| v

ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 7.3
March 14, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2016

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.1 Communication in Erlang

1 ERTS User's Guide

The Erlang Runtime System Application ERTS.

1.1 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities
such as processes, and ports communicate via asynchronous signals. The most commonly used signal is a message.
Other common signals are exit, link, unlink, monitor, demonitor signals.

1.1.1 Passing of Signals

The amount of timethat passes between asignal being sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal will not arrive, but it is possible that it triggers another signal.
For example, alink signal sent to a non-existing process will trigger an exit signal which will be sent back to where
the link signal originated from. When communicating over the distribution, signals may be lost if the distribution
channel goes down.

The only signal ordering guarantee given is the following. If an entity sends multiple signals to the same destination
entity, the order will be preserved. That is, if A sends asigna S1 to B, and later sends the signal S2 to B, S1 is
guaranteed not to arrive after S2.

1.1.2 Synchronous Communication

Some communication issynchronous. If broken down into pieces, asynchronous communication operation, consists of
two asynchronous signals. One request signal and onereply signal. An example of such a synchronous communication
isacal toprocess_i nf o/ 2 when thefirst argument isnot sel f () . The caller will send an asynchronous signal
requesting information, and will then wait for the reply signal containing the requested information. When the request
signal reaches its destination the destination process replies with the requested information.

1.1.3 Implementation

The implementation of different asynchronous signalsin the VM may vary over time, but the behaviour will always
respect this concept of asynchronous signals being passed between entities as described above.

By inspecting the implementation you might notice that some specific signal actually gives a stricter guarantee than
described above. It is of vital importance that such knowledge about the implementation is not used by Erlang code,
since the implementation might change at any time without prior notice.

Some exampl e of major implementation changes:

e Asof ERTSversion 5.5.2 exit signals to processes are truly asynchronously delivered.
» Asof ERTSversion 5.10 all signals from processes to ports are truly asynchronously delivered.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

1.2 Time and Time Correction in Erlang

1.2.1 New Extended Time Functionality

Note:

Asof OTP 18 (ERTS version 7.0) the time functionality of Erlang has been extended. This includes a new API
for time and time warp modes that alter the system behavior when system time changes.

The default time warp mode has the same behavior as before, and the old API still works. Thus, you are not
required to change anything unless you want to. However, you are strongly encouraged to use the new API instead
of the old API based on er | ang: now 0. er | ang: now 0 is deprecated, as it is and will be a scalability
bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you
to use the multi-time warp mode that improves accuracy and precision of time measurements.

1.2.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monotonically increasing sequence of values, all values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, al values that have a predecessor are larger than its
predecessor.

UTl
Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the SI definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01. A day in POSI X timeisdefined to be exactly
86400 seconds long. Strangely enough Epoch is defined to be atimein UTC, and UTC has another definition of how
long a day is. Quoting the Open Group " POSI X timeistherefore not necessarily UTC, despite its appearance”.
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the
last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

href
href
href

1.2 Time and Time Correction in Erlang

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp isaleap forwards or backwards in time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

0OS System Time

The operating systems view of POS X time. To retrieve it, call os: system ti me() . This may or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtine_source).
OS Monotonic Time

A monotonically increasing time provided by the operating system. Thistime does not leap and has arelatively steady
frequency although not completely correct. However, it is not uncommon that OS monotonic time stopsif the system
is suspended. This time typically increases since some unspecified point in time that is not connected to OS system
time. Thistype of timeis not necessarily provided by all operating systems.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.i nfo(os_nonotonic_time_source).

Erlang System Time

The Erlang runtime systems view of POS X time. Toretrieveit, call er | ang: system ti ne().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point in time. To retrieveit, call er | ang: nonot oni c_ti me().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

e Accuracy and precision of OS monotonic time
e Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monaotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

Internally in the runtime system, Erlang monotonic timeis the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardless of itisarecei ve ... after timer, BIF timer, or a
timerinthet i mer module, aretriggered relative Erlang monotonic time. Even Erlang systemtimeis based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

Toretrieve current time offset, call er | ang: ti me_of f set/ 0.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

1.2.3 Introduction

Timeis vital to an Erlang program and, more importantly, correct timeis vital to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. This more or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is ssmply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer may sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Time isto adjust the clock one hour two times a
year (which isthe incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either a real-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.2.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source). To check if time correction is enabled on your
system, cal er | ang: system i nfo(time_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl .

If time correction is disabled, Erlang monotonic time may warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalahility, bad performance, and bad time measurements.

1.2.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.2 Time and Time Correction in Erlang

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time does atimewarp backwards,
the values returned from er | ang: now 0 freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now 0 are suboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see Section How to Work with the New API.

1.2.6 Time Warp Modes

Current Erlang systemtime is determined by adding current Erlang monotonic time with current time offset. Thetime
offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti nme_war p|
multi _time_warp] toerl.
No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
becauseitisthebest mode (whichitisnot). Itisdefault only becausethisishow the runtime system behaved until ERTS
7.0. Ensure that your Erlang code that may execute during atime warp istime war p safe before enabling other modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in all time measurements in the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode

This mode is more or less a backwards compatibility mode as of its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

Note:

There are limitations to when you can execute time warp unsafe code using thismode. If it is possible to usetime
warp safe code only, it is much better to use the multi-time warp mode instead.

Using the single time warp mode, the time offset is handled in two phases:
Preliminary Phase

This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset is from now on to be fixed during the whole preliminary phase.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp modeis used.

Final Phase

Thisphase beginswhen theuser finalizesthetimeoffset by callinger | ang: system fl ag(ti me_of f set,
finalize).Thefinaization can only be performed once.

During finalization, the time offset is adjusted and fixated so that current Erlang system time aligns with current
OS system time. Asthe time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly as in the no time warp mode.

In order for thisto work properly, the user must ensure that the following two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not surethat OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and that OS system time is adjusted using
atime adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong asthe system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

Warning:
To use this mode, ensure that al Erlang code that will execute in both phases are time warp safe.

Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang runtime
system have better performance, scale better, and behave better on almost all platforms. In addition, the accuracy and
precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit from
another configuration.

Thetime offset may change at any time without limitations. That is, Erlang system time may perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.2 Time and Time Correction in Erlang

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
as the time offset is changed to align Erlang system time with OS system time.

Warning:

To use this mode, ensure that al Erlang code that will execute on the runtime system is time warp safe.

1.2.7 New Time API

Theoldtime APl isbasedoner | ang: now 0. er | ang: now 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backwards compatible, er | ang: now 0 remains asis, but you are strongly discouraged from using it. Many
use cases of er | ang: now 0 prevents you from using the new multi-time warp mode, which is an important part of
this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negativeinteger valueson anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert _tinme_unit/3
e erlang: nonotonic_tine/0

* erlang:nonotonic_tine/l

e erlang:systemtine/0

e erlang:systemtine/1l

« erlang:time_offset/0

e erlang:tine_offset/1

* erlang:tinmestanp/0

e erlang:unique_integer/0

e erlang:unique_integer/1

e o0s:systemtine/0

e os:systemtine/l

The new API also consists of extensions of the following existing BIFs:

e erlang:monitor(tine_offset, clock service)

« erlang:systemflag(tinme_offset, finalize)

e erlang: system.info(os_nonotonic_tinme_source)
e erlang:system.info(os_systemtine_source)

e erlang:systeminfo(tinme_offset)

e erlang:systeminfo(tinme_warp_node)

e erlang:systeminfo(time_correction)

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

New Erlang Monotonic Time

Erlang monotonic time as such is new as of ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic timeand Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of the two times are only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backwards compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or lesstied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure timethat is not connected to calendar time by the use of Erlang
monatonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in a sensible way.

Tobeabletoreact to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when current time offset is changed. We have therefore introduced the possibility to monitor the
timeoffsetusinger | ang: nonitor (ti me_offset, clock _service).A processmonitoring thetime offset
is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now’ 0 a so produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we haveintroduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
er | ang: now 0 can be used for, and how you are to these using the new API.

Retrieve Erlang System Time

Don't:

Useer | ang: now O to retrieve current Erlang system time.

Do:

Useer | ang: syst em ti ne/ 1 to retrieve current Erlang system time on the time unit of your choice.
If you want the same format asreturned by er | ang: now/ 0, useer | ang: t i nest anp/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.2 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:

Take timestamps with er | ang: now/ 0 and calculate the differencein timewith t i mer : now_di f f/ 2.

Do:

Take timestamps with er | ang: nonot oni ¢_ti me/ 0 and calculate the time difference using ordinary
subtraction. The result will bein nat i ve time unit. If you want to convert the result to another time unit, you
canuseer | ang: convert tine_unit/3.

An easier way to do thisisto use er | ang: nonot oni ¢_t i me/ 1 with the desired time unit. However, you
can then lose accuracy and precision.
Determine Order of Events

Don't:

Determine the order of events by saving atimestamp with er | ang: now/ 0 when the event occurs.

Do:
Determine the order of events by saving the integer returned by

erl ang: uni que_i nt eger ([nonot oni c]) when the event occurs. These integers will be strictly
monotonically ordered on current runtime system instance corresponding to creation time.

