like running out
of channelsto allocate, and so on.

channels() ->
{ Allocated = [], Free = lists:seq(1,100)}.

alloc({Allocated, [H|T] = Free}) ->
{H, {[H|Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
case lists:member(Ch, Alloc) of
true ->
{lists:delete(Ch, Alloc), [Ch|Freel};
false ->
Channels
end.

Codewritten without using behaviours can be more efficient, but theincreased efficiency isat the expense of generality.
The ability to manage all applicationsin the system in a consistent manner isimportant.

Using behaviours also makes it easier to read and understand code written by other programmers. Improvised
programming structures, while possibly more efficient, are always more difficult to understand.

Theser ver module corresponds, greatly simplified, to the Erlang/OTP behaviour gen_ser ver .
The standard Erlang/OTP behaviours are:
s gen server
For implementing the server of a client-server relation
e gen_fsm
For implementing finite-state machines
e gen event
For implementing event handling functionality
e supervisor
For implementing a supervisor in a supervision tree

The compiler understands the module attribute - behavi our (Behavi our) and issues warnings about missing
callback functions, for example:

-module(chs3).
-behaviour(gen server).

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle call/3
{ok,chs3}

9.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality. Components are
with Erlang/OTP terminology called applications. Examples of Erlang/OTP applications are Mnesia, which has
everything needed for programming database services, and Debugger, which is used to debug Erlang programs. The
minimal system based on Erlang/OTP consists of the following two applications:

288 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 gen_server Behaviour

e Kerne - Functionality necessary to run Erlang
e STDLIB - Erlang standard libraries

The application concept applies both to program structure (processes) and directory structure (modules).

The simplest applications do not have any processes, but consist of a collection of functional modules. Such an
application iscalled alibrary application. An example of alibrary applicationis STDLIB.

An application with processesis easiest implemented as a supervision tree using the standard behaviours.
How to program applications is described in Applications.

9.1.4 Releases

A release is a complete system made out from a subset of Erlang/OTP applications and a set of user-specific
applications.

How to program releases is described in Releases.

How to install arelease in atarget environment is described in the section about target systemsin Section 2 System
Principles.

9.1.5 Release Handling

Release handling is upgrading and downgrading between different versions of arelease, ina(possibly) running system.
How to do thisis described in Release Handling.

9.2 gen_server Behaviour

This section isto beread with the gen_server(3) manual pageinst dbl i b, whereall interface functions and callback
functions are described in detail.

9.2.1 Client-Server Principles

Theclient-server model is characterized by acentral server and an arbitrary number of clients. The client-server model
is used for resource management operations, where several different clients want to share a common resource. The
server isresponsible for managing this resource.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 289

9.2 gen_server Behaviour

1)

Clients

.

Q Server
. F
Q R

The Client-server model

Figure 2.1: Client-Server Model

9.2.2 Example

An example of asimple server written in plain Erlang is provided in Overview. The server can be reimplemented using
gen_ser ver, resulting in this callback module;

-module(ch3).
-behaviour(gen server).

-export([start link/01]).
-export([alloc/0, free/1]).
-export([init/1, handle call/3, handle cast/2]).

start link() ->
gen_server:start_link({local, ch3}, ch3, [1, []).

alloc() ->
gen _server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

init(Args) ->
{ok, channels()}.

handle call(alloc, From, Chs) ->

{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

290 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 gen_server Behaviour

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The codeis explained in the next sections.

9.2.3 Starting a Gen_Server

In the examplein the previous section, gen_ser ver isstarted by callingch3: start _| i nk():

start link() ->
gen_server:start link({local, ch3}, ch3, [], []) => {ok, Pid}

start _|ink calsfunctiongen_server: start _|ink/ 4. Thisfunction spawns and links to a new process, a
gen_server.

* Thefirstargument, {| ocal , ch3}, specifiesthe name. The gen_server isthen locally registered asch3.
If thenameisomitted, thegen_ser ver isnot registered. Instead itspid must be used. Thename can also begiven
as{gl obal , Nane},inwhichcasethegen_server isregistered using gl obal : r egi st er _name/ 2.
* Thesecond argument, ch3, isthe name of the callback module, that is, the module where the callback functions
are located.

Theinterface functions(st art _| i nk,al | oc, andf r ee) arethen located in the same modul e as the callback
functions (i ni t, handl e_cal | , and handl e_cast). Thisis normally good programming practice, to have
the code corresponding to one process contained in one module.

e Thethird argument, [] , isaterm that is passed asis to the callback functioni ni t . Here, i ni t does not need
any indata and ignores the argument.

e Thefourth argument, [], isalist of options. Seethegen_ser ver (3) manua page for available options.

If name registration succeeds, the new gen_ser ver process callsthe callback functionch3:init ([]).init is
expected to return { ok, St at e}, where St at e is the internal state of the gen_ser ver . In this case, the state
isthe available channels.

init(Args) ->
{ok, channels()}.

gen_server:start _|ink issynchronous. It does not return until the gen_ser ver hasbeen initialized and is
ready to receive requests.

gen_server:start _|ink must be used if the gen_server is part of a supervision tree, that is, started by
a supervisor. There is another function, gen_server: start, to start a standalone gen_ser ver, that is, a
gen_ser ver that isnot part of a supervision tree.

9.2.4 Synchronous Requests - Call

The synchronous request al | oc() isimplemented usinggen_server: cal |/ 2:

alloc() ->
gen server:call(ch3, alloc).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 291

9.2 gen_server Behaviour

ch3 isthe name of thegen_ser ver and must agree with the name used to start it. al | oc isthe actual request.

The request is made into a message and sent to the gen_server. When the request is received, the
gen_server cdls handl e_cal |l (Request, From State), which is expected to return a tuple
{reply, Reply, Statel}.Reply isthereply that is to be sent back to the client, and St at el is a new value
for the state of thegen_ser ver.

handle call(alloc, From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.
In this case, the reply is the allocated channel Ch and the new state is the set of remaining available channels Chs 2.

Thus, the call ch3: al | oc() returns the allocated channel Ch and the gen_ser ver then waits for new requests,
now with an updated list of available channels.

9.2.5 Asynchronous Requests - Cast

The asynchronous request f r ee(Ch) isimplemented usinggen_ser ver : cast/ 2:

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).
ch3 isthenameof thegen_server.{free, Ch} istheactual request.
The request is made into amessage and sent tothegen_ser ver . cast , and thusf r ee, then returns ok.

When the request isreceived, thegen_ser ver calshandl e_cast (Request, State), whichisexpectedto
return atuple{ nor epl y, St at el}. St at el isanew vauefor the state of thegen_ser ver .

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

In this case, the new state is the updated list of available channels Chs2. The gen_ser ver isnow ready for new
requests.

9.2.6 Stopping

In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed. The gen_ser ver is automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it isnecessary to clean up before termination, the shutdown strategy must be atime-out valueand thegen_ser ver
must be set to trap exit signalsinfunctioni ni t . When ordered to shutdown, thegen_ser ver then callsthe callback
functiont er m nat e(shut down, State):

init(Args) ->
process flag(trap exit, true),

{ok, State}.

292 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 gen_fsm Behaviour

terminate(shutdown, State) ->
..code for cleaning up here..
ok.

Standalone Gen_Servers

If thegen_ser ver isnot part of asupervision tree, astop function can be useful, for example:

export ([stop/0]).

stop() ->
gen_server:cast(ch3, stop).

handle cast(stop, State) ->
{stop, normal, State};
handle cast({free, Ch}, State) ->

terminate(normal, State) ->
ok.

The callback function handling the st op request returns a tuple { st op, nor mal , St at e1}, where nor nal
specifies that it is a normal termination and St at el is a new value for the state of the gen_ser ver . This causes
thegen_server tocalterm nate(normal, Statel) andthen it terminates gracefully.

9.2.7 Handling Other Messages

If the gen_server is to be able to receive other messages than requests, the callback function
handl e_i nfo(Info, State) must be implemented to handle them. Examples of other messages are exit
messages, if thegen_ser ver islinked to other processes (than the supervisor) and trapping exit signals.

handle info({'EXIT', Pid, Reason}, State) ->
..code to handle exits here..
{noreply, Statel}.

The code_change method must also be implemented.

code change(0ldVsn, State, Extra) ->
..code to convert state (and more) during code change
{ok, NewState}.

9.3 gen_fsm Behaviour

This sectionisto beread with thegen_f sn(3) manual pagein STDLIB, where al interface functions and callback
functions are described in detail.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 293

9.3 gen_fsm Behaviour

9.3.1 Finite-State Machines
A Finite-State Machine (FSM) can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S')

These relations are interpreted as meaning:
If we arein state S and event E occurs, we are to perform actions A and make atransition to state S' .

For an FSM implemented using the gen_f smbehaviour, the state transition rules are written as a number of Erlang
functions, which conform to the following convention:

StateName(Event, StateData) ->
. code for actions here ...
{next state, StateName', StateData'}

9.3.2 Example

A door with a code lock can be viewed as an FSM. Initially, the door is locked. Anytime someone presses a button,
this generates an event. Depending on what buttons have been pressed before, the sequence so far can be correct,
incomplete, or wrong.

If it is correct, the door is unlocked for 30 seconds (30,000 ms). If it isincomplete, we wait for another button to be
pressed. If it isiswrong, we start all over, waiting for a new button sequence.

Implementing the code lock FSM using gen_f smresultsin the following callback module:

-module(code lock).
-behaviour(gen fsm).

-export([start link/1]).
-export([button/1]).
-export([init/1, locked/2, open/2]).

start link(Code) ->
gen_fsm:start link({local, code lock}, code lock, lists:reverse(Code), []).

button(Digit) ->
gen_fsm:send event(code lock, {button, Digit}).

init(Code) ->
{ok, locked, {[], Code}}.

locked({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of
Code ->
do_unlock(),
{next state, open, {[], Code}, 30000};
Incomplete when length(Incomplete)<length(Code) ->
{next state, locked, {Incomplete, Code}};
_Wrong ->
{next_state, locked, {[], Code}}
end.

open(timeout, State) ->
do lock(),

294 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 gen_fsm Behaviour

{next state, locked, State}.

The codeis explained in the next sections.

9.3.3 Starting gen_fsm

In the examplein the previous section, the gen_f smis started by callingcode_| ock: start I i nk(Code):

start link(Code) ->
gen_fsm:start_link({local, code_lock}, code lock, lists:reverse(Code), []).

start _|ink cdls the function gen_fsm start _|ink/4, which spawns and links to a new process, a
gen_fsm

* Thefirstargument, {1 ocal , code_I ock}, specifiesthename. Inthiscase, thegen_f smislocally registered
ascode_| ock.

If the name is omitted, the gen_f smis not registered. Instead its pid must be used. The name can also be given
as{gl obal , Nane},inwhich casethegen_f smisregistered using gl obal : r egi st er _name/ 2.

* Thesecond argument, code_| ock, isthe name of the callback module, that is, the module where the callback
functions are located.

The interface functions (st art | i nk and but t on) are then located in the same module as the callback
functions (i ni t, | ocked, and open). This is normally good programming practice, to have the code
corresponding to one process contained in one module.

e Thethird argument, Code, isalist of digits that which is passed reversed to the callback functioni ni t . Here,
i ni t getsthe correct code for the lock asindata.

e Thefourth argument, [], isalist of options. Seethegen_f sn(3) manual page for available options.

If name registration succeeds, the new gen_f smprocess calls the callback function code_I| ock: i ni t (Code) .
This function is expected to return { ok, St at eName, St at eDat a}, where St at eNane is the name of the
initial state of the gen_f sm In this case | ocked, assuming the door is locked to begin with. St at eDat a is the
internal state of thegen_f sm (For gen_f sm the internal state is often referred to 'state data’ to distinguish it from
the state asin states of a state machine.) In this case, the state data is the button sequence so far (empty to begin with)
and the correct code of the lock.

init(Code) ->
{ok, locked, {[], Code}}.

gen_fsmstart _| i nk issynchronous. It does not return until the gen_f smhas been initialized and is ready to
receive notifications.

gen_fsmstart _|ink must beusedif thegen_f smispart of asupervision tree, that is, started by a supervisor.
There is another function, gen_f sm st art, to start a standalone gen_f sm that is, agen_f smthat is not part
of asupervision tree.

9.3.4 Notifying about Events

The function notifying the code lock about a button event isimplemented using gen_f sm send_event/ 2:

button(Digit) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 295

9.3 gen_fsm Behaviour

gen fsm:send event(code lock, {button, Digit}).

code_| ock isthe name of the gen_f smand must agree with the name used to start it. { button, Digit} is
the actual event.

The event is made into a message and sent to the gen_fsm When the event is received,
the gen_fsm cdls StateNane(Event, StateData), which is expected to return a tuple
{next _state, StateNanel, St at eDat al}. St at eNane isthe name of the current state and St at eNanel
isthe name of the next state to go to. St at eDat al isanew value for the state data of thegen_f sm

locked({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of
Code ->
do_unlock(),
{next_state, open, {[], Code}, 30000};
Incomplete when length(Incomplete)<length(Code) ->
{next state, locked, {Incomplete, Code}};
_Wrong ->
{next_state, locked, {[], Code}};
end.

open(timeout, State) ->

do lock(),
{next state, locked, State}.

If the door is locked and a button is pressed, the complete button sequence so far is compared with the correct code
for the lock and, depending on the result, the door is either unlocked and the gen_f smgoes to state open, or the
door remainsin state| ocked.

9.3.5 Time-Outs

When a correct code has been given, the door is unlocked and the following tuple is returned from | ocked/ 2:

{next state, open, {[], Code}, 30000};

30,000 is a time-out value in milliseconds. After this time, that is, 30 seconds, a time-out occurs. Then,
Stat eNane(ti neout, StateData) iscalled. Thetime-out then occurs when the door has been in state open
for 30 seconds. After that the door islocked again:

open(timeout, State) ->
do_lock(),
{next_state, locked, State}.

9.3.6 All State Events

Sometimes an event can arrive at any state of the gen_fsm Instead of sending the message with
gen_fsm send_event/ 2 and writing one clause handling the event for each state function, the message can be
sentwithgen_fsm send_al | _state_event/ 2 and handled with Mbdul e: handl e_event/ 3:

-module(code lock).

296 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 gen_fsm Behaviour

-export([stop/0]).

stop() ->
gen fsm:send all state event(code lock, stop).

handle event(stop, StateName, StateData) ->
{stop, normal, StateData}.

9.3.7 Stopping

In a Supervision Tree

If the gen_f smis part of asupervision tree, no stop function is needed. The gen_f smis automatically terminated
by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a time-out value and the gen_f sm
must be set to trap exit signalsinthei ni t function. When ordered to shutdown, the gen_f smthen callsthe callback
functiont er mi nat e(shut down, St ateNane, StateData):

init(Args) ->
process flag(trap exit, true),

{ok, StateName, StateData}.

terminate(shutdown, StateName, StateData) ->
..code for cleaning up here..
ok.

Standalone gen_fsm

If thegen_f smisnot part of a supervision tree, a stop function can be useful, for example:

:é§port([stop/0]).

stop() ->
gen fsm:send all state event(code lock, stop).

handle event(stop, StateName, StateData) ->
{stop, normal, StateData}.

terminate(normal, StateName, StateData) ->
ok.

The callback function handling the st op event returns atuple, { st op, nor nal , St at eDat al} , where nor nal
specifies that it is a normal termination and St at eDat al is a new value for the state data of the gen_f sm

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 297

9.4 gen_event Behaviour

This causes the gen_fsmto cal t er mi nat e(nor mal , St at eNane, St at eDat al) and then it terminates
gracefully:

9.3.8 Handling Other Messages

If the gen_f smisto be able to receive other messages than events, the callback function handl e_i nf o(| nf o,
St at eNane, St at eDat a) must beimplemented to handle them. Examples of other messages are exit messages,
if thegen_f smislinked to other processes (than the supervisor) and trapping exit signals.

handle info({'EXIT', Pid, Reason}, StateName, StateData) ->
..code to handle exits here..
{next state, StateNamel, StateDatal}.

The code_change method must also be implemented.

code change(0ldVsn, StateName, StateData, Extra) ->
..code to convert state (and more) during code change
{ok, NextStateName, NewStateData}

9.4 gen_event Behaviour

Thissectionistoberead withthegen_event (3) manual pagein STDLIB, whereall interfacefunctionsand callback
functions are described in detail.