Determine Order of Events with Time of the Event

Don't:

Determine the order of events by saving atimestamp with er | ang: now/ 0 when the event occurs.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

Do:

Determinethe order of events by saving atuple containing monotonic time and astrictly monotonically increasing
integer asfollows:

Time = erlang:monotonic_time(),
UMI = erlang:unique_ integer([monotonicl),
EventTag = {Time, UMI}

Thesetupleswill be strictly monotonically ordered on current runtime system instance according to creation time.
It is important that the monaotonic time is in the first element (the most significant element when comparing 2-
tuples). Using the monotonic time in the tuples, you can calcul ate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after savingtheeventsusinger | ang: t i me_of f set / 0. Erlang monotonic time added with the time
offset correspondsto Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as athird element in the tuple (the least significant element
when comparing 3-tuples).

Create a Unigue Name

Don't:

Use the values returned from er | ang: now/ O to create a hame unique on the current runtime system instance.

Do:

Use the vaue returned from erlang: unique_ integer/0 to create a name unique on
the current runtime system instance. If you only want postive integers, you can use
erl ang: uni que_i nt eger ([positive]).

Seed Random Number Generation with a Unique Value

Don't:

Seed random number generation using er | ang: now() .

Do:

Seed random number generation wusing a combination of erlang: nobnotonic tinme(),
erlang:time_of fset(),erl ang: uni que_i nt eger (), and other functionality.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

1.3 Match specifications in Erlang

To sum up this section: Do not useer | ang: now 0.

1.2.8 Support of Both New and Old OTP Releases

It can berequired that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
usethe new API out of the box, asit will not be available on old pre OTP 18 releases. The solution isnot to avoid using
the new API, as your code then would not benefit from the scalability and accuracy improvements made. Instead, use
the new API when available, and fall back on er | ang: now' 0 when the new API isunavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

e erlang: system.info(os_nonotonic_tine_source)

e erlang:systeminfo(os_systemtinme_source))

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL _T OP/erts/example/time_compat.erl.

1.3 Match specifications in Erlang

A "match specification” (match_spec) isan Erlang term describing asmall "program” that will try to match something
(either the parameters to a function as used in the er | ang: trace_patt ern/ 2 BIF, or the objects in an ETS
table.). The match_specin many waysworks like asmall function in Erlang, but isinterpreted/compiled by the Erlang
runtime system to something much more efficient than calling an Erlang function. The match_specisalso very limited
compared to the expressiveness of real Erlang functions.

Match specificationsaregiventotheBlIF er | ang: t race_patt er n/ 2 to execute matching of function arguments
as well as to define some actions to be taken when the match succeeds (the Mat chBody part). Match specifications
can also be used in ETS, to specify objects to be returned from an et s: sel ect/ 2 call (or other select calls). The
semantics and restrictions differ dlightly when using match specifications for tracing and in ETS, the differences are
defined in a separate paragraph below.

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match specifications
are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of exceptions. An exception
(e.g., badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, will generate immediate failure,
while an exception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.3.1 Grammar
A match_spec used in tracing can be described in thisinformal grammar:

e MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

* MatchHead ::= MatchVariable|' _' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable |* _'

e MatchVariable ::= '$<number>'

» MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=is_atom|is _float |is_integer |is_list|is _nunber |is pid]|is_port |
is_reference|is_tuplel|is_map|is_binary]|is_function]|is_record|is_seq_trace|
"and' |'or' |'not' |'xor' |andal so|orel se

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

1.3 Match specifications in Erlang

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] |#{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)

Constant ::= {const , term()}

GuardFunction ::= BoolFunction | abs | el ement |hd || engt h |[node |round |si ze |t] [trunc|' +
["-" |"*" ["div' |'"rem |"band" |'bor' |["bxor' |'bnot' |'"bsl' |"bsr' |'>" |[">=" |'<" |
=< == == == T = | sel f o |get _tew

MatchBody ::=[ActionTerm]

ActionTerm ::= ConditionExpression | ActionCall

ActionCall ::= { ActionFunction} | { ActionFunction, ActionTerm, ...}

ActionFunction ::=set _seq_t oken |get _seq_t oken |nmessage |return_trace |
exception_trace|process_dunp|enabl e trace|di sable trace|trace |display|
caller |set _tcw]|silent

A match_spec used in ets can be described in thisinformal grammar:

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|' ' |[{ MatchHeadPart, ... }

MatchHeadPart ::= term() | MatchVariable|" '

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom|is_float |is_integer |is_list |is_nunber |is_pid]|is_port |
is_ referencel|is_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|
"and' |'or' |'not' |'xor' |andal so|orel se

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] |[ConditionExpression, ...] | #{} | #{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)

Constant ::={const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |[node [round |size |t] |trunc|' +
["-" ["*" ["div' |'rem |"band" |'bor' |["bxor' |'bnot' |'bsl' |"bsr' |'>" |">="|'<" |
e It=rE == == T = | sel fo|get _tew

MatchBody ::=[ConditionExpression, ...]

1.3.2 Function descriptions

Functions allowed in all types of match specifications

The different functions allowed in mat ch_spec work like this:

is atom, is float, is_integer, is list,is_ number,is pid, is port,is reference, is tuple, is map, is binary, is_function:
Like the corresponding guard testsin Erlang, returnt r ue or f al se.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.3 Match specifications in Erlang

is record: Takes an additional parameter, which SHALL be the result of record_info(size,
<record_type>),likein{is_record, '$1', rectype, record_info(size, rectype)}.

'not"; Negates its single argument (anything other than f al se givesf al se).

‘and’: Returnst r ue if al its arguments (variable length argument list) evaluate to t r ue, else f al se. Evauation
order is undefined.

'or': Returnstrue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

andalso: Like' and' , but quits evaluating its arguments as soon as one argument evaluates to something else than
true. Arguments are evaluated left to right.

orelse: Like' or' , but quits evaluating as soon as one of its arguments evaluatesto t r ue. Arguments are eval uated
left to right.

'xor': Only two arguments, of which one has to be true and the other falseto returnt r ue; otherwise' xor' returns
false.

abs, element, hd, length, node, round, size, tl, trunc, '+', '-', *', 'div, 'rem’, 'band', 'bor’, 'bxor', 'bnot', 'bdl’, 'bsr',
S>>t et =, ==t =)= = sdft Work as the corresponding Erlang bif's (or operators). In case of
bad arguments, the result depends on the context. In the Mat chCondi t i ons part of the expression, the test fails
immediately (like in an Erlang guard), but in the Mat chBody, exceptions are implicitly caught and the call results
intheatom' EXI T' .

Functions allowed only for tracing
is seq trace: Returnst r ue if asequential trace token is set for the current process, otherwise f al se.

set_seq token: Workslikeseq_trace: set _t oken/ 2, butreturnst r ue onsuccessand' EXI T' on error or bad
argument. Only allowed in the Mat chBody part and only allowed when tracing.

get_seq token: Works just like seq_trace: get _t oken/ 0, and is only allowed in the Mat chBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one additional message
in the body; subsequent calls will replace the appended message. As aspecia case, { message, fal se} disables
sending of trace messages (‘call' and 'return_to") for this function call, just like if the match_spec had not matched,
which can be useful if only the side effects of the Mat chBody are desired. Another special case is { nessage,
t rue} which sets the default behavior, as if the function had no match_spec, trace message is sent with no extra
information (if no other callsto message are placed before{ nessage, true},itisinfacta"noop").

Takes one argument, the message. Returnst r ue and can only be used in the Mat chBody part and when tracing.

return_trace: Causes ar et ur n_f r omtrace message to be sent upon return from the current function. Takes no
arguments, returnst r ue and can only be used inthe Mat chBody part whentracing. If the processtraceflag si | ent
isactivether et ur n_f r omtrace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if a match
spec executing this function is used on a perpetua server process, it may only be active for a limited time, or the
emulator will eventually use all memory in the host machine and crash. If this match_spec function is inhibited using
thesi | ent processtrace flag tail recursiveness till remains.

exception_trace: Same asreturn_trace, plus; if the traced function exits due to an exception, an except i on_from
trace message is generated, whether the exception is caught or not.

process dump: Returns some textual information about the current process as a binary. Takes no arguments and is
only alowed in the Mat chBody part when tracing.

enable_trace: With one parameter this function turns on tracing like the Erlang cal er | ang: trace(sel f (),
true, [P2]), whereP2 isthe parameter to enabl e_t r ace. With two parameters, the first parameter should

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

be either a process identifier or the registered name of a process. In this case tracing is turned on for the designated
processin the sameway asinthe Erlang call er | ang: trace(P1, true, [P2]),wherePlisthefirstand P2
is the second argument. The process P1 gets its trace messages sent to the same tracer as the process executing the
statement uses. P1 can not beone of theatomsal | , newor exi st i ng (unless, of course, they are registered names).
P2 cannotbecpu_tinmestanpnor{tracer, }.Returnstr ue and may only be used in the Mat chBody part
when tracing.

disable trace: With one parameter this function disables tracing like the Erlang call er | ang: t race(sel f (),

fal se, [P2]),whereP2 istheparametertodi sabl e_t r ace. Withtwo parametersit workslike the Erlang call
erlang:trace(Pl, false, [P2]),wherePl can be either aprocess identifier or a registered name and is
given asthefirst argument to the match_spec function. P2 cannotbecpu_ti mestanmpnor{tracer, }.Returns
t r ue and may only be used in the Mat chBody part when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively all changes are applied
atomically. The trace flags are the same asfor er | ang: t race/ 3 not including cpu_t i nmest anp but including
{tracer, _}.If atracerisspecifiedin both lists, thetracer in the enablelist takes precedence. If no tracer is specified
the sametracer asthe process executing the match spec isused. With three parametersto thisfunction thefirst iseither
aprocess identifier or the registered name of a process to set trace flags on, the second isthe disable list, and the third
istheenablelist. Returnst r ue if any trace property was changed for the trace target processor f al se if not. It may
only be used in the Mat chBody part when tracing.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undef i ned if the calling
function cannot be determined. May only be used in the Mat chBody part when tracing.

Notethat if a"technically built in function" (i.e. afunction not written in Erlang) istraced, thecal | er function will
sometimes return the atom undef i ned. The calling Erlang function is not available during such calls.

display: For debugging purposes only; displaysthe single argument as an Erlang term on stdout, which is seldom what
iswanted. Returnst r ue and may only be used in the Mat chBody part when tracing.

get tcw: Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace_control _word).

The trace control word is a 32-hit unsigned integer intended for generic trace control. The trace control word can be
tested and set both from within trace match specifications and with BIFs. This call is only allowed when tracing.

set tcw: Takes one unsigned integer argument, sets the value of the node's trace control
word to the vaue of the argument and returns the previous value. The same is done by
erl ang: system fl ag(trace_control _word, Value). It is only alowed to use set_tcw in the
Mat chBody part when tracing.

silent: Takes one argument. If the argument ist r ue, the call trace message mode for the current process is set to
silent for this call and all subsequent, i.e call trace messages are inhibited even if { message, true} iscaledin
the Mat chBody part for atraced function.

This mode can aso be activated withthe si | ent flagtoer | ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to normal (non-silent) for this
call and all subsequent.

If the argument isneither t r ue nor f al se, the call trace message mode is unaffected.

Notethat all "function calls' haveto betuples, even if they take no arguments. Thevaueof sel f istheatom() sel f,
but the value of { sel f } isthe pid() of the current process.

1.3.3 Variables and literals

Variablestaketheform' $<nunber >' where<numnber > isan integer between 0 (zero) and 100000000 (1e+8), the
behavior if the number is outside these limitsis undefined. In the Mat chHead part, the special variable' _' matches

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.3 Match specifications in Erlang

anything, and never gets bound (like _ in Erlang). In the Mat chCondi ti on/ Mat chBody parts, no unbound
variablesareallowed, why' ' isinterpreted asitself (an atom). Variables can only be boundinthe Mat chHead part.
Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously may be used. As a special case,
inthe Mat chCondi t i on/ Mat chBody parts, the variable' $_' expands to the whole expression which matched
the Mat chHead (i.e., the whole parameter list to the possibly traced function or the whole matching object in the ets
table) andthevariable' $$' expandstoalist of thevaluesof all boundvariablesinorder (i.e.[' $1',' $2', ...]).

In the Mat chHead part, al literas (except the variables noted above) are interpreted as is. In the
Mat chCondi ti on/ Mat chBody parts, however, the interpretation is in some ways different. Literals in the
Mat chCondi ti on/ Mat chBody can either be written asis, which works for al literals except tuples, or by using
the special form { const, T}, where T isany Erlang term. For tuple literals in the match_spec, one can also use
double tuple parentheses, i.e., construct them as a tuple of arity one containing a single tuple, which is the one to be
constructed. The "double tuple parenthesis' syntax is useful to construct tuples from already bound variables, like in
{{"'$1', [a,b,'$2"]}}. Someexamples may be needed:

Expression Variable bindings Result

{{'$1,$2}} '$1'=3,'$2=b {ab}

{const, {'$1', '$2}} doesn't matter {'$1', '$2}

a doesn't matter a

$1 B =] [l

[$1] $1=]] (1]

[{{a}] doesn't matter [{a}]

42 doesn't matter 42

"hello" doesn't matter “hello"

$1 doesn't matter 19) (the ASCII value for the character

Table 3.1: Literals in the MatchCondition/MatchBody parts of a match_spec

1.3.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message should be sent,
goes asfollows:

For each tuple in the Mat chExpr essi on list and while no match has succeeded:
» Match the Mat chHead part against the arguments to the function, binding the' $<nunber >' variables
(much likein et s: mat ch/ 2). If the Mat chHead cannot match the arguments, the match fails.

» Evaluate each Mat chCondi ti on (whereonly ' $<nunber >' variables previously bound in the
Mat chHead can occur) and expect it to return the atom t r ue. As soon as a condition does not evaluate to
t r ue, the match fails. If any BIF call generates an exception, also fail.

« < [fthematch specisexecuting when tracing:
Evaluate each Act i onTer min the same way asthe Mat chCondi t i ons, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

e |fthe match_spec is executed when selecting objects from an ETStable:
Evaluate the expressionsin order and return the value of the last expression (typically thereisonly one
expression in this context)

1.3.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return vaue. Usualy the Mat chBody contains one single
Condi ti onExpr essi on which defines the return value without having any side effects. Calls with side effects
are not allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or doesn't. The effect when
the expression matches is a trace message rather then a returned term. The Act i onTer nis are executed as in an
imperative language, i.e. for their side effects. Functions with side effects are also allowed when tracing.

In ETS the match head isat upl e() (or asingle match variable) whileitisalist (or asingle match variable) when
tracing.

1.3.6 Examples

Match an argument list of three where the first and third arguments are equal:

|$1|’ |7|’ I$1I]r

Match an argument list of three where the second argument is a number greater than three:

-y, 's1v, ' '1,
[{ '>', "$1', 3},
[1}]

Match an argument list of three, where thethird argument isatuple containing argument one and two or alist beginning
with argumentoneandtwo (i.e.[a, b,[a, b, c]] or[a, b, {a, b}]):

[{['s1", '$2', '$3'],

[{orelse,
{'=:=", "$3", {{'$1',"'$2'}}},
{'and',
{'=:=", "$1', {hd, '$3'}},
{'=:=", '$2', {hd, {tl, "$3'}}}}}1,

[1}]

The above problem may also be solved like this:

'$2', {'$1', '$2}1, [1, [I},
‘'$2°, ['s1', '$2" | '_'11, [1, [1}]

[{['s1",
{['s$1",

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.3 Match specifications in Erlang

Match two arguments where the first is a tuple beginning with alist which in turn begins with the second argument
timestwo (i. e [{[4.x],y}.2] or [{[8], Y, z} ,4])

[{r's1", "$2'1,[{'=:=", {"*", 2, '$2'}, {hd, {element, 1, '$1'}}}I,
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message, else
let the trace message be as is, but set the sequential trace token label to 4711.

[{['$1", "$1', '$1'],
[{is_number, '$1'}1],
[{message, {process dump}}1},
{' ', [1, [{set seq token, label, 4711}1}]

Ascan be noted above, the parameter list can be matched against asingleMat chVar i abl eoran' ' . Toreplacethe
whole parameter list with asingle variable is aspecial case. In al other casesthe Mat chHead hasto be a proper list.

Match all objects in an ets table where the first element is the atom 'strider' and the tuple arity is 3 and return the
whole object.

[{{strider,' ',' "},
[1,
['$_'1}]

Match all objectsin an ets table with arity > 1 and the first element is 'gandalf', return element 2.

[{'s1",
[{'==', gandalf, {element, 1, '$1'}},{'>=',{size, '$1'},2}],
[{element,2, '$1'}]1}]

In the above example, if the first element had been the key, it's much more efficient to match that key in the
Mat chHead part than in the Mat chCondi t i ons part. The search space of the tables is restricted with regards to
the Mat chHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either 'merry’ or 'pippin’, return the whole objects.

[{{'_*,merry, '},
1,
['s_'13,

t{: opippin. '3,

['$ "1}

Thefunctionet s: t est _ns/ 2 can be useful for testing complicated ets matches.

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

1.4 How to interpret the Erlang crash dumps

This document describestheer | _crash. dunp file generated upon abnormal exit of the Erlang runtime system.

Important: For OTP release ROC the Erlang crash dump has had a major facelift. This means that the information in
this document will not be directly applicable for older dumps. However, if you use the Crashdump Viewer tool on
older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out by the
environment variable (whatever that means on the current operating system) ERL_CRASH_DUMP. For acrash dump
to be written, there has to be awritable file system mounted.

Crash dumps are written mainly for one of two reasons. either the builtin function er | ang: hal t/ 1 is called
explicitly with astring argument from running Erlang code, or else the runtime system has detected an error that cannot
be handled. The most usual reason that the system can't handle the error is that the cause is external limitations, such
as running out of memory. A crash dump due to an internal error may be caused by the system reaching limitsin the
emulator itself (like the number of atoms in the system, or too many simultaneous ets tables). Usually the emulator
or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump correctly
isimportant.

On systemsthat support OS signals, it isalso possible to stop the runtime system and generate a crash dump by sending
the SIGUSRL.