9.4.1 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An event can be, for example, an error, an
alarm, or some information that is to be logged.

In the event manager, zero, one, or many event handlers are installed. When the event manager is notified about an
event, the event is processed by all the installed event handlers. For example, an event manager for handling errors
can by default have a handler installed, which writes error messages to the terminal. If the error messages during a
certain period isto be saved to a file as well, the user adds another event handler that does this. When logging to the
fileisno longer necessary, this event handler is deleted.

An event manager isimplemented as a process and each event handler isimplemented as a callback module.

The event manager essentially maintainsalist of { Modul e, St at e} pairs, where each Modul e isan event handler,
and St at e istheinternal state of that event handler.

9.4.2 Example

The callback module for the event handler writing error messages to the terminal can look as follows:

-module(terminal logger).
-behaviour(gen event).

-export([init/1, handle event/2, terminate/2]).

init(Args) ->
{ok, [1}.

handle event(ErrorMsg, State) ->

298 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 gen_event Behaviour

io:format("***Error*** ~p~n", [ErrorMsgl),
{ok, State}.

terminate(Args, State) ->

ok.

The callback module for the event handler writing error messages to afile can look as follows:

-module(file logger).
-behaviour(gen event).

-export([init/1, handle event/2, terminate/2]).

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

handle event(ErrorMsg, Fd) ->
io:format(Fd, "***Error*** ~p~n", [ErrorMsgl),
{ok, Fd}.

terminate(Args, Fd) ->

file:close(Fd).

The codeis explained in the next sections.

9.4.3 Starting an Event Manager

To start an event manager for handling errors, as described in the previous example, call the following function:

gen _event:start link({local, error man})

This function spawns and links to a new process, an event manager.

The argument, {| ocal , error_nman} specifies the name. The event manager is then locally registered as
error_nan.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name can also be given
as{gl obal , Nane}, inwhich case the event manager isregistered using gl obal : r egi st er _nane/ 2.

gen_event: start _|ink must be used if the event manager is part of a supervision tree, that is, started by a
supervisor. There is another function, gen_event : st art , to start a standalone event manager, that is, an event
manager that is not part of a supervision tree.

9.4.4 Adding an Event Handler

The following example shows how to start an event manager and add an event handler to it by using the shell:

1> gen event:start({local, error _man}).

{ok,<0.31.0>}

2> gen_event:add handler(error _man, terminal logger, [1).
ok

This function sends a message to the event manager registered as er r or _mran, telling it to add the event handler
t erm nal _I ogger . The event manager calsthe callback functiont er mi nal _| ogger:init([]),wherethe

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 299

9.4 gen_event Behaviour

argument [] isthe third argument to add_handl er . i ni t isexpected toreturn { ok, St at e}, where St at e
istheinternal state of the event handler.

init(Args) ->
{ok, [1}.

Here, i ni t doesnot need any input dataand ignoresitsargument. Fort er m nal _I ogger , theinternal stateisnot
used. Forfi |l e_l ogger, theinternal stateis used to save the open file descriptor.

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

9.4.5 Notifying about Events

3> gen _event:notify(error man, no reply).
XError no reply
ok

er r or _nman isthe name of the event manager and no_r epl y isthe event.

The event is made into a message and sent to the event manager. When the event is received, the event manager calls
handl e_event (Event, State) for each instaled event handler, in the same order as they were added. The
functionisexpected toreturn atuple{ ok, St at e1} ,where St at el isanew vauefor the state of the event handler.

Interm nal _| ogger:

handle event(ErrorMsg, State) ->
io:format("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

Infile_l ogger:

handle event(ErrorMsg, Fd) ->
io:format(Fd, "***Error*** ~p~n", [ErrorMsgl),
{ok, Fd}.

9.4.6 Deleting an Event Handler

4> gen_event:delete handler(error man, terminal logger, []).
ok

This function sends a message to the event manager registered as er r or _man, telling it to delete the event handler
term nal _| ogger. The event manager calls the callback function t ermi nal _| ogger:termnate([],
St at e) , wheretheargument [] isthethird argument to del et e_handl er .t er ni nat e isto be the opposite of
i ni t and do any necessary cleaning up. Itsreturn value isignored.

300 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

Fort erm nal _| ogger, no cleaning up is necessary:

terminate(Args, State) ->
ok.

Forfil e_l ogger, thefile descriptor openedini ni t must be closed:

terminate(Args, Fd) ->
file:close(Fd).

9.4.7 Stopping

When an event manager is stopped, it gives each of the installed event handlers the chance to clean up by calling
t er m nat e/ 2, the same way as when deleting a handler.

In a Supervision Tree

If the event manager is part of a supervision tree, no stop function is needed. The event manager is automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

Standalone Event Managers
An event manager can aso be stopped by calling:

> gen event:stop(error man).
ok

9.4.8 Handling Other Messages

If thegen_event istobeableto receive other messagesthan events, the callback function handl e_i nf o(| nf o,
St at eNane, St at eDat a) must beimplemented to handle them. Examples of other messages are exit messages,
if thegen_event islinked to other processes (than the supervisor) and trapping exit signals.

handle info({'EXIT', Pid, Reason}, State) ->
..code to handle exits here..
{ok, NewState}.

Thecode_change method must also be implemented.

code change(0ldVsn, State, Extra) ->
..code to convert state (and more) during code change
{ok, NewState}

9.5 Supervisor Behaviour

This section should be read with the supervisor(3) manual page in STDLIB, where all details about the supervisor
behaviour is given.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 301

9.5 Supervisor Behaviour

9.5.1 Supervision Principles

A supervisor isresponsible for starting, stopping, and monitoring its child processes. The basic idea of a supervisor is
that it isto keep its child processes alive by restarting them when necessary.

Which child processesto start and monitor is specified by alist of child specifications. The child processes are started
in the order specified by thislist, and terminated in the reversed order.

9.5.2 Example

The callback module for a supervisor starting the server from gen_server Behaviour can look as follows:

-module(ch_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start link() ->
supervisor:start link(ch sup, []).

init(Args) ->
SupFlags = #{strategy => one for one, intensity => 1, period => 5},
ChildSpecs = [#{id => ch3,
start => {ch3, start link, [1},
restart => permanent,
shutdown => brutal kill,
type => worker,
modules => [cg3]1}],
{ok, {SupFlags, ChildSpecs}}.

The SupFl ags variablein the return value fromi ni t / 1 represents the supervisor flags.
The Chi | dSpecs variablein thereturn value fromi ni t / 1 isalist of child specifications.

9.5.3 Supervisor Flags
Thisisthe type definition for the supervisor flags:

sup _flags() = #{strategy => strategy(), % optional
intensity => non neg integer(), % optional
period => pos integer()} % optional

strategy() = one for all
| one for one
| rest for one
| simple one for one

e strategy specifiestherestart strategy.
 intensity andperi od specify the maximum restart intensity.

9.5.4 Restart Strategy

The restart strategy is specified by the st r at egy key in the supervisor flags map returned by the callback function
init:

302 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

SupFlags = #{strategy => Strategy, ...}

Thest r at egy key isoptiona in thismap. If itisnot given, it defaultstoone_f or _one.

one_for_one
If achild process terminates, only that processis restarted.

one for one supervision
If any child dies it is restarted

e

Figure 5.1: One_For_One Supervision

one_for_all

If a child process terminates, all other child processes are terminated, and then al child processes, including the
terminated one, are restarted.

N

Figure 5.2: One_For_All Supervision

all-for—one supervision
If any child dies all children
are terminated and all are restarted

rest for_one

If achild process terminates, the rest of the child processes (that is, the child processes after the terminated processin
start order) are terminated. Then the terminated child process and the rest of the child processes are restarted.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 303

9.5 Supervisor Behaviour

simple_one_for _one
See simple-one-for-one supervisors.

9.5.5 Maximum Restart Intensity

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given time interval.
This is specified by the two keysi nt ensi ty and peri od in the supervisor flags map returned by the callback
functionini t:

SupFlags = #{intensity => MaxR, period => MaxT, ...}

If more than Max R number of restarts occur in thelast Max T seconds, the supervisor terminates all the child processes
and then itself.

When the supervisor terminates, then the next higher-level supervisor takessome action. It either restartstheterminated
supervisor or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the same reason,
only to be restarted again.

The keysi nt ensity and peri od are optional in the supervisor flags map. If they are not given, they default to
1 and 5, respectively.

9.5.6 Child Specification

The type definition for a child specification is as follows:

child spec() = #{id => child id(), % mandatory
start => mfargs(), % mandatory
restart => restart(), % optional
shutdown => shutdown(), % optional
type => worker(), % optional
modules => modules()} % optional

child id() = term()

mfargs() = {M :: module(), F :: atom(), A :: [term()]}
modules () [module()] | dynamic

restart() permanent | transient | temporary
shutdown() = brutal kill | timeout()

worker() = worker | supervisor

« idisusedtoidentify the child specification internally by the supervisor.
Thei d key is mandatory.

Note that this identifier occasionally has been called "name". As far as possible, the terms "identifier" or "id"
are now used but in order to keep backwards compatibility, some occurences of "name" can still be found, for
examplein error messages.

e start definesthe function call used to start the child process. It is a module-function-arguments tuple used as
apply(M F, A).
It isto be (or result in) a call to any of the following:
e supervisor:start_link
e gen_server:start_link
e gen_fsmstart_|ink

304 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

e gen_event:start link
* A function compliant with these functions. For details, seethe super vi sor (3) manual page.

Thest art key ismandatory.
» restart defineswhen aterminated child processisto be restarted.

A pernmanent child processisaways restarted.

« Atenporary child processisnever restarted (not even when the supervisor restart strategy is
rest_for_oneorone_for_all andasibling death causes the temporary process to be terminated).

« Atransi ent child processisrestarted only if it terminates abnormally, that is, with another exit reason
than nor mal , shut down, or { shut down, Ter n}.
Ther est art keyisoptiona. If it isnot given, the default value per manent will be used.
* shut down defines how achild process is to be terminated.
e brutal _kill meansthat the child processis unconditionally terminated using exi t (Chi | d,
kill).
e An int)eger time-out value means that the supervisor tells the child process to terminate by calling

exi t(Child, shutdown) andthen waitsfor an exit signal back. If no exit signal is received within
the specified time, the child processis unconditionally terminated usingexi t (Chi I d, kill).

» |If the child process is another supervisor, itistobesettoi nf i ni t y to give the subtree enough time
to shut down. Itisalso allowedto setittoi nfi ni ty, if thechild processis aworker. See the warning
below:

Warning:

Be careful when setting the shutdown time to i nf i ni t y when the child process is a worker. Because, in
this situation, the termination of the supervision tree depends on the child process; it must be implemented
in asafe way and its cleanup procedure must always return.

The shut down key isoptional. If it is not given, and the child is of type wor ker , the default value 5000 will
be used; if the child is of typesuper vi sor , the default valuei nf i ni t y will be used.

e type specifiesif the child processis a supervisor or aworker.

Thet ype key isoptionad. If it isnot given, the default value wor ker will be used.

* nodul es areto be alist with one element [Mbdul e] , where Modul e is the name of the callback module, if
the child process is a supervisor, gen_server or gen_fsm. If the child process is a gen_event, the value shall be
dynani c.

Thisinformation is used by the release handler during upgrades and downgrades, see Release Handling.
Thenodul es key isoptional. If itisnot given, it defaultsto[M , where Mcomesfromthechild'sstart{ M F, A} .
Example: The child specification to start the server ch3 in the previous example look as follows:

#{id => ch3,
start => {ch3, start link, []},
restart => permanent,
shutdown => brutal kill,
type => worker,
modules => [ch3]}

or simplified, relying on the default values:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 305

9.5 Supervisor Behaviour

#{id => ch3,
start => {ch3, start link, [1}
shutdown => brutal kill}

Example: A child specification to start the event manager from the chapter about gen_event:

#{id => error_man,
start => {gen event, start link, [{local, error man}]},
modules => dynamic}

Both server and event manager are registered processes which can be expected to be always accessible. Thus they
are specified to be per manent .

ch3 does not need to do any cleaning up before termination. Thus, no shutdown time is needed, but br ut al _ki | |
is sufficient. er r or _nan can need some time for the event handlers to clean up, thus the shutdown time is set to
5000 ms (which is the default value).

Example: A child specification to start another supervisor:

#{id => sup,
start => {sup, start link, [1},
restart => transient,
type => supervisor} % will cause default shutdown=>infinity

9.5.7 Starting a Supervisor

In the previous example, the supervisor is started by callingch_sup: start _|i nk():

start link() ->
supervisor:start link(ch sup, [1).

ch_sup: start _link calsfunctionsupervi sor: start _| i nk/ 2, which spawnsand linksto anew process,
asupervisor.

* Thefirst argument, ch_sup, isthe name of the callback module, that is, the module wherethei ni t callback
function is located.

e Thesecond argument, [], isaterm that is passed asis to the callback functioni ni t . Here, i ni t does not
need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be
specified by caling supervisor:start _|ink({local, Nane}, Modul e, Args) or
supervisor:start_|ink({global, Nane}, Mdule, Args).

The new supervisor process calls the calback function ch_sup:init([]). init shal return {ok,
{SupFl ags, Chil dSpecs}}:

init(Args) ->
SupFlags = #{},
ChildSpecs = [#{id => ch3,
start => {ch3, start link, [1},
shutdown => brutal kill}],

306 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

{ok, {SupFlags, ChildSpecs}}.
The supervisor then starts all its child processes according to the child specificationsin the start specification. In this

case there is one child process, ch3.

supervi sor:start _| i nk issynchronous. It does not return until all child processes have been started.

9.5.8 Adding a Child Process

In addition to the static supervision tree, dynamic child processes can be added to an existing supervisor with the
following call:

supervisor:start child(Sup, ChildSpec)

Sup isthe pid, or name, of the supervisor. Chi | dSpec is a child specification.

Child processes added using st art _chi | d/ 2 behave in the same way as the other child processes, with the an
important exception: if a supervisor dies and is recreated, then all child processes that were dynamically added to the
supervisor are lost.

9.5.9 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:

supervisor:terminate child(Sup, Id)

The child specification for a stopped child process is deleted with the following call:

supervisor:delete child(Sup, Id)

Sup isthe pid, or name, of the supervisor. | d isthe value associated with thei d key in the child specification.
Aswith dynamically added child processes, the effects of deleting a static child processislost if the supervisor itself
restarts.

9.5.10 Simplified one_for _one Supervisors

A supervisor with restart strategy si npl e_one_f or _one isasimplified one_f or _one supervisor, where all
child processes are dynamically added instances of the same process.

Thefollowing is an example of acallback module for asi npl e_one_f or _one supervisor:

-module(simple sup).
-behaviour(supervisor).

-export([start link/0]).
-export([init/1]).

start _link() ->
supervisor:start link(simple sup, []).

init(_Args) ->
SupFlags = #{strategy => simple one for one,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 307

9.6 sys and proc_lib

intensity => 0,
period => 1},
ChildSpecs = [#{id => call,
start => {call, start link, []},
shutdown => brutal kill}],
{ok, {SupFlags, ChildSpecs}}.

When started, the supervisor does not start any child processes. Instead, all child processes are added dynamically
by calling:

supervisor:start child(Sup, List)

Sup isthe pid, or name, of the supervisor. Li st isan arbitrary list of terms, which are added to the list of arguments
specified in the child specification. If the start function is specifiedas{M F, A}, the child process is started by
calingappl y(M F, A++List).

For example, adding a child to si npl e_sup above:

supervisor:start child(Pid, [id1])

Theresult isthat the child processisstarted by callingappl y(cal |, start _|ink, []++[id1]),oractudly:

call:start link(idl)

A child under asi npl e_one_f or _one supervisor can be terminated with the following:

supervisor:terminate child(Sup, Pid)

Sup isthe pid, or name, of the supervisor and Pi d isthe pid of the child.

Becauseasi npl e_one_f or _one supervisor can have many children, it shutsthem all down asynchronously. This
meansthat the children will do their cleanup in parallel and therefore the order in which they are stopped is not defined.

9.5.11 Stopping

Since the supervisor is part of a supervision tree, it is automatically terminated by its supervisor. When asked to shut
down, it terminates all child processesin reversed start order according to the respective shutdown specifications, and
then terminates itself.