Theerlang crash dump isareadabletext file, but it might not be very easy to read. Using the Crashdump Viewer tool in
theobser ver application will simplify the task. Thisis an wx-widget based tool for browsing Erlang crash dumps.

1.4.1 General information

Thefirst part of the dump showsthe creation time for the dump, aslogan indicating the reason for the dump, the system
version, of the node from which the dump originates, the compile time of the emulator running the originating node,
the number of atoms in the atom table and the runtime system thread that caused the crash dump to happen.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Sogan: <reason> (the word "slogan" has historical
roots). If the system is halted by the BIF er | ang: hal t / 1, the slogan is the string parameter passed to the BIF,
otherwiseit isadescription generated by the emul ator or the (Erlang) kernel. Normally the message should be enough to
understand the problem, but neverthel ess some messages are described here. Note however that the suggested reasons
for the crash are only suggestions. The exact reasons for the errors may vary depending on the local applications and
the underlying operating system.

e "<A>: Cannot alocate <N> bytes of memory (of type"<T>")." - The system has run out of memory. <A> is
the allocator that failed to allocate memory, <N> is the number of bytes that <A> tried to alocate, and <T>
isthe memory block type that the memory was needed for. The most common case is that a process stores
huge amounts of data. In this case <T> ismost often heap, ol d_heap, heap_fr ag, or bi nary. For more
information on allocators see erts_alloc(3).

e "<A>:Cannot reallocate <N> bytes of memory (of type "<T>")." - Same as above with the exception that
memory was being reallocated instead of being allocated when the system ran out of memory.

e "Unexpected op code N" - Error in compiled code, beamfile damaged or error in the compiler.
e "Module Name undefined” | "Function Name undefined” | "No function Name:Name/1" | "No function
Name:start/2" - The kernel/stdlib applications are damaged or the start script is damaged.

o "Driver_select called with too large file descriptor N' - The number of file descriptors for sockets exceed 1024
(Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024, but only 1024 sockets/
pipes can be used simultaneously by Erlang (due to limitationsin the Unix sel ect call). The number of open
regular filesis not affected by this.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.4 How to interpret the Erlang crash dumps

e "Received SIGUSRL1" - Sending the SIGUSR1 signal to a Erlang machine (Unix only) forces a crash dump.
This slogan reflects that the Erlang machine crash-dumped due to receiving that signal.

» "Kernel pid terminated (Who) (Exit-reason)" - The kernel supervisor has detected afailure, usually that the
application_controll er hasshut down(Wo =application_controll er,Wy =shut down).
The application controller may have shut down for a number of reasons, the most usual being that the node
name of the distributed Erlang node is already in use. A complete supervisor tree "crash” (i.e., the top
supervisors have exited) will give about the same result. This message comes from the Erlang code and not
from the virtual machineitself. It is always due to some kind of failure in an application, either within OTP or a
"user-written" one. Looking at the error log for your application is probably the first step to take.

« "Init terminating in do_boot ()" - The primitive Erlang boot sequence was terminated, most probably because
the boot script has errors or cannot be read. Thisis usually a configuration error - the system may have been
started with afaulty - boot parameter or with aboot script from the wrong version of OTP.

e "Could not start kernel pid (Who) ()" - One of the kernel processes could not start. Thisis probably dueto
faulty arguments (like errorsin a- conf i g argument) or faulty configuration files. Check that al filesarein
their correct location and that the configuration files (if any) are not damaged. Usually there are also messages
written to the controlling terminal and/or the error log explaining what's wrong.

Other errors than the ones mentioned above may occur, astheer | ang: hal t/ 1 BIF may generate any message. If
the message is not generated by the BIF and does not occur in the list above, it may be due to an error in the emulator.
There may however be unusual messages that | haven't mentioned, that still are connected to an application failure.
There is alot more information available, so more thorough reading of the crash dump may reveal the crash reason.
The size of processes, the number of ets tables and the Erlang data on each process stack can be useful for tracking
down the problem.

Number of atoms

The number of atomsinthe system at thetime of the crash isshown as Atoms: <number>. Someten thousands atomsis
perfectly normal, but more could indicatethat the BIF er | ang: | i st _t o_at oni 1 isusedto dynamically generate
alot of different atoms, which is never a good idea.

1.4.2 Scheduler information

Under the tag =scheduler information about the current state and statistics of the schedulers in the runtime system is
displayed. On OSs that do allow instant suspension of other threads, the data within this section will reflect what the
runtime system looks like at the moment when the crash happens.

The following fields can exist for a process:

=scheduler:id
Header, states the scheduler identifier.

Scheduler Seep Info Flags
If empty the scheduler was doing some work. If not empty the scheduler is either in some state of sleep, or
suspended. This entry isonly present in a SMP enabled emulator

Scheduler Seep Info Aux Work
If not empty, ascheduler internal auxiliary work is scheduled to be done.

Current Port
The port identifier of the port that is currently being executed by the scheduler.

Current Process
The process identifier of the process that is currently being executed by the scheduler. If thereis such a process
this entry is followed by the Sate,Internal Sate, Program Counter, CP of that same process. See Process
Information for a description what the different entries mean. Keep in mind that thisis a snapshot of what the
entries are exactly when the crash dump is starting to be generated. Therefore they will most likely be different
(and more telling) then the entries for the same processes found in the =proc section. If there is no currently
running process, only the Current Process entry will be printed.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

Current Process Limited Stack Trace
Thisentry only shows up if thereis acurrent process. It isvery similar to =proc_stack, except that only the
function frames are printed (i.e. the stack variables are omited). It is also limited to only print the top and
bottom part of the stack. If the stack is small (lessthat 512 slots) then the entire stack will be printed. If not, an
entry stating

skipping ## slots

will be printed where ## is replaced by the number of slots that has been skipped.
Run Queue
Displays statistics about how many processes and ports of different priorities are scheduled on this scheduler.
% Cragn'aj * %
Thisentry is normally not printed. It signifiesthat getting the rest of the information about this scheduler failed
for some reason.

1.4.3 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang: memory().

1.4.4 Internal table information

The tags =hash_table:<table name> and =index_table:<table name> presentsinterna tables. These are mostly of
interest for runtime system developers.

1.4.5 Allocated areas

Under the tag =allocated_areas you will find information similar to what you can obtain on a living node with
erlang:system info(allocated areas).

1.4.6 Allocator

Under the tag =allocator:<A> you will find various information about allocator <A>. The information is similar
to what you can obtain on a living node with erlang:system info({allocator, <A>}). For more information see the
documentation of erlang:system info({allocator, <A>}), and the erts_alloc(3) documentation.

1.4.7 Process information

The Erlang crashdump contains alisting of each living Erlang process in the system. The process information for one
process may look like this (line numbers have been added):

The following fields can exist for a process:
=proc:<pid>

Heading, states the process identifier
Sate

The state of the process. This can be one of the following:

e Scheduled - The process was scheduled to run but not currently running ("in the run queue”).

e Waiting - The process was waiting for something (inr ecei ve).

« Running - The process was currently running. If the BIF er | ang: hal t / 1 was called, thiswas the
process caling it.

* Exiting - The process was on its way to exit.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.4 How to interpret the Erlang crash dumps

e Garbing - Thisisbad luck, the process was garbage collecting when the crash dump was written, the rest
of theinformation for this processis limited.

e Suspended - The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it
istrying to write to a busy port.

Registered name
The registered name of the process, if any.

Soawned as
The entry point of the process, i.e., what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call
The current function of the process. These fields will not always exist.

Soawned by
The parent of the process, i.e. the process which executed spawn or spawn_| i nk.

Sarted
The date and time when the process was started.

Message queue length
The number of messages in the process message queue.

Number of heap fragments
The number of allocated heap fragments.

Heap fragment data
Size of fragmented heap data. Thisis data either created by messages being sent to the process or by the Erlang
BIFs. This amount depends on so many things that thisfield is utterly uninteresting.

Link list
Processid's of processes linked to this one. May also contain ports. If process monitoring is used, thisfield also
tellsin which direction the monitoring isin effect, i.e., alink being "to" aprocess tells you that the "current"
process was monitoring the other and alink "from" a process tells you that the other process was monitoring
the current one.

Reductions
The number of reductions consumed by the process.

Sack+heap
The size of the stack and heap (they share memory segment)

OldHeap
The size of the "old heap". The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new dataitems and one for the data that have survived two garbage
collections. The assumption (which is almost always correct) is that data that survive two garbage collections
can be "tenured" to a heap more seldom garbage collected, as they will live for along period. Thisisaquite
usua technique in virtual machines. The sum of the heaps and stack together constitute most of the process's
alocated memory.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

Sack
If the system uses shared heap, the fields Sack+heap, OldHeap, Heap unused and OldHeap unused do not
exist. Instead this field presents the size of the process' stack.

Memory
Thetotal memory used by this process. Thisincludes call stack, heap and internal structures. Same as
erlang:process_info(Pid,memory).

Program counter
The current instruction pointer. Thisis only interesting for runtime system developers. The function into which
the program counter points is the current function of the process.

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

CP
The continuation pointer, i.e. the return address for the current call. Usually useless for other than runtime
system developers. This may be followed by the function into which the CP points, which is the function
calling the current function.