9.6 sys and proc_lib

Thesys module hasfunctions for simple debugging of processesimplemented using behaviours. It also has functions
that, together with functionsin the pr oc_| i b module, can be used to implement a special process that compliesto
the OTP design principles without using a standard behaviour. These functions can also be used to implement user-
defined (non-standard) behaviours.

Bothsys and proc_I i b belong to the STDLIB application.

308 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6

sys and proc_lib

9.6.1 Simple Debugging

The sys module has functions for simple debugging of processes implemented using behaviours. The code_| ock

example from gen_fsm Behaviour is used to illustrate this:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with "G)
1> code lock:start link([1,2,3,4]).
{ok,<0.32.0>}
2> sys:statistics(code lock, true).
ok
3> sys:trace(code lock, true).
ok
4> code lock:button(4).
DBG code lock got event {button,4} in state closed
ok
DBG code lock switched to state closed
5> code lock:button(3).
DBG code lock got event {button,3} in state closed
ok
DBG code lock switched to state closed
6> code lock:button(2).
DBG code lock got event {button,2} in state closed
ok
DBG code lock switched to state closed
7> code lock:button(1).
DBG code lock got event {button,l} in state closed
ok
OPEN DOOR
DBG code lock switched to state open
DBG code lock got event timeout in state open
CLOSE DOOR
DBG code lock switched to state closed
8> sys:statistics(code lock, get).
{ok, [{start time, {{2003,6,12},{14,11,40}}},
{current time, {{2003,6,12},{14,12,14}}},
{reductions, 333},
{messages in,5},
{messages out,0}1}
9> sys:statistics(code lock, false).
ok
10> sys:trace(code lock, false).
ok
11> sys:get status(code lock).
{status,<0.32.0>,
{module,gen fsm},
[[{'$ancestors', [<0.30.0>]},
{'$initial call',{gen,init it,
[gen fsm,<0.30.0>,<0.30.0>,
{local, code lock},
code lock,
[1,2,3,4],

[11}}1,
running,<0.30.0>,[1,
[code lock,closed,{[]1,[1,2,3,4]},code lock,infinity]]}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 309

9.6 sys and proc_lib

9.6.2 Special Processes

This section describes how to write a process that complies to the OTP design principles, without using a standard
behaviour. Such aprocessisto:

« Bedtarted in away that makes the processfit into a supervision tree
e Support the sys debug facilities
e Take care of system messages.

System messages are messages with a special meaning, used in the supervision tree. Typical system messages are
requestsfor trace output, and requeststo suspend or resume process execution (used during release handling). Processes
implemented using standard behaviours automatically understand these messages.

Example

The simple server from Overview, implemented using sys and pr oc_| i b soit fitsinto a supervision tree:

-module(ch4).
-export([start link/0]).
-export([alloc/0, free/1]).
-export([init/1]).
-export([system continue/3, system terminate/4,
write debug/3,
system get state/1l, system replace state/2]).

start link() ->
proc_lib:start link(ch4, init, [self()]).

alloc() ->
ch4 ! {self(), alloc},
receive
{ch4, Res} ->
Res
end.
free(Ch) ->
ch4 ! {free, Ch},
ok.

init(Parent) ->
register(ch4, self()),
Chs = channels(),
Deb = sys:debug options([]),
proc_lib:init ack(Parent, {ok, self()}),
loop(Chs, Parent, Deb).

loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle debug(Deb2, fun ch4:write debug/3,
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

310 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6

sys and proc_lib

{system, From, Request} ->
sys:handle system msg(Request, From, Parent,
ch4, Deb, Chs)
end.

system continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).

system get state(Chs) ->
{ok, Chs}.

system replace state(StateFun, Chs) ->
NChs = StateFun(Chs),
{ok, NChs, NChs}.

write debug(Dev, Event, Name) ->
io:format(Dev, "~p event = ~p~n", [Name, Event]).

Example on how the simple debugging functionsin the sys module can also be used for ch4:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> ch4:start link().

{0k, <0.30.0>}

2> sys:statistics(ch4, true).

ok

3> sys:trace(ch4, true).

ok

4> ch4:alloc().

ch4 event = {in,alloc,<0.25.0>}

ch4 event = {out, {ch4,chl},<0.25.0>}

chl

5> ch4:free(chl).

ch4 event = {in, {free,chl}}

ok

6> sys:statistics(ch4, get).

{ok, [{start time,{{2003,6,13},{9,47,5}}},
{current time, {{2003,6,13},{9,47,56}}},
{reductions, 109},

{messages in,2},
{messages out,1}1}

7> sys:statistics(ch4, false).

ok

8> sys:trace(ch4, false).

ok

9> sys:get status(ch4).

{status,<0.30.0>,

{module, ch4},

[[{'$ancestors',[<0.25.0>]},{'$initial call',b{ch4,init,[<0.25.0>]1}}1,
running,<0.25.0>,[],
[chl,ch2,ch3]]}

Starting the Process

A function inthe pr oc_| i b moduleisto be used to start the process. Several functions are available, for example,

spawn_l i nk/ 3, 4 for asynchronous start and st art _| i nk/ 3, 4, 5 for synchronous start.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 311

9.6 sys and proc_lib

A process started using one of these functions stores information (for example, about the ancestors and initial call)
that is needed for aprocessin a supervision tree.

If the process terminates with another reason than nor nal or shut down, a crash report is generated. For more
information about the crash report, see the SASL User's Guide.

In the example, synchronous start is used. The process startsby callingch4: start _|i nk():

start link() ->
proc_lib:start link(ch4, init, [self()]).

ch4: start _|ink calsthefunctionproc_I|ib:start | i nk. Thisfunction takes a module name, a function
name, and an argument list as arguments, spawns, and links to a new process. The new process starts by executing
the given function, herech4: i ni t (Pi d) , where Pi d isthe pid (sel f ()) of thefirst process, which is the parent
process.

All initiadlization, including name registration, isdoneini ni t . The new process must also acknowledge that it has
been started to the parent:

init(Parent) ->
proc_lib:init_ack(Parent, {ok, self()}),
loop(...).

proc_lib:start_Iink issynchronousand doesnot return until proc_Ii b:i nit_ack hasbeen caled.

Debugging

To support the debug facilites in sys, a debug structure is needed. The Deb term is initialized using
sys: debug_options/1:

init(Parent) ->
Deb = sys:debug options([]),

loop(Chs, Parent, Deb).

sys: debug_opti ons/ 1 takesalist of options as argument. Here the list is empty, which means no debugging is
enabled initially. For information about the possible options, seethe sys(3) manual pagein STDLIB.

Then, for each system event to be logged or traced, the following function isto be called.

sys:handle debug(Deb, Func, Info, Event) => Debl

Here:

e Deb isthe debug structure.

* Func isafun specifying a (user-defined) function used to format trace output. For each system event, the
format function iscalled asFunc(Dev, Event, | nfo),where

» Dev isthel/O device to which the output isto be printed. Seethei o(3) manual pagein STDLIB.
« Event andl nf o are passed asisfrom handl e_debug.

312 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 sys and proc_lib

e | nf o isusedto pass moreinformation to Func. It can be any term and is passed asis.

« Event isthe system event. It is up to the user to define what a system event is and how it is to be represented.
Typically at least incoming and outgoing messages are considered system events and represented by the tuples
{in, Msg[, Fron]} and{out, Msg, To}, respectively.

handl e_debug returns an updated debug structure Deb1.

In the example, handl e_debug is called for each incoming and outgoing message. The format function Func is
thefunctionch4: wri t e_debug/ 3, which printsthe messageusingi o: f or mat / 3.

loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle debug(Deb2, fun ch4:write debug/3,
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

end.

write debug(Dev, Event, Name) ->

io:format(Dev, "~p event = ~p~n", [Name, Event]).
Handling System Messages
System messages are received as:

{system, From, Request}

The content and meaning of these messages do not need to beinterpreted by the process. Instead the following function
isto be called:

sys:handle system msg(Request, From, Parent, Module, Deb, State)

This function does not return. It handles the system message and then either calls the following if process execution
isto continue:

Module:system continue(Parent, Deb, State)

Or callsthefollowing if the processis to terminate:

Module:system terminate(Reason, Parent, Deb, State)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 313

9.6 sys and proc_lib

A processin asupervision tree is expected to terminate with the same reason as its parent.

* Request and Fr omareto be passed as is from the system message to the call to handl e_syst em nsg.
* Parent isthepid of the parent.

* Mbdul e isthe name of the module.

e Deb isthe debug structure.

» St at e isaterm describing the internal state and is passed to syst em cont i hue/syst em t er m nat e/
system get _state/systemrepl ace_state.

If the processisto returnits state, handl e_syst em nsg cals:

Module:system get state(State)

If the processisto replace its state using the fun St at eFun, handl e_syst em nsg cals.

Module:system replace state(StateFun, State)

In the example:

loop(Chs, Parent, Deb) ->
receive

{system, From, Request} ->
sys:handle system msg(Request, From, Parent,
ch4, Deb, Chs)
end.

system continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).

system get state(Chs) ->
{ok, Chs, Chs}.

system replace state(StateFun, Chs) ->

NChs = StateFun(Chs),
{ok, NChs, NChs}.

If the special process is set to trap exits and if the parent process terminates, the expected behavior is to terminate
with the same reason:

init(...) ->
ﬁkééessfflag(trapfexit, true),
loop(...).

loop(...} ->
receive

314 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 sys and proc_lib

{'EXIT', Parent, Reason} ->
. .maybe some cleaning up here..
exit(Reason);

end."'

9.6.3 User-Defined Behaviours

To implement auser-defined behaviour, write code similar to code for aspecial process, but call functionsin acallback
module for handling specific tasks.

If the compiler isto warn for missing callback functions, asit doesfor the OTP behaviours, add - cal | back attributes
in the behaviour module to describe the expected callbacks:

-callback Namel(Argl 1, Argl 2, ..., Argl N1) -> Resl.
-callback Name2(Arg2 1, Arg2 2, ..., Arg2 N2) -> Res2.
-callback NameM(ArgM 1, ArgM 2, ..., ArgM NM) -> ResM.

NaneX are the names of the expected callbacks. Ar gX Y and Res X are types as they are described in Types and
Function Specifications. The whole syntax of the - spec attribute is supported by the - cal | back attribute.

Callback functions that are optional for the user of the behaviour to implement are specified by use of the -
optional _cal | backs attribute:

-optional callbacks([OptNamel/OptArityl, ..., OptNameK/OptArityK]).

where each Opt Nanme/ Opt Arity specifies the name and arity of a callback function. Note that the -
optional _cal | backs attributeisto be used together with the- cal | back attribute; it cannot be combined with
thebehavi our _i nf o() function described below.

Tools that need to know about optional callback functions can call
Behavi our : behavi our _i nfo(optional _cal | backs) togetalist of al optional callback functions.

Note:

We recommend using the - cal | back attribute rather than the behavi our _i nf o() function. Thereasonis
that the extra type information can be used by tools to produce documentation or find discrepancies.

As an dternative to the - cal | back and - opt i onal _cal | backs attributes you may directly implement and
export behavi our _i nfo():

behaviour info(callbacks) ->
[{Namel, Arityl},...,{NameN, ArityN}].

where each { Nane, Arity} specifies the name and arity of a callback function. This function is otherwise
automatically generated by the compiler using the - cal | back attributes.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 315

9.7 Applications

When the compiler encounters the module attribute - behavi our (Behavi our) . in a module Mod, it cals
Behavi our : behavi our _i nfo(cal | backs) and compares the result with the set of functions actually
exported from Mod, and issues awarning if any callback function is missing.

Example:

%% User-defined behaviour module
-module(simple server).
-export([start link/2, init/3, ...]).

-callback init(State :: term()) -> 'ok'.

-callback handle req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
-callback terminate() -> 'ok'.

-callback format state(State :: term()) -> term().

-optional callbacks([format state/1]).
% Alternatively you may define:

-export([behaviour info/1]).

behaviour info(callbacks) ->
[{init, 1},
{handle_req,2},
{terminate,0}].

d® d® o o o o of
o® o° o o° o° o°

start link(Name, Module) ->
proc_lib:start link(?MODULE, init, [self(), Name, Module]).

init(Parent, Name, Module) ->
register(Name, self()),

Dbg = sys:debug options([]),

proc_lib:init_ack(Parent, {ok, self()}),
loop(Parent, Module, Deb, ...).

In a callback module:

-module(db) .
-behaviour(simple server).

-export([init/0, handle req/2, terminate/0]).

9.7 Applications

This section isto be read withtheapp(4) and appl i cati on(3) manual pagesin Kernel.

9.7.1 Application Concept

When you have written code implementing some specific functionality you might want to make the code into an
application, that is, acomponent that can be started and stopped asaunit, and which can al so bereused in other systems.

To do this, create an application callback module, and describe how the application is to be started and stopped.

316 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

Then, an application specification is needed, which is put in an application resource file. Among other things, thisfile
specifies which modul es the application consists of and the name of the callback module.

If youusesyst ool s, the Erlang/OTPtoolsfor packaging code (see Releases), the code for each applicationisplaced
in a separate directory following a pre-defined directory structure.

9.7.2 Application Callback Module

How to start and stop the code for the application, that is, the supervision tree, is described by two callback functions:

start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(State)

e start iscaled when starting the application and is to create the supervision tree by starting the top supervisor.
It is expected to return the pid of the top supervisor and an optional term, St at e, which defaultsto[] . This
termispassed asisto st op.

e« Start Type isusually theatom nor mal . It has other values only in the case of atakeover or failover, see
Distributed Applications.

e Start Args isdefined by the key nod in the application resource file.

e stop/1iscaled after the application has been stopped and is to do any necessary cleaning up. The actual
stopping of the application, that is, the shutdown of the supervision tree, is handled automatically as described
in Sarting and Stopping Applications.

Example of an application callback module for packaging the supervision tree from Supervisor Behaviour:

-module(ch_app) .
-behaviour(application).

-export([start/2, stop/1]).

start(Type, Args) ->
ch sup:start link().

stop(State) ->
ok.

A library application that cannot be started or stopped, does not need any application callback module.

9.7.3 Application Resource File

To define an application, an application specification is created, which is put in an application resource file, or in
shortan. app file:

{application, Application, [Optl,...,OptN]}.

e Application, anatom, isthe name of the application. The file must be named Appl i cat i on. app.

» Each Opt isatuple{ Key, Val ue}, which define a certain property of the application. All keys are optional.
Default values are used for any omitted keys.

The contents of aminimal . app filefor alibrary application| i bapp looks as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 317

9.7 Applications

{application, libapp, [1}.

The contents of aminimal . app filech_app. app for asupervision tree application like ch_app looks asfollows:

{application, ch app,
[{mod, {ch_app,[1}}]}.

The key nod defines the callback module and start argument of the application, in this case ch_app and [],
respectively. This means that the following is called when the application is to be started:

ch _app:start(normal, [])

Thefollowing is called when the application is stopped.

ch app:stop([1)

When using syst ool s, the Erlang/OTP tools for packaging code (see Section Releases), the keysdescri pti on,
vsn, nodul es, regi st ered, andappl i cati ons areaso to be specified:

{application, ch app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch31},
{applications, [kernel, stdlib, sasl]},
]imod, {ch_app, [1}}

e description - A short description, astring. Defaultsto "".

e vsn - Version number, astring. Defaultsto "".

« nodul es - All modules introduced by this application. syst ool s usesthislist when generating boot scripts
and tar files. A module must be defined in only one application. Defaultsto|[] .

e registered - All names of registered processesin the application. syst ool s usesthislist to detect name
clashes between applications. Defaultsto[] .

« applications - All applications that must be started before this application is started. syst ool s usesthis
list to generate correct boot scripts. Defaultsto [] . Notice that all applications have dependencies to at least
Kernel and STDLIB.

Note:

For details about the syntax and contents of the application resource file, see the app manual pagein Kernel.

318 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

9.7.4 Directory Structure

When packaging code using syst ool s, the code for each application is placed in a separate directory, | i b/
Appl i cat i on- Vsn, where Vsn isthe version number.

This can be useful to know, even if syst ool s is not used, since Erlang/OTP is packaged according to the OTP
principles and thus comes with this directory structure. The code server (see the code(3) manual page in Kernel)
automatically uses code from the directory with the highest version number, if more than one version of an application
is present.