Arity
The number of live argument registers. The argument registers, if any are live, will follow. These may contain
the arguments of the function if they are not yet moved to the stack.
Internal State
A more detailed internal represantation of the state of this process.

See al so the section about process data.

1.4.8 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

1.4.9 ETS tables

This section contains information about all the ETS tables in the system. The following fields are interesting for each
table:

=ets.<owner>

Heading, states the owner of the table (a process identifier)
Table

Theidentifier for the table. If thetableisananed_t abl e, thisisthe name.
Name

The name of the table, regardless of whether itisanamed_t abl e or not.

Hash table, Buckets
Thisoccursif thetableisahash table, i.e. if itisnot an or der ed_set .

Hash table, Chain Length
Only applicable for hash tables. Contains statistics about the hash table, such as the max, min and avg chain
length. Having a max much larger than the avg, and a std dev much larger that the expected std dev isasign
that the hashing of the terms is behaving badly for some reason.

Ordered set (AVL tree), Elements
Thisoccurs only if thetableisan or der ed_set . (The number of elements is the same as the number of
objectsin the table.)

Fixed

If the tableisfixed using ets:safe _fixtable or some internal mechanism.
Objects

The number of objectsin thetable
Words

The number of words (usually 4 bytes/word) allocated to datain the table.
Type

Thetype of thetable, i.e. set , bag, dubl i cat e_bag or or der ed_set .
Compressed

If this table was compressed.
Protection

The protection of thistable.
Write Concurrency

If write_concurrency was enabled for thistable.
Read Concurrency

If read_concurrency was enabled for this table.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.4 How to interpret the Erlang crash dumps

1.4.10 Timers

This section contains information about al the timers started with the BIFs er| ang: start_tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exists for each timer:

=timer:<owner>
Heading, states the owner of the timer (a processidentifier) i.e. the process to receive the message when the
timer expires.
Message
The message to be sent.
Time left
Number of milliseconds left until the message would have been sent.

1.4.11 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>
The name of the node
no_distribution
Thiswill only occur if the node was not distributed.
=visible_node: < channel>
Heading for avisible nodes, i.e. an alive node with a connection to the node that crashed. States the channel
number for the node.
=hidden_node: < channel>
Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the -
hidden" flag. States the channel number for the node.
=not_connected: <channel>
Heading for a node which is has been connected to the crashed node earlier. References (i.e. process or port
identifiers) to the not connected node existed at the time of the crash. exist. States the channel number for the
node.
Name
The name of the remote node.
Controller
The port which controls the communication with the remote node.
Creation
An integer (1-3) which together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote proc>
Theloca process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote _proc>
The remote process was monitoring the local process at the time of the crash.
Remote link: <local_proc> <remote_proc>
A link existed between the local process and the remote process at the time of the crash.

1.4.12 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is summarized.
There is one field for "Current code" which is code that is the current latest version of the modules. Thereis also a
field for "Old code" which is code where there exists a newer version in the system, but the old version is not yet
purged. The memory usage isin bytes.

All loaded modules are then listed. The following fields exist:

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

=mod: <module_name>
Heading, and the name of the module.
Current size
Memory usage for the loaded code in bytes
Old size
Memory usage for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info
Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.
Old compilation info
Compilation information (options) for the old code, if any. Thisfield is decoded when looked at by the
Crashdump Viewer tool.

1.4.13 Fun information
In this section, all funs are listed. The following fields exist for each fun:

=fun

Heading
Module

The name of the module where the fun was defined.
Unig, Index

Identifiers
Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.4.14 Process Data

For each process there will be at least one =proc_stack and one =proc_heap tag followed by the raw memory
information for the stack and heap of the process.

For each process there will also be a =proc_messages tag if the process message queue is non-empty and a
=proc_dictionary tag if the process' dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou will then be able to see the stack
dump, the message queue (if any) and the dictionary (if any).

The stack dump isadump of the Erlang process stack. Most of the live data (i.e., variables currently in use) are placed
on the stack; thus this can be quite interesting. One has to "guess' what's what, but as the information is symbolic,
thorough reading of this information can be very useful. As an example we can find the state variable of the Erlang
primitive loader on line (5) in the example below:

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)

(2) y(o) ["/view/siri rl@ dev/clearcase/otp/erts/lib/kernel/ebin","/view/siri rl10 dev/

(3) clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1.0>

(5) vy(2) {state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim loader.7.9000327>,#Fun<

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to implement an alternative carrier for the Erlang distribution

(6) y(3) infinity

When interpreting the datafor aprocess, it ishelpful to know that anonymous function objects (funs) are given aname
constructed from the name of the function in which they are created, and a number (starting with 0) indicating the
number of that fun within that function.

1.4.15 Atoms

Now all the atomsin the system are written. Thisis only interesting if one suspects that dynamic generation of atoms
could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.4.16 Disclaimer

Theformat of the crash dump evolves between releases of OTP. Some information here may not apply to your version.
A description as thiswill never be complete; it is meant as an explanation of the crash dump in general and as a help
when trying to find application errors, not as a complete specification.

1.5 How to implement an alternative carrier for the Erlang
distribution

Thisdocument describes how one canimplement onesown carrier protocol for the Erlang distribution. Thedistribution
is normally carried by the TCP/IP protocol. What's explained here is the method for replacing TCP/IP with another
protocol.

The document is a step by step explanation of theuds _di st example application (seated in the kernel applications
exanpl es directory). Theuds_di st application implements distribution over Unix domain sockets and iswritten
for the Sun Solaris 2 operating environment. The mechanisms are however general and appliesto any operating system
Erlang runs on. The reason the C code is not made portable, is simply readability.

Note:

This document was written along time ago. Most of it is still valid, but some things have changed since it was
first written. Most notably the driver interface. There have been some updates to the documentation of the driver
presented in this documentation, but more could be done and are planned for the future. The reader is encouraged
to also read the erl_driver, and the driver_entry documentation.

1.5.1 Introduction

To implement a new carrier for the Erlang distribution, one must first make the protocol available to the Erlang
machine, which involves writing an Erlang driver. There is no way one can use a port program, there has to be an
Erlang driver. Erlang drivers can either be statically linked to the emulator, which can be an alternative when using
the open source distribution of Erlang, or dynamically loaded into the Erlang machines address space, which is the
only aternative if a precompiled version of Erlang isto be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions called by the
Erlang emulator when datais sent to the driver or the driver has any data available on a file descriptor. Asthe driver
call-back routines execute in the main thread of the Erlang machine, the call-back functions can perform no blocking
activity whatsoever. The call-backs should only set up file descriptors for waiting and/or read/write available data.
All 1/0 has to be non blocking. Driver call-backs are however executed in sequence, why a global state can safely
be updated within the routines.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module which will cover the
details of the protocol fromthenet _ker nel . The easiest pathisto mimicthei net andi net _t cp interfaces, but
alot of functionality in those modules need not be implemented. In the example application, only a few of the usual
interfaces are implemented, and they are much simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well defined call-backs, much like agen_ser ver (thereis
no compiler support for checking the call-backs though). The details of finding other nodes (i.e. talking to epmd or
something similar), creating alisten port (or similar), connecting to other nodes and performing the handshakes/cookie
verification are all implemented by this module. There is however a utility module, di st _uti |, that will do most
of the hard work of handling handshakes, cookies, timers and ticking. Using di st _ut i | makes implementing a
distribution module much easier and that's what we are doing in the example application.

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when al of the system is running, but in area system the distribution
should start very early, why aboot-script and some command line parameters are necessary. Thislast step alsoimplies
that the Erlang code in the interface and distribution modules is written in such away that it can be run in the startup
phase. Most notably there can be no callsto the appl i cati on module or to any modules not loaded at boot-time
(i.e.only ker nel , st dl i b and the application itself can be used).

1.5.2 The driver

Although Erlang driversin general may be beyond the scope of thisdocument, abrief introduction seemsto bein place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the drivers in OTP are however statically linked to the runtime system, but that's more an
optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header fileer | _dri ver. h
(there is al'so an deprecated version called dr i ver . h, don't use that one.) seated in Erlang's include directory (and
in $ERL_TOP/ertslemul ator/beam in the source code distribution). Refer to that file for function prototypes etc.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation has to be non blocking and all possible situations should
be accounted for in the driver. A non stable driver will affect and/or crash the whole Erlang runtime system, which
is seldom what's wanted.

The emulator calls the driver in the following situations:

e Whenthedriver isloaded. This call-back has to have a special name and will inform the emulator of what call-
backs should be used by returning apointer to aEr | Dr vEnt r y struct, which should be properly filled in (see
below).

e When aport to the driver is opened (by aopen_port cal from Erlang). This routine should set up internal
data structures and return an opaque data entity of the type Er | Dr vDat a, which is a data-type large enough to
hold a pointer. The pointer returned by this function will be the first argument to all other call-backs concerning
this particular port. It is usually called the port handle. The emulator only stores the handle and does never try
tointerpret it, why it can be virtually anything (well anything not larger than a pointer that is) and can point to
anything if it isapointer. Usually this pointer will refer to a structure holding information about the particular
port, asi t doesin our example.