The application directory structure can also be used in the development environment. The version number can then
be omitted from the name.

The application directory has the following sub-directories:

e src - Containsthe Erlang source code.
e ebi n - Contains the Erlang object code, the beamfiles. The. app fileisalso placed here.

e priv-Usedfor application specific files. For example, C executables are placed here. The function
code: pri v_di r/ 1 isto be used to access this directory.

* include -Usedforincludefiles.

9.7.5 Application Controller

When an Erlang runtime system is started, a number of processes are started as part of the Kernel application. One of
these processes is the application controller process, registered asappl i cati on_control | er.

All operations on applications are coordinated by the application controller. It is interacted through the functions in
the module appl i cati on, seetheappl i cati on(3) manua page in Kernel. In particular, applications can be
loaded, unloaded, started, and stopped.

9.7.6 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application controller reads and stores the information
fromthe. app file:

1> application:load(ch app).

ok

2> application:loaded applications().
[{kernel, "ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

An application that has been stopped, or has never been started, can be unloaded. Theinformation about the application
is erased from the internal database of the application controller.

3> application:unload(ch app).

ok

4> application:loaded applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 16","1.11.4.3"}]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 319

9.7 Applications

Note:

L oading/unloading an application does not |oad/unload the code used by the application. Code loading is done
the usual way.

9.7.7 Starting and Stopping Applications
An application is started by caling:

5> application:start(ch _app).

ok

6> application:which applications().
[{kernel, "ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 16","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

If the application is not already loaded, the application controller first loads it using appl i cati on: | oad/ 1. It
checksthevalueof theappl i cat i ons key, to ensurethat all applicationsthat areto be started before this application
are running.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function st ar t / 2 in the module, and with the start argument, defined by the nod key inthe . app file.

An application is stopped, but not unloaded, by calling:

7> application:stop(ch_app).
ok

The application master stops the application by telling the top supervisor to shut down. The top supervisor tellsall its
child processes to shut down, and so on; the entire tree is terminated in reversed start order. The application master
then calls the application callback function st op/ 1 in the module defined by the nod key.

9.7.8 Configuring an Application

An application can be configured using configuration parameters. These are alist of { Par, Val } tuples specified
by akey env inthe. app file

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch31},
{applications, [kernel, stdlib, sasll]},
{mod, {ch_app,[]1}},
{env, [{file, "/usr/local/log"}1}
1}.

Par isto be an atom. Val isany term. The application can retrieve the value of a configuration parameter by calling
application: get_env(App, Par) oranumber of similar functions, see the appl i cati on(3) manual
pagein Kernel.

320 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

Example:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with "G)
1> application:start(ch _app).
ok

2> application:get env(ch app, file).
{ok,"/usr/local/log"}

The values in the . app file can be overridden by values in a system configuration file. This is a file that contains
configuration parameters for relevant applications:

[{Applicationl, [{Parll,Valll},...1},

{ApplicationN, [{ParN1,ValNi},...]}].

The system configuration isto be called Nane. conf i g and Erlang isto be started with the command-line argument
-confi g Nane. For details, seetheconf i g(4) manual pagein Kernel.

Example:

Afilet est. confi g iscreated with the following contents:

[{ch _app, [{file, "testlog"}1}].

Thevaueof fi | e overridesthevalue of f i | e asdefined inthe. app file:

% erl -config test
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch _app).

ok

2> application:get env(ch app, file).

{ok,"testlog"}

If release handlingisused, exactly one system configurationfileisto beused and that fileistobecalledsys. confi g.

Thevaluesinthe. app fileand the valuesin a system configuration file can be overridden directly from the command
line:

% erl -ApplName Parl Vall ... ParN ValN

Example:

% erl -ch app file '"testlog"'
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 321

9.8 Included Applications

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch app).

ok

2> application:get env(ch app, file).
{ok, "testlog"}

9.7.9 Application Start Types
A start type is defined when starting the application:

application:start(Application, Type)

application:start(Application) is the same as calling application:start(Application,
t enpor ary) . Thetype can also be per manent ortransi ent:

« If apermanent application terminates, all other applications and the runtime system are also terminated.

« |f atransient application terminates with reason nor nmal , thisis reported but no other applications are
terminated. If atransient application terminates abnormally, that is with any other reason than nor nmal , all
other applications and the runtime system are also terminated.

e |f atemporary application terminates, thisis reported but no other applications are terminated.

An application can always be stopped explicitly by calling appl i cat i on: st op/ 1. Regardless of the mode, no
other applications are affected.

Thetransient mode is of little practical use, since when a supervision tree terminates, the reason is set to shut down,
not nor mal .

9.8 Included Applications

9.8.1 Introduction

An application can include other applications. An included application has its own application directory and . app
file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.
An included application can include other applications.
An application that is not included by any other application is called a primary application.

322 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.8 Included Applications

Primary application

Included applications

Included applications

Figure 8.1: Primary Application and Included Applications

The application controller automatically loads any included applications when loading a primary application, but does
not start them. Instead, the top supervisor of the included application must be started by a supervisor in the including
application.

This means that when running, an included application isin fact part of the primary application, and a processin an
included application considers itself belonging to the primary application.

9.8.2 Specifying Included Applications
Which applications to include is defined by thei ncl uded_appl i cat i ons key inthe. app file

{application, prim_app,
[{description, "Tree application"},
{vsn, "1"},
{modules, [prim app cb, prim_app_sup, prim_app_serverl]},
{registered, [prim app server]},
{included applications, [incl appl},
{applications, [kernel, stdlib, sasl]},
{mod, {prim_ app_cb,[1}},
{env, [{file, "/usr/local/log"}1}
1}.

9.8.3 Synchronizing Processes during Startup

The supervisor tree of an included application is started as part of the supervisor tree of the including application. If
thereisaneed for synchronization between processes in the including and included applications, this can be achieved
by using start phases.

Start phases are defined by the st art _phases key inthe. app fileasalist of tuples { Phase, PhaseAr gs},
where Phase isan atom and PhaseAr gs isaterm.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 323

9.8 Included Applications

The value of the nod key of the including application must be set to {application_starter,
[Modul e, St art Args] }, where Modul e as usua is the application callback module. St ar t Ar gs is a term
provided as argument to the callback function Modul e: start/ 2:

{application, prim_app,
[{description, "Tree application"},
{vsn, "1"},
{modules, [prim app cb, prim_app_sup, prim_app_serverl]},
{registered, [prim app_server]},
{included applications, [incl appl},
{start phases, [{init,[]}, {go,[]1}1},
{applications, [kernel, stdlib, sasll]},
{mod, {application_starter, [prim app cb,[]11}},
{env, [{file, "/usr/local/log"}1}
13}.

{application, incl app,
[{description, "Included application"},
{vsn, "1"},
{modules, [incl app _cb, incl app sup, incl _app_serverl]},
{registered, []},
{start phases, [{go,[1}]},
{applications, [kernel, stdlib, sasll]},
{mod, {incl app cb,[1}}
13}.

When starting a primary application with included applications, the primary application is started the normal way,
that is:

e Theapplication controller creates an application master for the application
» Theapplication master callsMbdul e: start (nornal , Start Args) to start the top supervisor.

Then, for the primary application and each included application in top-down, |eft-to-right order, the application master
cadlsMbdul e: start _phase(Phase, Type, PhaseAr gs) foreach phasedefined for the primary application,
in that order. If a phase is not defined for an included application, the function is not called for this phase and
application.

The following requirements apply to the . app file for an included application:

e The{nod, {Modul e, StartArgs}} option must beincluded. This option is used to find the callback
module Mbdul e of the application. St ar t Ar gs isignored, asMbdul e: st art/ 2 iscalled only for the
primary application.

« |If theincluded application itself contains included applications, instead the { nod,
{application_starter, [Mdule, StartArgs]}} option must beincluded.

e The{start_phases, [{Phase, PhaseArgs}]} option must beincluded, and the set of specified
phases must be a subset of the set of phases specified for the primary application.

When starting pri m_app as defined above, the application controller cals the following callback functions before
application:start(primapp) returnsavalue:

application:start(prim app)

=> prim_app_cb:start(normal, [])

=> prim_app _cb:start phase(init, normal, [])
=> prim_app cb:start phase(go, normal, [])
=> incl app cb:start phase(go, normal, [])
ok

324 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Distributed Applications

9.9 Distributed Applications
9.9.1 Introduction

In adistributed system with several Erlang nodes, it can be necessary to control applications in a distributed manner.
If the node, where a certain application is running, goes down, the application is to be restarted at another node.

Such an applicationiscalled adistributed application. Noticethat it isthe control of the application that is distributed.
All applications can be distributed in the sense that they, for example, use services on other nodes.

Since a distributed application can move between nodes, some addressing mechanism is required to ensure that it can
be addressed by other applications, regardless on which node it currently executes. This issue is not addressed here,
but the gl obal or pg2 modulesin Kernel can be used for this purpose.

9.9.2 Specifying Distributed Applications

Distributed applications are controlled by both the application controller and a distributed application controller
process, di st _ac. Both these processes are part of the Kernel application. Distributed applications are thus specified
by configuring the Kernel application, using the following configuration parameter (seeaso ker nel (6)):

distributed = [{Application, [Tineout,] NodeDesc}]
» Specifieswherethe application Appl i cati on = at on{) can execute.

« >NodeDesc = [Node | {Node, ..., Node}] isalist of node namesin priority order. The order
between nodes in atuple is undefined.
* Timeout = integer () specifieshow many millisecondsto wait before restarting the application at

another node. It defaults to O.

For distribution of application control to work properly, the nodes where adistributed application can run must contact
each other and negotiate where to start the application. This is done using the following configuration parameters in
Kernel:

e sync_nodes_nmandatory = [Node] - Specifies which other nodes must be started (within the time-out
specified by sync_nodes_ti neout).

« sync_nodes_optional = [Node] - Specifieswhich other nodes can be started (within the time-out
specified by sync_nodes_ti meout).
 sync_nodes_tinmeout = integer() | infinity -Specifieshow many millisecondsto wait for the

other nodes to start.

When started, the nodewaitsfor all nodesspecifiedby sync_nodes_nandat ory andsync_nodes_opti onal
to come up. When al nodes are up, or when all mandatory nodes are up and the time specified by
sync_nodes_ti nmeout haselapsed, al applications start. If not all mandatory nodes are up, the node terminates.

Example:

Anapplication myapp istorunatthenodecpl@ave. If thisnodegoesdown, myapp istoberestartedat cp2 @ ave
orcp3@ave. A system configuration filecpl. confi g for cpl@ave canlook asfollows:

[{kernel,
[{distributed, [{myapp, 5000, [cpl@cave, {cp2@cave, cp3@cave}1}1},
{sync_nodes mandatory, [cp2@cave, cp3@cavel},
{sync_nodes timeout, 5000}
|
}
e

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 325

9.9 Distributed Applications

The system configuration filesfor cp2@ave and cp3@ave areidentical, except for the list of mandatory nodes,
whichistobe[cpl@ave, cp3@ave] forcp2@ave and[cpl@ave, cp2@ave] forcp3@ave.

Note:

All involved nodes must havethe same valuefor di st ri but ed andsync_nodes_t i meout . Otherwisethe
system behaviour is undefined.

9.9.3 Starting and Stopping Distributed Applications

When all involved (mandatory) nodes have been started, the distributed application can be started by calling
application:start(Application) atall of these nodes.

A boot script (see Releases) can be used that automatically starts the application.

The application is started at the first operational node that is listed in the list of nodes in the di st ri but ed
configuration parameter. The application is started as usual. That is, an application master is created and calls the
application callback function:

Module:start(normal, StartArgs)

Example:
Continuing the example from the previous section, the three nodes are started, specifying the system configurationfile:

> erl -sname cpl -config cpl
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3

When all nodes are operational, myapp can be started. Thisisachieved by callingappl i cati on: st art (myapp)
at all three nodes. It isthen started at cp1, as shown in the following figure:

myapp

Figure 9.1: Application myapp - Situation 1

Similarly, the application must be stopped by callingappl i cat i on: st op(Appl i cati on) atall involved nodes.

9.9.4 Failover

If the node where the application is running goes down, the application is restarted (after the specified time-out) at
the first operational node that is listed in the list of nodes in the di st ri but ed configuration parameter. This is
caled afailover.

The application is started the normal way at the new node, that is, by the application master calling:

326 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Distributed Applications

Module:start(normal, StartArgs)

An exception isif the application hasthe st art _phases key defined (see Included Applications). The application
isthen instead started by calling:

Module:start({failover, Node}, StartArgs)

Here Node is the terminated node.
Example:

If cpl goes down, the system checks which one of the other nodes, cp2 or cp3, has the least number of running
applications, but waits for 5 seconds for cpl to restart. If cpl does not restart and cp2 runs fewer applications than
cp3, nyapp isrestarted oncp2.

myapp

3 5ecs.

myapp

Figure 9.2: Application myapp - Situation 2

Suppose now that cp2 goes also down and does not restart within 5 seconds. myapp is now restarted on cp3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 327

9.9 Distributed Applications

myapp

3 secs.

Iyapp
Figure 9.3: Application myapp - Situation 3

9.9.5 Takeover

If a node is started, which has higher priority according to di st ri but ed than the node where a distributed
applicationisrunning, the application isrestarted at the new node and stopped at the old node. Thisiscalled atakeover.

The application is started by the application master calling:
Module:start({takeover, Node}, StartArgs)

Here Node isthe old node.
Example:

If nyapp isrunning at cp3, and if cp2 now restarts, it does not restart myapp, as the order between the cp2 and
cp3 nodesis undefined.

myapp

Figure 9.4: Application myapp - Situation 4

328 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

However, if cpl also restarts, the function appl i cati on:t akeover/ 2 moves nmyapp to cpl, as cpl has
a higher priority than cp3 for this application. In this case, Modul e: start ({takeover, cp3@ave},
St art Args) isexecuted at cpl to start the application.

= @

Yapp

cpl: applicabontakecyerimyapp, permanent)

myapp

Figure 9.5: Application myapp - Situation 5

9.10 Releases
This section isto be read withther el (4) ,syst ool s(3),andscri pt (4) manua pagesin SASL.

9.10.1 Release Concept

When you have written one or more applications, you might want to create a complete system with these applications
and a subset of the Erlang/OTP applications. Thisis called arelease.

To do this, create arelease resource file that defines which applications are included in the release.

The release resource file is used to generate boot scripts and release packages. A system that is transferred to and
installed at another siteis called atarget system. How to use a release package to create a target system is described
in System Principles.

9.10.2 Release Resource File

To define arelease, create arelease resourcefile, orinshorta. r el file. Inthefile, specify the name and version of
therelease, which ERTS version it is based on, and which applications it consists of:

{release, {Name,Vsn}, {erts, EVsn},
[{Applicationl, AppVsnl},

{AéélicationN, AppVsnN}]1}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 329

9.10 Releases

Nane, Vsn, EVsn, and AppVsn are strings.
Thefile must be named Rel . r el , where Rel isaunique name.

Each Appl i cati on (atom) and AppVsn is the name and version of an application included in the release. The
minimal release based on Erlang/OTP consists of the Kernel and STDLIB applications, so these applications must
beincluded in thelist.

If the release is to be upgraded, it must also include the SASL application.
Example: A release of ch_app from Applications has the following . app file:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch31},
{applications, [kernel, stdlib, sasl]},
]imod. {ch_app, [1}}

The. rel filemust dsocontainkernel ,stdlib,andsasl, asthese applications are required by ch_app. The
fileiscalledch_rel -1.rel:

{release,
{"ch_rel", "A"},
{erts, "5.3"},
[{kernel, "2.9"},

{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, "1"}]

9.10.3 Generating Boot Scripts

syst ool s inthe SASL application includestoolsto build and check releases. Thefunctionsread ther el and. app
filesand performs syntax and dependency checks. Thesyst ool s: make_scri pt/ 1, 2 functionisusedto generate
aboot script (see System Principles):

1> systools:make script("ch rel-1", [locall).
ok

This creates a boot script, both the readable version, ch_rel-1.script, and the binary version,
ch_rel - 1. boot, used by the runtime system.

e "ch_rel-1" isthenameof the. r el file, minusthe extension.

e | ocal isanoptionthat meansthat the directories where the applications are found are used in the boot script,
instead of $ROOT/ | i b ($ROCT istheroot directory of theinstalled release).