« When an Erlang process sends data to the port. The datawill arrive as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This call-back returns nothing to the caller, answers are sent to the caller

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.5 How to implement an alternative carrier for the Erlang distribution

asmessages (using aroutinecaled dr i ver _out put availableto al drivers). Thereisaso away totalk ina
synchronous way to drivers, described below. There can be an additional call-back function for handling data
that is fragmented (sent in adeep io-list). That interface will get the datain aform suitable for Unix wri t ev
rather than in asingle buffer. Thereis no need for adistribution driver to implement such a call-back, so we
wont.

* When afiledescriptor issignaled for input. This call-back is called when the emulator detects input on
afile descriptor which the driver has marked for monitoring by using the interfacedr i ver _sel ect .
The mechanism of driver select makesit possible to read non blocking from file descriptors by calling
driver_sel ect whenreading is needed and then do the actual reading in this call-back (when reading is
actually possible). Thetypica scenarioisthat dri ver _sel ect iscaled when an Erlang process orders a
read operation, and that this routine sends the answer when data is available on the file descriptor.

» When afiledescriptor issignaled for output. This call-back is called in asimilar way as the previous, but when
writing to afile descriptor is possible. The usua scenario isthat Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this call-back is called an the
driver can try to send the output. There may of course be queuing involved in such operations, and there are
some convenient queue routines available to the driver writer to use in such situations.

* When aport is closed, either by an Erlang process or by the driver calling one of thedri ver _fai | ure_XXX
routines. This routine should clean up everything connected to one particular port. Note that when other call-
backscall adri ver _f ai | ur e_XXXroutine, this routine will be immediately called and the call-back routine
issuing the error can make no more use of the data structures for the port, as this routine surely has freed al
associated data and closed al file descriptors. If the queue utility available to driver writes is used, this routine
will however not be called until the queue is empty.

* Whenan Erlang process callser | ang: port _contr ol / 3, which isasynchronous interface to drivers. The
control interface is used to set driver options, change states of ports etc. We'll use thisinterface quite alot in our
example.

e When atimer expires. The driver can set timerswith the functiondri ver _set _ti nmer.When such timers
expire, a specific call-back function is called. We will not use timersin our example.

* When the whole driver is unloaded. Every resource allocated by the driver should be freed.
The distribution driver's data structures

Thedriver used for Erlang distribution should implement areliable, order maintaining, variable length packet oriented
protocol. All error correction, re-sending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big endian 32 bit integer (as Unix domain sockets only can be used
between processes on the same machine, we actually don't need to code the integer in some special endianess, but I'll
do it anyway because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don't need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static ErlDrvEntry
structure.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <fcntl.h>

~ e~~~ o~~~ —~ —~
QUOVWoOoO~NOULE WN R
—_—— — — — — — — — —

=

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(11) #define HAVE UIO H
#include "erl driver.h"

—
=
N

-~

/*

** Interface routines

*/

static ErlDrvData uds start(ErlDrvPort port, char *buff);

static void uds stop(ErlDrvData handle);

static void uds command(ErlDrvData handle, char *buff, int bufflen);

static void uds input(ErlDrvData handle, ErlDrvEvent event);

static void uds output(ErlDrvData handle, ErlDrvEvent event);

static void uds finish(void);

static int uds control(ErlDrvData handle, unsigned int command,
char* buf, int count, char** res, int res size);

AAAAAAAAAAA
NNNNHE e
WNRocLOwOoO~NO UL W
R ARt

(24) /* The driver entry */

(25) static ErlDrvEntry uds driver entry = {

(26) NULL, /* init, N/A */

(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready input, called when input

(31) descriptor ready */

(32) uds_output, /* ready output, called when output
(33) descriptor ready */

(34) "uds drv", /* char *driver name, the argument

(35) to open port */

(36) uds_finish, /* finish, called when unloaded */

(37) NULL, /* void * that is not used (BC) */

(38) uds_control, /* control, port control callback */
(39) NULL, /* timeout, called on timeouts */

(40) NULL, /* outputv, vector output interface */
(41) NULL, /* ready async callback */

(42) NULL, /* flush callback */

(43) NULL, /* call callback */

(44) NULL, /* event callback */

(45) ERL DRV _EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL DRV_EXTENDED MAJOR VERSION, /* Major version number */

(47) ERL DRV_EXTENDED MINOR VERSION, /* Minor version number */

(48) ERL DRV _FLAG SOFT BUSY, /* Driver flags. Soft busy flag is

(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */

(51) NULL, /* process exit callback */

(52) NULL /* stop select callback */

(53) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for Solaris, we
know that the header ui 0. h exists, why we can define the preprocessor variable HAVE_UI O_H before we include
erl _driver. hatlinel2. Thedefinition of HAVE_Ul O_Hwill makethe I/O vectors used in Erlang's driver queues
to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared ("forward declarations") on line 16 to 23.

The driver structure is similar for statically linked in drivers and dynamically loaded. However some of the fields
should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field (the i ni t function
pointer) isalwaysleft blank in adynamically loaded driver, which can be seen on line 26. The NULL on line 37 should
always bethere, thefield isno longer used and is retained for backward compatibility. We use no timersin thisdriver,
why no call-back for timers is needed. The out put v field (line 40) can be used to implement an interface similar
to Unix wr i t ev for output. The Erlang runtime system could previously not use out put v for the distribution, but
since erts version 5.7.2 it can. Since this driver was written before erts version 5.7.2 it does not use the out put v

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.5 How to implement an alternative carrier for the Erlang distribution

callback. Using the out put v callback is preferred since it reduces copying of data. (We will however use scatter/
gather I/O internally in the driver).

As of erts version 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present at line 48. As of ertsversion 5.7.4 the ERL_DRV_FLAG_SOFT_BUSY flag
is required for drivers that are to be used by the distribution. The soft busy flag implies that the driver is capable of
handling calls to the out put and out put v callbacks even though it has marked itself as busy. This has always
been a requirement on drivers used by the distribution, but there have previously not been any capability information
available about this. For more information see set_busy port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still function in the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. This can be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein paralel.
When instances safely can execute in parallel it is safe to enable instance specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG_USE_PORT_LOCKING as adriver flag. Thisisleft as an exercise for the reader.

Our defined call-backs thus are:

e uds start, which shall initiate data for a port. We wont create any actual sockets here, just initialize data
structures.

* uds stop, the function called when a port is closed.

e uds_command, which will handle messages from Erlang. The messages can either be plain data to be sent or
more subtle instructions to the driver. We will use this function mostly for data pumping.

e uds input, thisisthe call-back which is called when we have something to read from a socket.

e uds output, thisisthe function called when we can write to a socket.

e uds finish, whichis called when the driver is unloaded. A distribution driver will actually (or hopefully) never
be unloaded, but we include this for completeness. Being able to clean up after oneself is always a good thing.

e uds contral, theer | ang: port _control / 2 call-back, which will be used alot in thisimplementation.

The portsimplemented by thisdriver will operate in two major modes, which i will call the command and data modes.
In command mode, only passive reading and writing (like gen_tcp:recv/gen_tcp:send) can be done, and this is the
mode the port will bein during the distribution handshake. When the connection is up, the port will be switched to data
mode and al datawill be immediately read and passed further to the Erlang emulator. In data mode, no data arriving
to the uds_command will be interpreted, but just packaged and sent out on the socket. The uds_control call-back will
do the switching between those two modes.

Whilethenet _ker nel informsdifferent subsystemsthat the connection iscoming up, the port should accept datato
send, but not receive any data, to avoid that data arrives from another node before every kernel subsystem is prepared
to handle it. We have athird mode for this intermediate stage, lets call it the intermediate mode.

Lets define an enum for the different types of ports we have:

(1) typedef enum {

(2) portTypeUnknown, /* An uninitialized port */

(3) portTypelListener, /* A listening port/socket */

(4) portTypeAcceptor, /* An intermediate stage when accepting
(5) on a listen port */

(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special

(9) half active mode */

(10) portTypeData /* A connectec open port in data mode */
(11) } PortType;

Letslook at the different types:

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

portTypeUnknown - The type a port has when it's opened, but not actually bound to any file descriptor.

portTypeListener - A port that is connected to a listen socket. This port will not do especially much, there will
be no data pumping done on this socket, but there will be read data available when one is trying to do an accept
on the port.

portTypeAcceptor - Thisis a port that isto represent the result of an accept operation. It is created when one
wants to accept from a listen socket, and it will be converted to a portTypeCommand when the accept succeeds.

portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the request for a connect
operation and that the socket is really connected to an accepting ditto in the other end. As soon as the sockets
are connected, the port will switch type to portTypeCommand.

portTypeCommand - A connected socket (or accepted socket if you want) that isin the command mode
mentioned earlier.

portTypelntermediate - The intermediate stage for a connected socket. There should be no processing of input
for this socket.

portTypeData - The mode where datais pumped through the port and the uds_command routine will regard
every call as acall where sending iswanted. In this mode all input available will be read and sent to Erlang as
soon asit arrives on the socket, much like in the active mode of agen_t cp socket.

Now letslook at the state we'll need for our ports. One can note that not all fields are used for al types of ports and
that one could save some space by using unions, but that would clutter the code with multipleindirections, soi simply
use one struct for all types of ports, for readability.