Thisisauseful way to test a generated boot script locally.

When starting Erlang/OTP using the boot script, all applications from the . r el file are automatically loaded and
started:

330 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

% erl -boot ch rel-1
Erlang (BEAM) emulator version 5.3

Eshell V5.3 (abort with ~G)

1>
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
supervisor: {local,sasl safe sup}
started: [{pid,<0.33.0>},
{name,alarm handler},
{mfa, {alarm handler,start link,[]1}},
{restart_type,permanent},
{shutdown, 2000},
{child type,worker}]
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
application: sasl
started at: nonode@nohost
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===

application: ch_app
started at: nonode@nohost

9.10.4 Creating a Release Package

Thesyst ool s: make_tar/ 1, 2 functiontakesa. r el fileasinput and creates azipped tar file with the code for
the specified applications, arelease package:

1> systools:make script("ch rel-1").
ok

2> systools:make tar("ch rel-1").

ok

The release package by default contains:

e The. app files

e The.rel file

e The object code for all applications, structured according to the application directory structure
e Thebinary boot script renamedto st art . boot

% tar tf ch rel-1.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam

lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam lib.beam

iiB/sasl-l.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam

lib/ch app-1/ebin/ch _app.app
lib/ch_app-1/ebin/ch _app.beam
lib/ch_app-1/ebin/ch sup.beam
lib/ch_app-1/ebin/ch3.beam
releases/A/start.boot
releases/A/ch rel-1.rel

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 331

9.10 Releases

releases/ch rel-1.rel

A new boot script was generated, without the | ocal option set, before the release package was made. In the release
package, all application directoriesareplaced under | i b. Y oudo not know wherethe release package will beinstalled,
so no hard-coded absolute paths are allowed.

The release resource file nysyst em r el isduplicated in the tar file. Originally, this file was only stored in the
r el eases directory to makeit possiblefor ther el ease_handl er to extract thisfile separately. After unpacking
thetar file,r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However, sometimesthe
tar fileisunpacked without involving ther el ease_handl er (for example, when unpacking thefirst target system)
and the fileis therefore now instead duplicated in the tar file so no manual copying is necessary.

If ar el up file and/or a system configuration file called sys. conf i g isfound, these files are also included in the
release package. See Release Handling.

Options can be set to make the release package include source code and the ERTS binary as well.

For information on how toinstall thefirst target system, using arel ease package, see System Principles. For information
on how to install a new release package in an existing system, see Release Handling.

9.10.5 Directory Structure

The directory structure for the code installed by the release handler from arelease package is as follows:

$RO0T/1lib/Appl-AVsnl/ebin
/priv

/App2-AVsn2/ebin

/priv

/AppN-AVsnN/ebin
/priv
/erts-EVsn/bin
/releases/Vsn
/bin

e |ib-Application directories

e erts-EVsn/ bi n - Erlang runtime system executables

« releases/Vsn-.rel fileandboot script st art . boot ; if present in the release package, r el up and/or
sys.config

e bi n - Top-level Erlang runtime system executables

Applicationsarenot required to belocated under directory $ROOT/ | i b. Several installation directories, which contain
different parts of a system, can thus exist. For example, the previous example can be extended as follows:

$SECOND _ROOT/.../SAppl-SAVsnl/ebin
/priv

/SApp2-SAVsn2/ebin

/priv

/SAppN-SAVsnN/ebin
/priv

$THIRD ROOT/TAppl-TAVsnl/ebin
/priv

/TApp2-TAVsn2/ebin

/priv

332 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

)prpN-TAVan/ebin
/priv

$SECOND_ ROOT and $THI RD ROOT ae introduced as variables in the cal to the
syst ool s: make_scri pt/ 2 function.

Disk-Less and/or Read-Only Clients

If a complete system consists of disk-less and/or read-only client nodes, acl i ent s directory isto be added to the
$ROOT directory. A read-only node is a node with aread-only file system.

Thecl i ent s directory is to have one subdirectory per supported client node. The name of each client directory
is to be the name of the corresponding client node. As a minimum, each client directory is to contain the bi n and
r el eases subdirectories. These directories are used to store information about installed releases and to appoint the
current release to the client. The $ROOT directory thus contains the following:

$ROOT/. ..
/clients/ClientNamel/bin
/releases/Vsn
/ClientName2/bin
/releases/Vsn

/ClientNameN/bin
/releases/Vsn

This structure is to be used if al clients are running the same type of Erlang machine. If there are clients running
different types of Erlang machines, or on different operating systems, thecl i ent s directory can be divided into one
subdirectory per type of Erlang machine. Alternatively, one $ROOT can be set up per type of machine. For each type,
some of the directories specified for the $ROOT directory are to be included:

$ROOT/. ..
/clients/Typel/lib

/erts-EVsn

/bin

/ClientNamel/bin
/releases/Vsn

/ClientName2/bin
/releases/Vsn

/ClientNameN/bin
/releases/Vsn

/TypeN/lib
/erts-EVsn
/bin

With this structure, the root directory for clients of Typel is$ROOT/ cl i ent s/ Typel.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 333

9.11 Release Handling

9.11 Release Handling
9.11.1 Release Handling Principles

An important feature of the Erlang programming language is the ability to change module code in runtime, code
replacement, as described in the Erlang Reference Manual.

Based on this feature, the OTP application SASL provides a framework for upgrading and downgrading between
different versions of an entirerelease in runtime. Thisis called release handling.

The framework consists of:

e Offline support - syst ool s for generating scripts and building rel ease packages
e Onlinesupport - r el ease_handl er for unpacking and installing rel ease packages

The minimal system based on Erlang/OTP, enabling rel ease handling, thus consists of the Kernel, STDLIB, and SASL
applications.

Release Handling Workflow

Sep 1) A release is created as described in Releases.

Sep 2) The release is transferred to and installed at target environment. For information of how to install the first
target system, see System Principles.

Sep 3) Modifications, for example, error corrections, are made to the code in the devel opment environment.

Sep 4) At some point, it is time to make a new version of release. The relevant . app files are updated and a new
. rel fileiswritten.

Sep 5) For each modified application, an application upgradefile, . appup, iscreated. In thisfile, it is described how
to upgrade and/or downgrade between the old and new version of the application.

Sep 6) Basedonthe. appup files, arelease upgradefilecalledr el up, iscreated. Thisfile describes how to upgrade
and/or downgrade between the old and new version of the entire release.

Sep 7) A new release package is made and transferred to the target system.
Sep 8) The new release package is unpacked using the release handler.

Sep 9) The new version of the release is installed, also using the release handler. This is done by evaluating the
instructionsin r el up. Modules can be added, deleted, or reloaded, applications can be started, stopped, or restarted,
and so on. In some cases, it is even necessary to restart the entire emulator.

» If theinstalation fails, the system can be rebooted. The old release version is then automatically used.

» If theinstallation succeeds, the new version is made the default version, which isto now be used if thereisa

system reboot.
Release Handling Aspects

Appup Cookbook, containsexamplesof . appup filesfor typical cases of upgrades/downgradesthat are normally easy
to handle in runtime. However, many aspects can make release handling complicated, for example:

« Complicated or circular dependencies can make it difficult or even impossible to decide in which order things
must be done without risking runtime errors during an upgrade or downgrade. Dependencies can be:

* Between nodes
e Between processes
* Between modules

334 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

e During release handling, non-affected processes continue normal execution. This can lead to time-outs or other
problems. For example, new processes created in the time window between suspending processes using a certain
module, and loading a new version of this module, can execute old code.

It is thus recommended that code is changed in as small steps as possible, and always kept backwards compatible.

9.11.2 Requirements

For release handling to work properly, the runtime system must have knowledge about which release it is running.
It must also be able to change (in runtime) which boot script and system configuration file to use if the system is
rebooted, for example, by hear t after afailure. Thus, Erlang must be started as an embedded system; for information
on how to do this, see Embedded System.

For system reboots to work properly, it is also required that the system is started with heartbeat monitoring, see the
erl (1) manua pagein ERTS and the hear t (3) manual pagein Kernel

Other requirements:;

e Theboot script included in arelease package must be generated from the same.. r el file as the release package
itself.

Information about applications is fetched from the script when an upgrade or downgrade is performed.
* The system must be configured using only one system configuration file, called sys. confi g.

If found, thisfile is automatically included when a rel ease package is created.
» All versions of arelease, except the first one, must containar el up file.

If found, thisfileis automatically included when a release package is created.

9.11.3 Distributed Systems

If the system consists of several Erlang nodes, each node can use its own version of the release. The release handler
isalocally registered process and must be called at each node where an upgrade or downgrade is required. A release
handling instruction, sync_nodes, can be used to synchronize the rel ease handler processes at a number of nodes,
seetheappup(4) manua pagein SASL.

9.11.4 Release Handling Instructions

OTP supports a set of release handling instructions that are used when creating . appup files. The release handler
understands asubset of these, the low-level instructions. To makeit easier for the user, there are also anumber of high-
level instructions, which are translated to low-level instructions by syst ool s: nake_r el up.

Some of the most frequently used instructions are described in this section. The completelist of instructionsisincluded
intheappup(4) manual pagein SASL.

First, some definitions:

¢ Residence module - The module where a process has its tail-recursive loop function(s). If these functions are
implemented in several modules, al those modules are residence modules for the process.

* Functional module - A module that is not a residence module for any process.

For a process implemented using an OTP behaviour, the behaviour module is the residence module for that process.
The callback module is afunctional module.

load_module

If asimple extension has been made to afunctional module, it is sufficient to load the new version of the module into
the system, and remove the old version. Thisis called simple code replacement and for this the following instruction
is used:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 335

9.11 Release Handling

{load module, Module}

update

If amore complex change has been made, for example, achangeto theformat of theinternal state of agen_ser ver,
simple code replacement is not sufficient. Instead, it is necessary to:

e Suspend the processes using the module (to avoid that they try to handle any requests before the code
replacement is completed).

* Ask them to transform the internal state format and switch to the new version of the module.
* Removethe old version.
e Resume the processes.

Thisis called synchronized code replacement and for this the following instructions are used:

{update, Module, {advanced, Extra}}
{update, Module, supervisor}

updat e with argument { advanced, Ext r a} isused when changing the internal state of a behaviour as described
above. It causes behaviour processesto call the callback function code_change, passing theterm Ext r a and some
other information as arguments. See the manual pages for the respective behaviours and Appup Cookbook.

updat e with argument super vi sor is used when changing the start specification of a supervisor. See Appup
Cookbook.

When amoduleisto be updated, the release handler finds which processes that are using the modul e by traversing the
supervision tree of each running application and checking all the child specifications:

{Id, StartFunc, Restart, Shutdown, Type, Modules}

A process uses amoduleif the nameislisted in Modul es in the child specification for the process.

If Modul es=dynam c, whichisthe casefor event managers, the event manager process informsthe release handler
about the list of currently installed event handlers (gen_f sn), and it is checked if the module name is in this list
instead.

The release handler suspends, asks for code change, and resumes processes by caling the functions
sys: suspend/ 1, 2,sys: change_code/ 4, 5,andsys: resune/ 1, 2, respectively.

add_module and delete_module

If anew moduleisintroduced, the following instruction is used:

{add module, Module}

The instruction loads the module and is necessary when running Erlang in embedded mode. It is not strictly required
when running Erlang in interactive (default) mode, since the code server then automatically searches for and loads
unloaded modules.

The opposite of add_nodul e isdel et e_nodul e, which unloads a module;

336 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

{delete module, Module}

Any process, in any application, with Modul e as residence module, is killed when the instruction is evaluated. The
user must therefore ensure that all such processes are terminated before del eting the module, to avoid a situation with
failing supervisor restarts.

Application Instructions
The following is the instruction for adding an application:

{add_application, Application}

Adding an application means that the modules defined by the nodul es key in the . app file are loaded using a
number of add_nodul e instructions, and then the application is started.

The following is the instruction for removing an application:

{remove application, Application}

Removing an application means that the application is stopped, the modules are unloaded using a number of
del et e_nodul e instructions, and then the application specification is unloaded from the application controller.

The following isthe instruction for restarting an application:

{restart application, Application}

Restarting an application means that the application is stopped and then started again similar to using the instructions
renove_applicationandadd_appli cati on insequence.

apply (Low-Level)

To call an arbitrary function from the release handler, the following instruction is used:

{apply, {M, F, A}}

Therelease handler evalutesappl y(M F, A).

restart new_emulator (Low-Level)

This instruction is used when changing to a new emulator version, or when any of the core applications Kernel,
STDLIB, or SASL isupgraded. If asystem reboot isneeded for another reason, ther est art _erul at or instruction
isto be used instead.

This instruction requires that the system is started with heartbeat monitoring, seetheer | (1) manua pagein ERTS
and theheart (3) manual pagein Kernel.

Therestart _new _enul at or instruction must always be the first instruction in arelup. If the relup is generated
by syst ool s: make_r el up/ 3, 4, thisis automatically ensured.

When the release handler encounters the instruction, it first generates a temporary boot file, which starts the new
versions of the emulator and the core applications, and the old version of all other applications. Then it shuts down the
current emulator by callingi ni t : r eboot (), seethei ni t (3) manual pagein Kernel. All processesareterminated

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 337

9.11 Release Handling

gracefully and the system is rebooted by the hear t program, using the temporary boot file. After the reboot, the rest
of the relup instructions are executed. Thisis done as a part of the temporary boot script.

Warning:

This mechanism causes the new versions of the emulator and core applications to run with the old version of
other applications during startup. Thus, take extra care to avoid incompatibility. Incompatible changesin the core
applications can in some situations be necessary. If possible, such changes are preceded by deprecation over two
major releases before the actual change. To ensure the application is not crashed by an incompatible change,
always remove any call to deprecated functions as soon as possible.

An info report is written when the upgrade is completed. To programmatically find out if the upgrade is complete,
cal rel ease_handl er: whi ch_rel eases(current) and check if it returns the expected (that is, the new)
release.

The new release version must be made permanent when the new emulator is operational. Otherwise, the old version
will be used if thereis a new system reboot.

On UNIX, therelease handler tellsthehear t program which command to use to reboot the system. The environment
variable HEART _COMVAND, normally used by the heart program, is ignored in this case. The command instead
defaults to $ROOT/ bi n/ st art. Another command can be set by using the SASL configuration parameter
start _prg, seethesasl (6) manual page.

restart_emulator (Low-Level)

Thisinstruction is not related to upgrades of ERTS or any of the core applications. It can be used by any application
to force arestart of the emulator after all upgrade instructions are executed.

A relup script can only have oner est art _errul at or instruction and it must always be placed at the end. If the
relup is generated by syst ool s: make_r el up/ 3, 4, thisisautomatically ensured.

When the release handler encountersthe instruction, it shuts down the emulator by callingi ni t : r eboot () , seethe
i nit(3) manua pagein Kernel. All processes are terminated gracefully and the system can then be rebooted by the
heart program using the new release version. No more upgrade instruction is executed after the restart.

9.11.5 Application Upgrade File

To define how to upgrade/downgrade between the current version and previous versions of an application, an
application upgradefile, orinshortan. appup fileiscreated. Thefileistobecaled Appl i cati on. appup, where
Appl i cat i on isthe application name:

{Vsn,
[{UpFromVsnl, InstructionsUl},

{UpFromVsnK, InstructionsUK}],
[{DownToVsnl, InstructionsD1},

{DownToVsnK, InstructionsDK}]}.

* Vsn, astring, isthe current version of the application, as defined inthe . app file.
» Each UpFr omVsn isaprevious version of the application to upgrade from.

« EachDownToVsn isaprevious version of the application to downgrade to.

« Eachl nstructions isalist of release handling instructions.

338 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

For information about the syntax and contents of the . appup file, seetheappup(4) manua pagein SASL.
Appup Cookbook includes examples of . appup filesfor typical upgrade/downgrade cases.

Example: Consider the release ch_r el - 1 from Releases. Assume you want to add a function avai | abl e/ 0 to
server ch3, which returns the number of available channels (when trying out the example, change in a copy of the
original directory, so that the first versions are till available):

-module(ch3).
-behaviour(gen server).

-export([start link/0]).

-export([alloc/0, free/1]).
-export([available/0]).

-export([init/1, handle call/3, handle cast/2]).

start link() ->
gen_server:start link({local, ch3}, ch3, [], []).

alloc() ->
gen_server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

available() ->
gen_server:call(ch3, available).

init(Args) ->
{ok, channels()}.

handle call(alloc, From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2};

handle call(available, From, Chs) ->
N = available(Chs),
{reply, N, Chs}.

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

A new version of thech_app. app file must now be created, where the version is updated:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "2"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch31},
{applications, [kernel, stdlib, sasll]},
]imod, {ch_app, [1}}

To upgrade ch_app from " 1" to" 2" (and to downgrade from " 2" to " 1"), you only need to load the new (old)
version of the ch3 callback module. Create the application upgrade filech_app. appup inthe ebi n directory:

2",
[{"1", [{load module, ch3}1}1,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 339

9.11 Release Handling

[{"1", [{load module, ch3}1}]
}.

9.11.6 Release Upgrade File

To define how to upgrade/downgrade between the new version and previous versions of arelease, arelease upgrade
file, orinshortr el up file, isto be created.

Thisfile does not need to be created manually, it can be generated by syst ool s: make_rel up/ 3, 4. Therelevant
versions of the. r el file, . app files, and . appup files are used as input. It is deducted which applications are to
be added and deleted, and which applications that must be upgraded and/or downgraded. The instructions for this are
fetched fromthe . appup files and transformed into asingle list of low-level instructionsin the right order.

If ther el up fileisrelatively simple, it can be created manually. It it only to contain low-level instructions.
For details about the syntax and contents of the release upgradefile, seether el up(4) manual pagein SASL.

Example, continued from the previous section: Y ou have anew version 2" of ch_app and an . appup file. A new
version of the . r el fileisalso needed. Thistime thefileiscalledch_rel - 2. rel and the release version string
ischanged from "A" to "B":

{release,

{"ch _rel", "B"},
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, "2"}]

Now ther el up file can be generated:

1> systools:make relup("ch rel-2", ["ch rel-1"], ["ch rel-1"]).
ok

This generates a r el up file with instructions for how to upgrade from version "A" ("ch rel-1") to version
"B" ("ch_rel-2") and how to downgrade from version "B" to version "A".

Both the old and new versions of the. app and. r el filesmust beinthe code path, aswell asthe. appup and (new)
. beamfiles. The code path can be extended by using the option pat h:

1> systools:make relup('ch rel-2", ["ch rel-1"], ["ch_rel-1"1,
[{path,["../ch _rel-1",

"../ch _rel-1/1lib/ch _app-1/ebin"]}1).

ok

9.11.7 Installing a Release

When you have made anew version of arelease, arel ease package can be created with thisnew version and transferred
to the target environment.

Toinstall the new version of thereleasein runtime, therelease handler isused. Thisisaprocess belonging to the SASL
application, which handles unpacking, installation, and removal of release packages. It is communicated through the
rel ease_handl er module. For details, seether el ease_handl er (3) manual pagein SASL.

340 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

Assuming there is an operational target system with installation root directory $ROOT, the release package with the
new version of the release isto be copied to $ROOT/ r el eases.

First, unpack the release package. The files are then extracted from the package:

release handler:unpack release(ReleaseName) => {ok, Vsn}

* Rel easeNane isthe name of the release package except the. t ar . gz extension.
* Vsn istheversion of the unpacked release, as defined iniits. r el file.

A directory $ROOT/ | i b/ r el eases/ Vsn is created, where the . r el file, the boot script st art . boot , the
system configuration file sys. confi g, and r el up are placed. For applications with new version numbers, the
application directories are placed under $ROOT/ | i b. Unchanged applications are not affected.

An unpacked release can be installed. The release handler then evaluatesthe instructionsinr el up, step by step:

release handler:install release(Vsn) => {ok, FromVsn, []1}

If an error occurs during the installation, the system is rebooted using the old version of the release. If installation
succeeds, the system is afterwards using the new version of the release, but if anything happens and the system is
rebooted, it starts using the previous version again.

To be madethe default version, the newly install ed rel ease must be made per manent, which meansthe previousversion
becomes old:

release_handler:make_permanent(Vsn) => ok

The system keeps information about which versions are old and permanent in the files $ROOT/ r el eases/
RELEASES and $ROOT/ r el eases/ start _erl . dat a.

To downgrade from Vsn to Fr onsn, i nstal | _r el ease must be called again:

release handler:install release(FromVsn) => {ok, Vsn, []}

Aninstalled, but not permanent, release can be removed. Information about the release is then deleted from $ROOT/
r el eases/ RELEASES and the release-specific code, that is, the new application directories and the $ROOT/
r el eases/ Vsn directory, are removed.

release_handler:remove_release(Vsn) => ok

Example (continued from the previous sections)

Sep 1) Create atarget system as described in System Principles of the first version " A" of ch_r el from Releases.
Thistimesys. conf i g must be included in the release package. If no configuration is needed, the fileisto contain
the empty list:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 341

9.11 Release Handling

Sep 2) Start the system asasimple target system. Inreality, it isto be started as an embedded system. However, using
er | with the correct boot script and config file is enough for illustration purposes:

cd $ROOT
bin/erl -boot $R0O0T/releases/A/start -config $RO0T/releases/A/sys

o
i)
o

i)

$ROOT istheinstalation directory of the target system.

Sep 3) In another Erlang shell, generate start scripts and create arel ease package for the new version” B" . Remember
to include (a possible updated) sys. conf i g and ther el up file, see Release Upgrade File.

1> systools:make script("ch rel-2").
ok

2> systools:make tar("ch rel-2").

ok

The new release package now also contains version 2" of ch_app and ther el up file:

% tar tf ch rel-2.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam

lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam lib.beam

iiB/sasl-l.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam

lib/ch_app-2/ebin/ch_app.app
lib/ch_app-2/ebin/ch_app.beam
lib/ch_app-2/ebin/ch_sup.beam
lib/ch_app-2/ebin/ch3.beam
releases/B/start.boot
releases/B/relup
releases/B/sys.config
releases/B/ch _rel-2.rel
releases/ch rel-2.rel

Sep 4) Copy therelease packagech_rel - 2. t ar. gz tothe $ROOT/ r el eases directory.
Sep 5) In the running target system, unpack the rel ease package:

1> release handler:unpack release("ch rel-2").
{ok' IIBII}

Thenew application versionch_app- 2 isinstalled under $ROOT/ | i b nexttoch_app- 1. Theker nel ,stdl i b,
and sas| directories are not affected, as they have not changed.

Under $ROOT/ r el eases, a new directory B is created, containing ch_rel-2.rel, start. boot,
sys. config,andrel up.

Sep 6) Check if the function ch3: avai | abl e/ 0 isavailable:

342 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

2> ch3:available().
** exception error: undefined function ch3:available/0

Sep 7) Install the new release. Theinstructionsin SROOT/ r el eases/ B/ r el up are executed one by one, resulting
in the new version of ch3 being loaded. The function ch3: avai | abl e/ 0 isnow available:

3> release handler:install release("B").

{ok,"A", [1}
4> ch3:available().
3

5> code:which(ch3).
".../lib/ch_app-2/ebin/ch3.beam"

6> code:which(ch sup).

".../lib/ch _app-1/ebin/ch sup.beam"

Processes in ch_app for which code have not been updated, for example, the supervisor, are still evaluating code
fromch_app- 1.

Sep 8) If the target system is now rebooted, it uses version "A" again. The "B" version must be made permanent, to
be used when the system is rebooted.

7> release handler:make permanent("B").
ok

9.11.8 Updating Application Specifications

When a new version of arelease isinstalled, the application specifications are automatically updated for al loaded
applications.

Note:

The information about the new application specifications is fetched from the boot script included in the release
package. Thus, it is important that the boot script is generated from the same . r el file asis used to build the
release package itself.

Specifically, the application configuration parameters are automatically updated according to (in increasing priority
order):

e Thedatain the boot script, fetched from the new application resource file App. app
e Thenewsys. config
e Command-line arguments- App Par Val

This means that parameter values set in the other system configuration files and values set using
application: set _env/ 3 aredisregarded.

When an installed release is made permanent, the system processi ni t isset to point out the new sys. confi g.

After the installation, the application controller compares the old and new configuration parameters for all running
applications and call the callback function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 343

9.12 Appup Cookbook

Module:config change(Changed, New, Removed)

* Modul e isthe application callback module as defined by the mod key in the . app file.
e Changed and Newarelistsof { Par , Val } for al changed and added configuration parameters, respectively.
« Renopvedisalist of all parameters Par that have been removed.

The function is optional and can be omitted when implementing an application callback module.

9.12 Appup Cookbook

This section includes examples of . appup filesfor typical cases of upgrades/downgrades done in runtime.

9.12.1 Changing a Functional Module

When afunctional modul e hasbeen changed, for exampl e, if anew function has been added or abug hasbeen corrected,
simple code replacement is sufficient, for example:

{II2II’

[{"1", [{load module, m}]}1,
[{"1", [{load module, m}]}]
}.

9.12.2 Changing a Residence Module

In a system implemented according to the OTP design principles, all processes, except system processes and special
processes, reside in one of the behaviourssuper vi sor,gen_server,gen_fsmorgen_event . These belong
to the STDLIB application and upgrading/downgrading normally requires an emulator restart.

OTP thus provides no support for changing residence modules except in the case of special processes.

9.12.3 Changing a Callback Module

A callback moduleis afunctional module, and for code extensions simple code replacement is sufficient.

Example: When adding a function to ch3, as described in the example in Release Handling, ch_app. appup looks
asfollows:

{

npw
[{"1", [{load module, ch3}1}1],
[{"1", [{load module, ch3}1}]

}

OTP also supports changing the internal state of behaviour processes, see Changing Internal State.

9.12.4 Changing Internal State

In this case, simple code replacement is not sufficient. The process must explicitly transform its state using the
callback function code_change before switching to the new version of the callback module. Thus, synchronized
code replacement is used.

Example: Consider gen_ser ver ch3 from gen_server Behaviour. Theinterna stateisaterm Chs representing the
available channels. Assume you want to add a counter N, which keeps track of the number of al | oc requests so far.
This means that the format must be changed to { Chs, N}.

344 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

The. appup file can look asfollows:

{"2",
[{"1", [{update, ch3, {advanced, [1}}]}],
[{"1", [{update, ch3, {advanced, []1}}

}.

Thethird element of theupdat e instructionisatuple{ advanced, Ext r a} , which saysthat the affected processes
areto do a state transformation before loading the new version of the module. Thisis done by the processes calling the
callback function code_change (seethe gen_ser ver (3) manua page in STDLIB). The term Ext r a, in this
case[], ispassed asisto the function:

-module(ch3).

:é§port([code7change/3]).

ééaefchange({down, ~Vsn}, {Chs, N}, Extra) ->
{ok, Chs};

code change(Vsn, Chs, Extra) ->
{ok, {Chs, 0}}.

The first argument is { down, Vsn} if thereis a downgrade, or Vsn if there is a upgrade. The term Vsn is fetched
from the 'original’ version of the module, that is, the version you are upgrading from, or downgrading to.

Theversionisdefined by the module attribute vsn, if any. Thereisno such attributein ch3, sointhiscasethe version
is the checksum (a huge integer) of the beam file, an uninteresting value, which isignored.

The other callback functions of ch3 must also be modified and perhaps a new interface function must be added, but
thisis not shown here.

9.12.5 Module Dependencies

Assume that a module is extended by adding an interface function, as in the example in Release Handling, where a
functionavai | abl e/ 0 isadded toch3.

If acall isadded to thisfunction, say in module niL, aruntime error could can occur during release upgrade if the new
version of ml isloaded first and callsch3: avai | abl e/ 0 before the new version of ch3 isloaded.

Thus, ch3 must be loaded before nl, in the upgrade case, and conversely in the downgrade case. ml is said to be
dependent on ch3. In arelease handling instruction, thisis expressed by the DepMbds element:

{load module, Module, DepMods}
{update, Module, {advanced, Extra}, DepMods}
DepMods isalist of modules, on which Modul e is dependent.

Example: Themoduleml in application my app isdependent on ch3 when upgrading from"1" to"2", or downgrading
from"2" to"1":

myapp . appup:

{2,
[{"1", [{load module, ml, [ch3]}1}1],

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 345

9.12 Appup Cookbook

[{"1", [{load module, ml, [ch3]}1}]
}.

ch_app.appup:

2",
[{"1", [{load module, ch3}1}1],
[{"1", [{load module, ch3}1}]
}.

If instead ml and ch3 belong to the same application, the . appup file can look as follows:

{”2“'
[{“1"'
[{load module, ch3},
{load module, ml, [ch3]}1}1,
[{“1"'
[{load module, ch3},
{load_module, ml, [ch3]}1}]

ml is dependent on ch3 aso when downgrading. syst ool s knows the difference between up- and downgrading
and generates acorrect r el up, where ch3 isloaded before ml when upgrading, but ml is loaded before ch3 when
downgrading.

9.12.6 Changing Code for a Special Process

Inthis case, simple code replacement is not sufficient. When anew version of aresidence modulefor aspecial process
isloaded, the process must make afully qualified call to itsloop function to switch to the new code. Thus, synchronized
code replacement must be used.

Note:

The name(s) of the user-defined residence module(s) must belistedinthe Modul es part of the child specification
for the special process. Otherwise the release handler cannot find the process.

Example: Consider the example ch4 in sys and proc_lib. When started by a supervisor, the child specification can
look asfollows:

{ch4, {ch4, start link, []},
permanent, brutal kill, worker, [ch4]}

If ch4 ispart of theapplicationsp_app and anew version of the moduleisto beloaded when upgrading from version
"1" to"2" of thisapplication, sp_app. appup can look asfollows:

2",
[{"1", [{update, ch4, {advanced, [1}}]1}1,
[{"1", [{update, ch4, {advanced, [1}}1}]

}.

346 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

The updat e instruction must contain the tuple { advanced, Ext r a} . The instruction makes the specia process
call thecallback functionsyst em code_change/ 4, afunction the user must implement. Theterm Ext r a, inthis
case[],ispassed asistosyst em code_change/ 4:

-module(ch4).

-export([system code change/4]).

system code change(Chs, Module, 0ldVsn, Extra) ->
{ok, Chs}.

e Thefirst argument istheinternal state St at e, passed from function
sys: handl e_system nmsg(Request, From Parent, Mbdule, Deb, State),andcaledby
the special process when a system message isreceived. In ch4, theinternal state isthe set of available channels
Chs.

* The second argument is the name of the module (ch4).

e Thethird argumentisVsn or { down, Vsn}, asdescribed for gen_ser ver : code_change/ 3 in Changing
Internal State.

In this case, all arguments but the first are ignored and the function simply returns the internal state again. Thisis
enough if the code only has been extended. If instead the internal state is changed (similar to the example in Changing
Internal Sate), thisis donein thisfunction and { ok, Chs2} returned.

9.12.7 Changing a Supervisor

The supervisor behaviour supports changing the internal state, that is, changing the restart strategy and maximum
restart frequency properties, aswell as changing the existing child specifications.

Child processes can be added or deleted, but this is not handled automatically. Instructions must be given by in the
. appup file.
Changing Properties

Since the supervisor is to change its internal state, synchronized code replacement is required. However, a special
updat e instruction must be used.

First, the new version of the callback module must be loaded, both in the case of upgrade and downgrade. Then the
new return value of i ni t / 1 can be checked and the internal state be changed accordingly.

Thefollowing upgr ade instruction is used for supervisors:

{update, Module, supervisor}

Example: To change the restart strategy of ch_sup (from Supervisor Behaviour) from one_for _one to
one_for _all,changethecallback functioni nit/1inch_sup. erl:

-module(ch_sup).

init(Args) ->
{ok, {#{strategy => one for all, ...}, ...}}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 347

9.12 Appup Cookbook

Thefilech_app. appup:

{2,
[{"1", [{update, ch sup, supervisor}]}],
[{"1", [{update, ch sup, supervisor}]}]

}.

Changing Child Specifications

Theinstruction, and thusthe. appup file, when changing an existing child specification, isthe same aswhen changing
properties as described earlier:

{"2",
[{"1", [{update, ch_ sup, supervisor}]}1,
[{"1", [{update, ch_sup, supervisor}]}]
}.