~ e~~~ e~~~

1) typedef unsigned char Byte;
2) typedef unsigned int Word;

3) typedef struct uds data {

4) int fd; /* File descriptor */

5) ErlDrvPort port; /* The port identifier */

6) int lockfd; /* The file descriptor for a lock file in
7) case of listen sockets */

8) Byte creation; /* The creation serial derived from the

9) lockfile */

0) PortType type; /* Type of port */

1) char *name; /* Short name of socket for unlink */

2) Word sent; /* Bytes sent */

3) Word received; /* Bytes received */

4) struct uds data *partner; /* The partner in an accept/listen pair */
5) struct uds data *next; /* Next structure in list */

6) /* The input buffer and its data */

7) int buffer size; /* The allocated size of the input buffer */
8) int buffer pos; /* Current position in input buffer */

9) int header pos; /* Where the current header is in the

0) input buffer */

1) Byte *buffer; /* The actual input buffer */

2) } UdsData;

This structure is used for all types of ports athough some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as aunion of structures, but the multipleindirectionsin the code
to access afield in such a structure will clutter the code to much for an example.

Let'slook at the fieldsin our structure:

fd - Thefile descriptor of the socket associated with the port.

port - The port identifier for the port which this structure correspondsto. It is needed for most dr i ver _ XXX
calls from the driver back to the emulator.

lockfd - If the socket is alisten socket, we use a separate (regular) file for two purposes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.5 How to implement an alternative carrier for the Erlang distribution

Wewant alocking mechanism that gives no race conditions, so that we can be sure of if another Erlang
node uses the listen socket name we require or if the file is only left there from a previous (crashed)
session.

* Westorethe creation serial number inthefile. The creation isanumber that should change between different
instances of different Erlang emulators with the same name, so that process identifiers from one emulator
won't be valid when sent to a new emulator with the same distribution name. The creation can be between 0
and 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP based distribution, this datais kept in the Erlang port mapper daemon (epnd), which
is contacted when a distributed node starts. The lock-file and a convention for the UDS listen socket's name
will remove the need for epnd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.
» creation - The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1)
rem 4. This creation value is also written back into the lock-file, so that the next invocation of the emulator will
found our valuein the file.

e type- The current type/state of the port, which can be one of the values declared above.
* name - The name of the socket file (the path prefix removed), which allows for deletion (unl i nk) when the
socket is closed.

e sent - How many bytes that have been sent over the socket. This may wrap, but that's no problem for
the distribution, as the only thing that interests the Erlang distribution isif this value has changed (the
Erlang net_kernel ticker uses this value by calling the driver to fetch it, which is done through the
erl ang: port_control routine).

* received - How many bytes that are read (received) from the socket, used in similar waysassent .

e partner - A pointer to another port structure, which is either the listen port from which this port is accepting a
connection or the other way around. The "partner relation” is always bidirectional.

« next - Pointer to next structurein alinked list of al port structures. Thislist is used when accepting connections
and when the driver is unloaded.

« buffer_size, buffer_pos, header pos, buffer - data for input buffering. Refer to the source code (in the kernel/
examples directory) for details about the input buffering. That certainly goes beyond the scope of this
document.

Selected parts of the distribution driver implementation

Thedistribution driversimplementation is not completely covered in thistext, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver call-back routines can befound intheer | _dri ver . h header file.

The driver initiaization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavours of systems). Thisis the only routine that has to have a well defined name. All other
call-backs are reached through the driver structure. The macro to use is named DRI VER | NI T and takes the driver
name as parameter.

(1) /* Beginning of linked list of ports */
(2) static UdsbData *first data;

RIVER INIT(uds drv)

~ O

first data = NULL;
return &uds driver entry;

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine will be
caledwhener| _ddl | : 1 oad_dri ver iscaled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In our case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_conmand routine.

(1) static ErlDrvData uds start(ErlDrvPort port, char *buff)
(2){

(3) UdsData *ud;

(4)

(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;

(7) ud->lockfd = -1;

(8) ud->creation = 0;

(9) ud->port = port;

(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;

(12) ud->buffer size = 0;

(13) ud->buffer pos = 0;

(14) ud->header pos = 0;

(15) ud->buffer = NULL;

(16) ud->sent = 0;

(17) ud->received = 0;

(18) ud->partner = NULL;

(19) ud->next = first data;

(20) first data = ud;

(21)

(22) return((EriDrvData) ud);
(23) }

Every dataitem isinitialized, so that no problems will arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

The uds_conmand routine is the routine called when an Erlang process sends data to the port. All asynchronous
commands when the port is in command mode as well as the sending of all data when the port is in data mode is
handled in this9s routine. Let's have alook at it:

(1) static void uds command(ErlDrvData handle, char *buff, int bufflen)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypeIntermediate) {
(5) DEBUGF (("Passive do send %d",bufflen));

(6) do send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;

(8) }

(9) if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type != portTypeUnknown) {

(15) driver failure posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds command listen(ud,buff,bufflen);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.5 How to implement an alternative carrier for the Erlang distribution

return;
case 'A':
if (ud->type != portTypeUnknown) {
driver failure posix(ud->port, ENOTSUP);
return;
}
uds_command_accept(ud,buff,bufflen);
return;
case 'C':
if (ud->type != portTypeUnknown) {
driver failure posix(ud->port, ENOTSUP);
return;
}
uds_command_connect (ud,buff,bufflen);
return;
case 'S':
if (ud->type != portTypeCommand) {
driver failure posix(ud->port, ENOTSUP);
return;
}
do _send(ud, buff + 1, bufflen - 1);
return;
case 'R':
if (ud->type != portTypeCommand) {
driver failure posix(ud->port, ENOTSUP);
return;
}
do recv(ud);
return;
default:
return;
}

VUL BERARBERLERERLERARDWWWWWWWWWWNNNNNNNNNN L
HFOOWONOURARWNEFHFOOONOURARWNERFOOONOULR,WNE OO

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which isapointer to
the internal port structure, the data buffer and the length of the data buffer. The buffer is the data sent from Erlang (a
list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a, $b, $c] to the port, the buf f | en variable will be 3 ant the buf f variable will
contain{'a',"'b',"'c'} (nonull termination). Usually the first byteis used as an opcode, which isthe casein our
driver to (at least when the port isin command mode). The opcodes are defined as:

* 'L'<socketname>: Create and listen on socket with the given name.

o 'A<listennumber as 32 hit bigendian>: Accept from the listen socket identified by the given identification
number. The identification number is retrieved with the uds_control routine.

¢ 'C'<socketname>: Connect to the socket named <socketname>.

* 'S<data>: Send the data <data> on the connected/accepted socket (in command mode). The sending is acked
when the data has left this process.

e 'R Receive one packet of data.

One may wonder what is meant by "one packet of data" in the'R' command. This driver always sends data packeted
with a4 byte header containing a big endian 32 bit integer that represents the length of the datain the packet. Thereis
no need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. One may
wonder why the header word is coded explicitly in big endian when an UDS socket is local to the host. The answer
simply isthat | see it as a good practice when writing a distribution driver, as distribution in practice usualy cross
the host boundaries.

Online4-8wehandlethe casewherethe port isin dataor intermediate mode, therest of theroutine handlesthe different
commands. We see (first on line 15) that theroutine usesthedr i ver _fai | ure_posi x() routineto report errors.
Oneimportant thing to remember is that the failure routines make acall to our uds_st op routine, which will remove

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

theinternal port data. The handle (and the casted handle ud) istherefore invalid pointers after adri ver _fail ure
call and we should immediately return. The runtime system will send exit signalsto all linked processes.

Theuds_input routine gets called when dataisavailableon afiledescriptor previously passedtothedr i ver _sel ect
routine. Typically this happens when aread command is issued and no datais available. Lets look at thedo_r ecv
routine;

(1) static void do recv(UdsData *ud)

(2){

(3) int res;

(4) char *ibuf;

(5) for(;;) {

(6) if ((res = buffered read package(ud,&ibuf)) < 0) {

(7) if (res == NORMAL READ FAILURE) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9) } else {

(10) driver failure eof(ud->port);

(11) }

(12) return;

(13) }

(14) /* Got a package */

(15) if (ud->type == portTypeCommand) {

(16) ibuf[-1] = 'R'; /* There is always room for a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver output(ud->port,ibuf - 1, res + 1);

(20) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,Q);
(21) return;

(22) } else {

(23) ibuf[-1] = DIST MAGIC RECV TAG; /* XXX */

(24) driver output(ud->port,ibuf - 1, res + 1);

(25) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,1);
(26) }

(27))

(28) }

The routine tries to read data until a packet is read or the buf f ered_read_package routine returns a
NORVAL _READ_FAI LURE (aninternally defined constant for the modul e that means that the read operation resulted
in an EWOUL DBL OCK). If the port isin command mode, the reading stops when one packageisread, but if itisin data
mode, the reading continues until the socket buffer is empty (read failure). If no more data can be read and more is
wanted (always the case when socket is in data mode) driver_select is caled to make the uds_i nput call-back be
called when more datais available for reading.

When the port isin data mode, all data is sent to Erlang in a format that suits the distribution, in fact the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data should be tagged with asingle
byte of 100. Thats what the macro DI ST_MAQ C_RECV_TAGi s defined to. The tagging of datain the distribution
will possibly change in the future.