The changes do not affect existing child processes. For example, changing the start function only specifies how the
child processisto be restarted, if needed later on.

Theid of the child specification cannot be changed.

Changing the Modul es field of the child specification can affect the release handling process itself, as thisfield is
used to identify which processes are affected when doing a synchronized code replacement.

Adding and Deleting Child Processes

As stated earlier, changing child specifications does not affect existing child processes. New child specifications are
automatically added, but not deleted. Child processes are not automatically started or terminated, this must be done
using appl y instructions.

Example: Assume anew child process ml isto be added to ch_sup when upgrading ch_app from"1" to "2". This
means Nl isto be deleted when downgrading from "2" to " 1":

{"2"1
[{"1",
[{update, ch sup, supervisor},
{apply, {supervisor, restart child, [ch sup, ml]}}
131,
({1,
[{apply, {supervisor, terminate child, [ch sup, ml]}},
{apply, {supervisor, delete child, [ch sup, ml]}},
{update, ch sup, supervisor}
1}1]
}.

The order of the instructions isimportant.

The supervisor must be registered as ch_sup for the script to work. If the supervisor is not registered, it
cannot be accessed directly from the script. Instead a help function that finds the pid of the supervisor and calls
supervi sor:restart_chil d,andsoon, must bewritten. Thisfunctionisthen to be called from the script using
theappl y instruction.

If the module ml isintroduced in version "2" of ch_app, it must also be loaded when upgrading and deleted when
downgrading:

348 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

2",
({1,
[{add module, ml},
{update, ch sup, supervisor},
{apply, {supervisor, restart child, [ch sup, ml]}}
1}1]

({1,
[{apply, {supervisor, terminate child, [ch sup, ml]}},
{apply, {supervisor, delete child, [ch sup, ml]}},
{update, ch sup, supervisor},
{delete module, ml}
1}1
}.

As stated earlier, the order of the instructions is important. When upgrading, mlL must be loaded, and the supervisor
child specification changed, before the new child process can be started. When downgrading, the child process must
be terminated before the child specification is changed and the module is deleted.

9.12.8 Adding or Deleting a Module

Example: A new functional module misadded to ch_app:

2",
[{"1", [{add module, m}]}1,
[{"1", [{delete module, m}]}]

9.12.9 Starting or Terminating a Process

In a system structured according to the OTP design principles, any process would be a child process belonging to a
supervisor, see Adding and Deleting Child Processes in Changing a Supervisor.

9.12.10 Adding or Removing an Application

When adding or removing an application, no . appup file is needed. When generating r el up, the . r el filesare
compared and theadd_appl i cati onandr enpve_appl i cati on instructions are added automatically.

9.12.11 Restarting an Application

Restarting an application is useful when a change istoo complicated to be made without restarting the processes, for
example, if the supervisor hierarchy has been restructured.

Example: When adding achild ml to ch_sup, asin Adding and Deleting Child Processes in Changing a Supervisor,
an aternative to updating the supervisor isto restart the entire application:

{II2II'
[{"1", [{restart application, ch app}]l}],
[{"1", [{restart application, ch app}]1}]
}.

9.12.12 Changing an Application Specification

When installing arelease, the application specifications are automatical ly updated before evaluating ther el up script.
Thus, no instructions are needed in the . appup file:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 349

9.12 Appup Cookbook

9.12.13 Changing Application Configuration

Changing an application configuration by updating the env key in the . app file is an instance of changing an
application specification, see the previous section.

Alternatively, application configuration parameters can be added or updated in sys. confi g.

9.12.14 Changing Included Applications

The release handling instructions for adding, removing, and restarting applications apply to primary applications only.
There are no corresponding instructions for included applications. However, since an included application is really a
supervision tree with a topmost supervisor, started as a child process to a supervisor in the including application, a
r el up file can be manually created.

Example: Assume there is a release containing an application pri m _app, which have a supervisor pri m sup in
its supervision tree.

Inanew version of therelease, the applicationch_app istobeincludedinpri m app. Thatis, itstopmost supervisor
ch_sup isto be started as a child processto pri m sup.

The workflow isasfollows:
Sep 1) Edit the codefor pri m sup:

init(...) ->
{ok, {...supervisor flags...,
[...,
{ch _sup, {ch sup,start link,[]},
permanent,infinity, supervisor, [ch sup]},

11

Sep 2) Edit the . app filefor pri m_app:

{application, prim_app,
[...,
{Vsn, ||2||}’
{included applications, [ch appl},
1.
Sep 3) Createanew . r el file includingch_app:

{release,
[

{é?im_app, "2"%},
{ch_app, "1"}1}.

350 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

Theincluded application can be started in two ways. Thisis described in the next two sections.

Application Restart

Sep 4a) One way to start the included application is to restart the entire pri m app application. Normally, the
restart_applicationinstructioninthe. appup filefor pri m app would be used.

However, if thisisdone and ar el up file is generated, not only would it contain instructions for restarting (that is,
removing and adding) pr i m_app, it would also contain instructionsfor starting ch_app (and stopping it, in the case
of downgrade). Thisisbecause ch_app isincludedinthenew . r el file, but not in the old one.

Instead, a correct r el up file can be created manually, either from scratch or by editing the generated version. The
instructions for starting/stopping ch_app are replaced by instructions for |oading/unloading the application:

{"B" ’
[{"A",
[1,
[{load object code,{ch app,"1",[ch sup,ch3]}},
{load object code,{prim app,"2",[prim_app,prim _supl}},
point of no return,
{apply, {application,stop, [prim appl}},
{remove, {prim_app,brutal purge,brutal purge}},
{remove, {prim_sup,brutal purge,brutal purge}},
{purge, [prim_app,prim_supl},
{load, {prim app,brutal purge,brutal purge}},
{load, {prim sup,brutal purge,brutal purge}},
{load, {ch_sup,brutal purge,brutal purge}},
{load, {ch3,brutal purge,brutal purge}},
{apply, {application, load, [ch _appl}},
{apply, {application,start, [prim_app,permanent]}}1}1,
[{"A",
[1,
[{load object code,{prim app,"1l", [prim_app,prim sup]l}},
point of no return,
{apply, {application,stop, [prim appl}},
{apply, {application,unload, [ch _appl}},
{remove, {ch_sup,brutal purge,brutal purge}},
{remove, {ch3,brutal purge,brutal purge}},
{purge, [ch_sup,ch31},
{remove, {prim_app,brutal purge,brutal purge}},
{remove, {prim_sup,brutal purge,brutal purge}},
{purge, [prim_app,prim_supl},
{load, {prim app,brutal purge,brutal purge}},
{load, {prim sup,brutal purge,brutal purge}},
{apply, {application,start, [prim_app,permanent]}}1}]

Supervisor Change

Sep 4b) Another way to start theincluded application (or stop it in the case of downgrade) isby combining instructions
for adding and removing child processes to/from pri m sup with instructions for loading/unloading all ch_app
code and its application specification.

Again, ther el up file is created manually. Either from scratch or by editing a generated version. Load all code
for ch_app first, and also load the application specification, before pri m sup is updated. When downgrading,
pri m sup isto updated first, before the code for ch_app and its application specification are unloaded.

{"B" ’
[{"A",

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 351

9.12 Appup Cookbook

[1,

[{load object code,{ch app,"1",[ch sup,ch3]}},

{load object code,{prim app,"2",[prim supl}},

point of no return,

{load, {ch_sup,brutal purge,brutal purge}},

{load, {ch3,brutal purge,brutal purge}},

{apply, {application, load, [ch _appl}},

{suspend, [prim _supl},

{load, {prim sup,brutal purge,brutal purge}},

{code_change,up, [{prim_sup, [1}1},

{resume, [prim supl},

{apply, {supervisor, restart child, [prim _sup,ch supl}}1}1,
[{"A",

[1,

[{load object code,{prim app,"1",[prim supl}},

point of no return,

{apply, {supervisor,terminate child, [prim sup,ch supl}},

{apply, {supervisor,delete child, [prim_sup,ch supl}},

{suspend, [prim _supl},

{load, {prim sup,brutal purge,brutal purge}},

{code change,down, [{prim sup,[1}1},

{resume, [prim _supl},

{remove, {ch sup,brutal purge,brutal purge}},

{remove, {ch3,brutal purge,brutal purge}},

{purge, [ch_sup,ch31},

{apply, {application,unload, [ch app]l}}1}]

9.12.15 Changing Non-Erlang Code

Changing code for a program written in another programming language than Erlang, for example, a port program, is

application-dependent and OTP provides no specia support for it.

Example: When changing code for a port program, assume that the Erlang process controlling the port is a

gen_server port c and that the port is opened in the callback functioni ni t/ 1:

init(...) ->

PortPrg = filename:join(code:priv_dir(App), "portc"),
Port = open port({spawn,PortPrg}, [...]),

{ok, #state{port=Port, ...}}.

If the port program isto be updated, the code for thegen_ser ver can be extended withacode_change function,
which closes the old port and opens a new port. (If necessary, the gen_ser ver can first request data that must be

saved from the port program and pass this data to the new port):

code change(0ldVsn, State, port) ->
State#state.port ! close,
receive
{Port,close} ->
true
end,
PortPrg = filename:join(code:priv_dir(App), "portc"),
Port = open port({spawn,PortPrg}, [...]1),
{ok, #state{port=Port, ...}}.

Update the application version number in the . app fileand writean . appup file:

352 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

[2,
[{"1", [{update, portc, {advanced,port}}]1}1,
[{"1", [{update, portc, {advanced,port}}]}]
I

Ensure that the pri v directory, where the C program is located, isincluded in the new rel ease package:

1> systools:make tar("my release", [{dirs,[priv]}]).

9.12.16 Emulator Restart and Upgrade
Two upgrade instructions restart the emul ator:
e restart_new enul ator

Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically added when ther el up file
isgenerated by syst ool s: nake_r el up/ 3, 4. Itis executed before all other upgrade instructions. For more
information about this instruction, see restart_new_emulator (Low-Level) in Release Handling Instructions.

e restart_enul ator

Used when a restart of the emulator is required after all other upgrade instructions are executed. For more
information about this instruction, see restart_emulator (Low-Level) in Release Handling Instructions.

If an emulator restart is necessary and no upgrade instructions are needed, that is, if the restart itself is enough for the
upgraded applications to start running the new versions, asimpler el up file can be created manually:

{"B"I
[{"A",
[1,
[restart emulator]}],
[{"A",
[1,
[restart emulator]}]

}.

Inthis case, the release handler framework with automatic packing and unpacking of release packages, automatic path
updates, and so on, can be used without having to specify . appup files.

9.12.17 Emulator Upgrade From Pre OTP R15

From OTP R15, an emulator upgradeis performed by restarting the emulator with new versions of the core applications
(Kernel, STDLIB, and SASL) before loading code and running upgrade instruction for other applications. For thisto
work, the release to upgrade from must include OTP R15 or later.

For the case where the release to upgrade from includes an earlier emulator version, syst ool s: make_rel up
creates a backwards compatible relup file. This means that all upgrade instructions are executed before the emulator
is restarted. The new application code is therefore loaded into the old emulator. If the new code is compiled with the
new emulator, there can be cases where the beam format has changed and beam files cannot be loaded. To overcome
this problem, compile the new code with the old emulator.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 353

10.1 Introduction

10 OAM Principles

10.1 Introduction

The Operation and Maintenance (OAM) support in OTP consists of a generic model for management subsystemsin
OTP, and some components to be used in these subsystems. This section describes the model.

The main ideain the model isthat it is not tied to any specific management protocol. An Application Programming
Interface (API) is defined, which can be used to write adaptations for specific management protocols.

Each OAM component in OTP is implemented as one sub-application, which can be included in a management
application for the system. Notice that such a complete management application is not in the scope of this generic
functionality. However, this section includes examples illustrating how such an application can be built.

10.1.1 Terminology

The protocol-independent architectural model on the network level is the well-known client-server model for
management operations. This model is based on the client-server principle, where the manager (client) sends arequest
from a manager to an agent (server) when it accesses management information. The agent sends a reply back to the
manager. There are two main differences to the normal client-server model:

e Usually afew managers communicate with many agents.

» The agent can spontaneously send a notification, for example, an alarm, to the manager.
The following pictureillustrates the idea:

NS Manaeer |
8 T~ BEES
NET ! MIB
' | sees
Agent
NE- at e .
Resl Res?

Figure 1.1: Terminology

The manager is often referred to as the Network Management System (NMS), to emphasize that it usualy is realized
as aprogram that presents data to an operator.

354 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

The agent is an entity that executes within a Network Element (NE). In OTP, the NE can be a distributed system,
meaning that the distributed system is managed as one entity. Of course, the agent can be configured to be able to run
on one of several nodes, making it a distributed OTP application.

The management information is defined in a Management Information Base (MIB). It isaformal definition of which
information the agent makes avail able to the manager. The manager accessesthe MIB through a management protocoal,
suchas SNMP, CMIP, HTTP, or CORBA. Each protocol hasitsown MIB definition language. In SNMP, it is a subset
of ASN.1, in CMIPitisGDMO, in HTTP it isimplicit, and using CORBA, it isIDL.

Usually, the entities defined in the M1B are called Managed Objects (MOs), although they do not have to be objectsin
the object-oriented way. For example, asimple scalar variable defined inaMIB iscalled an MO. The MOs are logical
objects, not necessarily with a one-to-one mapping to the resources.

10.1.2 Model

This section presents the generic protocol-independent model for use within an OTP-based NE. This model is used
by all OAM components and can be used by the applications. The advantage of the model is that it clearly separates
the resources from the management protocol. The resources do not need to be aware of which management protocol
is used to manage the system. The same resources can therefore be managed with different protocols.

The entities involved in this model are the agent, which terminates the management protocol, and the resources,
which is to be managed, that is, the actual application entities. The resources should in general have no knowledge
of the management protocol used, and the agent should have no knowledge of the managed resources. Thisimplies
that a trandlation mechanism is needed, to translate the management operations to operations on the resources. This
trandation mechanism is usually called instrumentation and the function that implementsit is called instrumentation
function. The instrumentation functions are written for each combination of management protocol and resource to be
managed. For example, if an application isto be managed by SNMP and HT TP, two sets of instrumentation functions
are defined; one that maps SNMP requests to the resources, and one that, for example, generates an HTML page for
SOme resources.

When amanager makes a request to the agent, the following illustrates the situation:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 355

10.1 Introduction

Figure 1.2: Request to An Agent by a Manager

The mapping between an instrumentation function and aresourceis not necessarily 1-1. It is also possible to write one
instrumentation function for each resource, and use that function from different protocols.

The agent receives a request and maps it to calls to one or more instrumentation functions. These functions perform
operations on the resources to implement the semantics associated with the MO.

For example, a system that is managed with SNMP and HTTP can be structured as follows:

356 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

Figure 1.3: Structure of a System Managed with SNMP and HTTP

The resources can send notifications to the manager as well. Examples of notifications are events and alarms. The
resource needs to generate protocol -independent notifications. The following picture illustrates how thisis achieved:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 357

10.1 Introduction

fliomz
THIP HTTF
- & ey er 4
Instnumentation Imstnumentation
Ten_event
Eesl Fes? Ees3

Figure 1.4: Notification Handling

The main idea is that the resource sends the notifications as Erlang terms to a dedicated gen_event process. Into
this process, handlers for the different management protocols are installed. When an event isreceived by this process,
it isforwarded to each installed handler. The handlers are responsible for translating the event into a notification to be
sent over the management protocol. For example, a handler for SNMP translates each event into an SNMP trap.

10.1.3 SNMP-Based OAM

For all OAM components, SNM P adaptations are provided. Other adaptations might be defined in the future.

The OAM components, and some other OTP applications, define SNMP MIBs. These MIBs are written in SNMPv2
SMI syntax, as defined in RFC 1902. For convenience we also deliver the SNMPv1 SMI equivalent. All MIBs are
designed to be v1/v2 compatible, that is, the v2 MIBs do not use any construct not availablein v1.

MIB Structure

The top-level OTP MIB is called OTP- REGand it isincluded in the sas| application. All other OTP MIBs import
some objects from this MIB.

358 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

Each MIB is contained in one application. The MIB text files are stored under mi bs/ <M B>. ni b inthe application
directory. The generated . hr| files with constant declarations are stored under i ncl ude/ <M B>. hr | , and the
compiled MIBs are stored under pri v/ m bs/ <M B>. bi n. For example, the OTP- M B isincluded in the sasl
application:

sasl-1.3/mibs/0TP-MIB.mib
include/0TP-MIB.hrl
priv/mibs/0TP-MIB.bin

An application that needs to import this MIB into another MIB isto usethei | option to the SNMP MIB compiler:

snmp:c("MY-MIB", [{il, ["sasl/priv/mibs"]}1).

If the application needs to include the generated . hr | file, itisto usethe-i ncl ude_l i b directive to the Erlang
compiler:

-module(my mib).
-include lib("sasl/include/0TP-MIB.hrl").

Thefollowing MIBs are defined in the OTP system:

e« OTP-REG (insasl) containsthe top-level OTP registration objects, used by all other MIBs.

e« OIP-TC(insasl) contains the general Textual Conventions, which can be used by any other MIB.

e QOTP-M B (in sasl) contains objects for instrumentation of the Erlang nodes, the Erlang machines, and the
applications in the system.

e« OTP- 0S- MON- M B (in oc_non) contains objects for instrumentation of disk, memory, and CPU use of the
nodes in the system.

e QOTP- SNMPEA- M B (in snnp) contains objects for instrumentation and control of the extensible SNMP agent
itself. The agent also implements the standard SNMPv2-MIB (or v1 part of MIB-II, if SNMPv1 is used).

e OTP- EVA- M B (ineva) contains objectsfor instrumentation and control of the events and alarmsin the system.

e« QOTP-LOG M B (ineva) contains objects for instrumentation and control of the logs and FTP transfer of logs.

e QOTP- EVA- LOG M B (in eva) contains objects for instrumentation and control of the events and alarm logs in
the system.

e OIP- SNMPEA- LOG- M B (in eva) contains objects for instrumentation and control of the SNMP audit trail log
in the system.

The different applications use different strategiesfor loading the MIBs into the agent. Some MIB implementations are
code-only, while others need a server. One way, used by the code-only MIB implementations, is for the user to call
afunctionsuchasot p_m b: i nit(Agent) toloadthe MIB, andot p_ni b: st op(Agent) to unload the MIB.
See the manual page for each application for a description of how to load each MIB.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 359

	Erlang/OTP System Documentation
	Installation Guide
	Installing the Binary Release
	Windows
	Installing
	Verifying

	Building and Installing Erlang/OTP
	Introduction
	Required Utilities
	Unpacking
	Building
	Installing

	Optional Utilities
	Building
	Building Documentation

	How to Build and Install Erlang/OTP
	Unpacking
	Configuring
	Building
	Testing
	Installing
	Running
	How to Build the Documentation
	How to Install the Documentation
	Accessing the Documentation
	How to Install the Pre-formatted Documentation

	Advanced configuration and build of Erlang/OTP
	make and $ERL_TOP
	otp_build vs configure/make
	Configuring
	Building
	Installing
	Running

	Known platform issues
	Daily Build and Test
	Authors
	Copyright and License

	Cross Compiling Erlang/OTP
	Introduction
	otp_build Versus configure/make
	Cross Configuration
	What can be Cross Compiled?
	Compatibility
	Patches

	Build and Install Procedure
	Building With configure/make Directly
	Building With the otp_build Script

	Building and Installing the Documentation
	Testing the cross compiled system
	Currently Used Configuration Variables
	Variables for otp_build Only
	Cross Compiler and Other Tools
	Cross System Root Locations
	Optional Feature, and Bug Tests

	Copyright and License

	How to Build Erlang/OTP on Windows
	Introduction
	Short Version
	Frequently Asked Questions
	Tools you Need and Their Environment
	The Shell Environment
	Building and Installing
	Development
	Using GIT
	Copyright and License

	Patching OTP Applications
	Introduction
	Prerequisites
	Using otp_patch_apply
	Sanity check

	System Principles
	System Principles
	Starting the System
	Restarting and Stopping the System
	Boot Scripts
	Default Boot Scripts
	User-Defined Boot Scripts

	Code Loading Strategy
	File Types

	Error Logging
	Error Information From the Runtime System
	SASL Error Logging

	Creating and Upgrading a Target System
	Creating a Target System
	Installing a Target System
	Starting a Target System
	System Configuration Parameters
	Differences From the Install Script
	Creating the Next Version
	Upgrading the Target System
	Listing of target_system.erl

	Upgrade when Erlang/OTP has Changed
	Introduction
	Upgrade of Core Applications
	Applications that Still do Not Allow Code Upgrade

	Versions
	OTP Version
	Retrieving Current OTP Version
	OTP Versions Table

	Application Version
	Version Scheme
	Order of Versions

	OTP 17.0 Application Versions

	Embedded Systems User's Guide
	Embedded Solaris
	Memory Use
	Disk Space Use
	Installing an Embedded System
	Creating User and Installation Directory
	Installing an Embedded System
	Configuring Automatic Start at Boot
	Making Hardware Watchdog Available
	Changing Permissions for Reboot
	Setting TERM Environment Variable
	Adding Patches
	Installing Module os_sup in Application os_mon
	Installation
	Testing the Application Configuration File
	Related Documents

	Installation Problems

	Starting Erlang
	Programs
	start
	run_erl
	to_erl
	start_erl

	Windows NT
	Memory Use
	Disk Space Use
	Installing an Embedded System
	Hardware Watchdog

	Starting Erlang

	Getting Started With Erlang
	Introduction
	Prerequisites
	Omitted Topics

	Sequential Programming
	The Erlang Shell
	Modules and Functions
	Atoms
	Tuples
	Lists
	Maps
	Standard Modules and Manual Pages
	Writing Output to a Terminal
	A Larger Example
	Matching, Guards, and Scope of Variables
	More About Lists
	If and Case
	Built-In Functions (BIFs)
	Higher-Order Functions (Funs)

	Concurrent Programming
	Processes
	Message Passing
	Registered Process Names
	Distributed Programming
	A Larger Example

	Robustness
	Time-outs
	Error Handling
	The Larger Example with Robustness Added

	Records and Macros
	The Larger Example Divided into Several Files
	Header Files
	Records
	Macros

	Erlang Reference Manual
	Introduction
	Purpose
	Prerequisites
	Document Conventions
	Complete List of BIFs
	Reserved Words

	Character Set and Source File Encoding
	Character Set
	Source File Encoding

	Data Types
	Terms
	Number
	Atom
	Bit Strings and Binaries
	Reference
	Fun
	Port Identifier
	Pid
	Tuple
	Map
	List
	String
	Record
	Boolean
	Escape Sequences
	Type Conversions

	Pattern Matching
	Pattern Matching

	Modules
	Module Syntax
	Module Attributes
	Pre-Defined Module Attributes
	Behaviour Module Attribute
	Record Definitions
	Preprocessor
	Setting File and Line
	Types and function specifications

	Comments
	module_info/0 and module_info/1 functions
	module_info/0
	module_info/1

	Functions
	Function Declaration Syntax
	Function Evaluation
	Tail recursion
	Built-In Functions (BIFs)

	Types and Function Specifications
	The Erlang Type Language
	Types and their Syntax
	Type Declarations of User-Defined Types
	Type Information in Record Declarations
	Specifications for Functions

	Expressions
	Expression Evaluation
	Terms
	Variables
	Patterns
	Match Operator = in Patterns
	String Prefix in Patterns
	Expressions in Patterns

	Match
	Function Calls
	Local Function Names Clashing With Auto-Imported BIFs

	If
	Case
	Send
	Receive
	Term Comparisons
	Arithmetic Expressions
	Boolean Expressions
	Short-Circuit Expressions
	List Operations
	Map Expressions
	Creating Maps
	Updating Maps
	Maps in Patterns
	Matching Syntax

	Maps in Guards

	Bit Syntax Expressions
	Fun Expressions
	Catch and Throw
	Try
	Parenthesized Expressions
	Block Expressions
	List Comprehensions
	Bit String Comprehensions
	Guard Sequences
	Operator Precedence

	Preprocessor
	File Inclusion
	Defining and Using Macros
	Predefined Macros
	Macros Overloading
	Flow Control in Macros
	Stringifying Macro Arguments

	Records
	Defining Records
	Creating Records
	Accessing Record Fields
	Updating Records
	Records in Guards
	Records in Patterns
	Nested Records
	Internal Representation of Records

	Errors and Error Handling
	Terminology
	Exceptions
	Handling of Run-time Errors in Erlang
	Error Handling Within Processes
	Error Handling Between Processes

	Exit Reasons

	Processes
	Processes
	Process Creation
	Registered Processes
	Process Termination
	Message Sending
	Links
	Error Handling
	Emitting Exit Signals
	Receiving Exit Signals

	Monitors
	Process Dictionary

	Distributed Erlang
	Distributed Erlang System
	Nodes
	Node Connections
	epmd
	Hidden Nodes
	C Nodes
	Security
	Distribution BIFs
	Distribution Command-Line Flags
	Distribution Modules

	Compilation and Code Loading
	Compilation
	Code Loading
	Code Replacement
	Running a Function When a Module is Loaded

	Ports and Port Drivers
	Ports
	Port Drivers
	Port BIFs

	Programming Examples
	Records
	Records and Tuples
	Defining a Record
	Creating a Record
	Accessing a Record Field
	Updating a Record
	Type Testing
	Pattern Matching
	Nested Records
	A Longer Example

	Funs
	map
	foreach
	Syntax of Funs
	Variable Bindings Within a Fun
	Funs and Module Lists
	map
	any
	all
	foreach
	foldl
	mapfoldl
	filter
	takewhile
	dropwhile
	splitwith

	Funs Returning Funs
	Simple Higher Order Functions
	Infinite Lists
	Parsing

	List Comprehensions
	Simple Examples
	Quick Sort
	Permutations
	Pythagorean Triplets
	Simplifications With List Comprehensions
	Variable Bindings in List Comprehensions

	Bit Syntax
	Introduction
	Examples

	Lexical Note
	Segments
	Defaults
	Constructing Binaries and Bitstrings
	Including Literal Strings

	Matching Binaries
	Getting the Rest of the Binary or Bitstring

	Appending to a Binary

	Efficiency Guide
	Introduction
	Purpose
	Prerequisites

	The Eight Myths of Erlang Performance
	Myth: Funs are Slow
	Myth: List Comprehensions are Slow
	Myth: Tail-Recursive Functions are Much Faster
 Than Recursive Functions
	Myth: Operator "++" is Always Bad
	Myth: Strings are Slow
	Myth: Repairing a Dets File is Very Slow
	Myth: BEAM is a Stack-Based Byte-Code Virtual Machine
 (and Therefore Slow)
	Myth: Use "_" to Speed Up Your Program When a Variable
 is Not Used

	Common Caveats
	Timer Module
	list_to_atom/1
	length/1
	setelement/3
	size/1
	split_binary/2
	Operator "--"

	Constructing and Matching Binaries
	How Binaries are Implemented
	Refc Binaries
	Heap Binaries
	Sub Binaries
	Match Context

	Constructing Binaries
	Circumstances That Force Copying

	Matching Binaries
	Option bin_opt_info
	Unused Variables

	List Handling
	Creating a List
	List Comprehensions
	Deep and Flat Lists
	Port Example
	Append Example

	Recursive List Functions

	Functions
	Pattern Matching
	Function Calls
	Notes and Implementation Details

	Memory Usage in Recursion

	Tables and Databases
	Ets, Dets, and Mnesia
	Select/Match Operations
	Deleting an Element
	Fetching Data
	Non-Persistent Database Storage
	tab2list
	Ordered_set Tables

	Ets-Specific
	Using Keys of Ets Table

	Mnesia-Specific
	Secondary Index
	Transactions

	Processes
	Creating an Erlang Process
	Initial Heap Size

	Process Messages
	Constant Pool
	Loss of Sharing

	SMP Emulator

	Drivers
	Drivers and Concurrency
	Avoiding Copying Binaries When Calling a Driver
	Returning Small Binaries from a Driver
	Returning Large Binaries without Copying from a Driver

	Advanced
	Memory
	System Limits

	Profiling
	Do Not Guess About Performance - Profile
	Large Systems
	What to Look For
	Tools
	fprof
	eprof
	cover
	cprof
	Tool Summary

	Benchmarking

	Interoperability Tutorial
	Introduction
	Purpose
	Prerequisites

	Overview
	Built-In Mechanisms
	Distributed Erlang
	Ports and Linked-In Drivers

	C and Java Libraries
	Erl_Interface
	C Nodes
	Jinterface

	Standard Protocols
	Sockets

	IC
	Old Applications

	Problem Example
	Description

	Ports
	Erlang Program
	C Program
	Running the Example

	Erl_Interface
	Erlang Program
	C Program
	Running the Example

	Port Drivers
	Erlang Program
	C Driver
	Running the Example

	C Nodes
	Erlang Program
	C Program
	Setting Up Communication
	Sending and Receiving Messages

	Running the Example

	NIFs
	Erlang Program
	NIF Library Code
	Running the Example

	OTP Design Principles
	Overview
	Supervision Trees
	Behaviours
	Applications
	Releases
	Release Handling

	gen_server Behaviour
	Client-Server Principles
	Example
	Starting a Gen_Server
	Synchronous Requests - Call
	Asynchronous Requests - Cast
	Stopping
	In a Supervision Tree
	Standalone Gen_Servers

	Handling Other Messages

	gen_fsm Behaviour
	Finite-State Machines
	Example
	Starting gen_fsm
	Notifying about Events
	Time-Outs
	All State Events
	Stopping
	In a Supervision Tree
	Standalone gen_fsm

	Handling Other Messages

	gen_event Behaviour
	Event Handling Principles
	Example
	Starting an Event Manager
	Adding an Event Handler
	Notifying about Events
	Deleting an Event Handler
	Stopping
	In a Supervision Tree
	Standalone Event Managers

	Handling Other Messages

	Supervisor Behaviour
	Supervision Principles
	Example
	Supervisor Flags
	Restart Strategy
	one_for_one
	one_for_all
	rest_for_one
	simple_one_for_one

	Maximum Restart Intensity
	Child Specification
	Starting a Supervisor
	Adding a Child Process
	Stopping a Child Process
	Simplified one_for_one Supervisors
	Stopping

	sys and proc_lib
	Simple Debugging
	Special Processes
	Example
	Starting the Process
	Debugging
	Handling System Messages

	User-Defined Behaviours

	Applications
	Application Concept
	Application Callback Module
	Application Resource File
	Directory Structure
	Application Controller
	Loading and Unloading Applications
	Starting and Stopping Applications
	Configuring an Application
	Application Start Types

	Included Applications
	Introduction
	Specifying Included Applications
	Synchronizing Processes during Startup

	Distributed Applications
	Introduction
	Specifying Distributed Applications
	Starting and Stopping Distributed Applications
	Failover
	Takeover

	Releases
	Release Concept
	Release Resource File
	Generating Boot Scripts
	Creating a Release Package
	Directory Structure
	Disk-Less and/or Read-Only Clients

	Release Handling
	Release Handling Principles
	Release Handling Workflow
	Release Handling Aspects

	Requirements
	Distributed Systems
	Release Handling Instructions
	load_module
	update
	add_module and delete_module
	Application Instructions
	apply (Low-Level)
	restart_new_emulator (Low-Level)
	restart_emulator (Low-Level)

	Application Upgrade File
	Release Upgrade File
	Installing a Release
	Example (continued from the previous sections)

	Updating Application Specifications

	Appup Cookbook
	Changing a Functional Module
	Changing a Residence Module
	Changing a Callback Module
	Changing Internal State
	Module Dependencies
	Changing Code for a Special Process
	Changing a Supervisor
	Changing Properties
	Changing Child Specifications
	Adding and Deleting Child Processes

	Adding or Deleting a Module
	Starting or Terminating a Process
	Adding or Removing an Application
	Restarting an Application
	Changing an Application Specification
	Changing Application Configuration
	Changing Included Applications
	Application Restart
	Supervisor Change

	Changing Non-Erlang Code
	Emulator Restart and Upgrade
	Emulator Upgrade From Pre OTP R15

	OAM Principles
	Introduction
	Terminology
	Model
	SNMP-Based OAM
	MIB Structure