The uds_i nput routine will handle other input events (like nonblocking accept), but most importantly handle
data arriving at the socket by callingdo_r ecv:

(1) static void uds input(ErlDrvData handle, ErlDrvEvent event)
{
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeListener) {
(5) UdsData *ad = ud->partner;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.5 How to implement an alternative carrier for the Erlang distribution

(6) struct sockaddr un peer;
(7) int pl = sizeof(struct sockaddr un);
(8) int fd;

if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
if (errno !'= EWOULDBLOCK) {
driver failure posix(ud->port, errno);
return;
3

return;

}
SET NONBLOCKING(fd);
ad->fd = fd;
ad->partner = NULL;
ad->type = portTypeCommand;
ud->partner = NULL;
driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
driver output(ad->port, "Aok",3);
return;
}

do _recv(ud);

AAAAAAAAAAAAAAAAAA
NNNNNNNRHERRRERRR R B

OUPARWNREFEFOOONOULPRRWNEFE OO
s o o e e o o o D S o s e e e o

Theimportant line hereisthelast linein the function, thedo_r ead routineis called to handle new input. The rest of
the function handles input on alisten socket, which means that there should be possible to do an accept on the socket,
which is also recognized as aread event.

The output mechanisms are similar to the input. Letsfirst look at thedo_send routine:

tatic void do send(UdsData *ud, char *buff, int bufflen)

~ 0n

1)

2)

3) char header[4];

4) int written;

5) SysIOVec iov[2];

6) ErlIOVec eio;

7) ErlDrvBinary *binv[] = {NULL,NULL};

e

put packet length(header, bufflen);
iov[0].iov_base = (char *) header;
iov[0].iov len = 4;
iov[1l].iov_base = buff;
iov[1l].iov_len = bufflen;
eio.iov = iov;
eio.binv = binv;
eio.vsize = 2;
eio.size = bufflen + 4;
written = 0;
if (driver sizeq(ud->port) == 0) {
if ((written = writev(ud->fd, iov, 2)) == eio.size) {
ud->sent += written;
if (ud->type == portTypeCommand) {
driver output(ud->port, "Sok", 3);
}

return;
} else if (written < 0) {
if (errno !'= EWOULDBLOCK) {
driver failure eof(ud->port);
return;
} else {
written = 0;

,-\AAAAAAAAAAAAAAAAAAAAAAAA
WWWNNNNNNNNNNRRRRRRRRP R

NFOOONOURWNRHROOONOUDWNR® O ®
Lo St s b b e Ml s e b b e e U e e e

}
} else {

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(33) ud->sent += written;

(34) }

(35) /* Enqueue remaining */

(36) }

(37) driver _enqv(ud->port, &eio, written);
(38) send out queue(ud);

(39) }

Thisdriver usesthewr i t ev system call to send data onto the socket. A combination of writev and the driver output
gueuesis very convenient. An ErllOVec structure contains a SyslOVec (which is equivalent tothest ruct i ovec
structure defined in ui 0. h. The ErllOVec also contains an array of ErlDrvBinary pointers, of the same length asthe
number of buffersin the I/O vector itself. One can use this to allocate the binaries for the queue "manually" in the
driver, but we'll just fill the binary array with NULL values (line 7) , which will make the runtime system allocate its
own bufferswhen wecall dri ver _enqv (line 37).

The routine builds an 1/O vector containing the header bytes and the buffer (the opcode has been removed and the
buffer length decreased by the output routine). If the queue is empty, we'll write the data directly to the socket (or at
least try to). If any dataisleft, it is stored in the queue and then we try to send the queue (line 38). An ack is sent when
the message is delivered completely (line 22). The send_out _queue will send acks if the sending is completed
there. If the port isin command mode, the Erlang code serializes the send operations so that only one packet can be
waiting for delivery at atime. Therefore the ack can be sent simply whenever the queue is empty.

A short look at thesend_out _queue routine:

(1) static int send out queue(UdsData *ud)

(2){

(3) for(;;) {

(4) int vlen;

(5) SysIOVec *tmp = driver peekq(ud->port, &vlen);
(6) int wrote;

(7) if (tmp == NULL) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(9) if (ud->type == portTypeCommand) {

(10) driver output(ud->port, "Sok", 3);
(11) }

(12) return 0;

(13) }

(14) if (vlen > IO VECTOR MAX) {

(15) vlen = I0 VECTOR MAX;

(16) }

(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRITE, 1);

(21) return 0;

(22) } else {

(23) driver failure eof(ud->port);

(24) return -1;

(25) }

(26) b

(27) driver deq(ud->port, wrote);

(28) ud->sent += wrote;

(29))

(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an SyslOVec). If the l/O
vector istolong (I0_VECTOR_MAX isdefined to 16), the vector length isdecreased (line 15), otherwisethewr i t ev
(line17) call will fail. Writing istried and anything written is dequeued (line 27). If thewritefail swith EWOUL DBL OCK

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.5 How to implement an alternative carrier for the Erlang distribution

(note that all sockets are in nonblocking mode), dri ver _sel ect iscalled to make the uds_out put routine be
called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.
The routine above are called from the uds__out put routine, which looks like this:

(1) static void uds output(ErlDrvData handle, ErlDrvEvent event)
(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeConnector) {

(5) ud->type = portTypeCommand;

(6) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(7) driver output(ud->port, "Cok",3);

(8) return;

(9))

(10) send out queue(ud);

(11) }

Theroutineissimple, it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin aconnected state it simply sends the output queue, thisroutineis called
when there is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface caled when Erlang calls
erl ang: port_control /3. Thisisthe only interface that can control the driver when it isin data mode and it
may be called with the following opcodes:

e 'C" Set port in command mode.
e 'I': Set port in intermediate mode.
e 'D': Set port in data mode.

e 'N": Get identification number for listen port, this identification number is used in an accept command to the
driver, it is returned as a big endian 32 bit integer, which happens to be the file identifier for the listen socket.

e 'S: Get dtatistics, which isthe number of bytes received, the number of bytes sent and the number of bytes
pending in the output queue. This datais used when the distribution checks that a connection is alive (ticking).
The statisticsis returned as 3 32 bit big endian integers.

* 'T": Send atick message, which is apacket of length 0. Ticking is done when the port isin data mode, so the
command for sending data cannot be used (besides it ignores zero length packages in command mode). This
is used by the ticker to send dummy data when no other traffic is present. Note that it isimportant that the
interface for sending ticksis not blocking. Thisimplementation useser | ang: port _contr ol / 3 which
does not block the caller. If er | ang: port _comrand isused, useer | ang: port _conmand/ 3 and pass
[force] asoption list; otherwise, the caller can be blocked indefinitely on abusy port and prevent the system
from taking down a connection that is not functioning.

¢ 'R": Get creation number of listen socket, which is used to dig out the number stored in the lock file to
differentiate between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer is the provided one is
to small. Hereisthe code for uds_control :

static int uds control(ErlDrvData handle, unsigned int command,
char* buf, int count, char** res, int res size)

define ENSURE(N) \
do { \
if (res_size < N) { \

—_~ e~~~ o~ —~ —~

1)

2)

3) {

4) /* Local macro to ensure large enough buffer. */
5) #

6)

7)

38 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

=
=

NoooooooooocouuuuuuuuuUuUubh,bs,br,bEREr,EREA,REPPRPPWLWWWWWWWWWWNNNNNNNNNNRERERRR 2 2 2
CLOVWooO~NOUPAWNEHOOONOURARWNEFHFOOONOURARWNEFRFOOONOUURARWNRERFOOONOULRARWNERFOOONOULE, WN

*res = ALLOC(N); \
)
} while(0)
UdsData *ud = (UdsData *) handle;

switch (command) {
case 'S':
{
ENSURE (13) ;
**res = 0;
put packet length((*res) + 1, ud->received);
put packet length((*res) + 5, ud->sent);
put packet length((*res) + 9, driver sizeq(ud->port));
return 13;
}
case 'C':
if (ud->type < portTypeCommand) {
return report control error(res, res size, "einval");
}

ud->type = portTypeCommand;
driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
ENSURE (1) ;
**res = 0;
return 1;
case 'I':
if (ud->type < portTypeCommand) {
return report control error(res, res size, "einval");
}

ud->type = portTypelntermediate;
driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
ENSURE (1) ;
**res = 0;
return 1;
case 'D':
if (ud->type < portTypeCommand) {
return report control error(res, res size, "einval");
}

ud->type = portTypeData;
do recv(ud);
ENSURE (1) ;
**res = 0;
return 1;
case 'N':
if (ud->type != portTypelListener) {
return report control error(res, res size, "einval");

}
ENSURE(5) ;
(*res)[0] = 0O;
put packet length((*res) + 1, ud->fd);
return 5;
case 'T': /* tick */
if (ud->type != portTypeData) {
return report control error(res, res size, "einval");
1

do send(ud,"",0);
ENSURE (1) ;
**res = 0;
return 1;
case 'R':
if (ud->type != portTypelListener) {
return report control error(res, res size, "einval");
}

ENSURE(2) ;
(*res)[0] = 0;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.5 How to implement an alternative carrier for the Erlang distribution

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) default:

(74) return report control error(res, res size, "einval");
(75))

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We switch on the
command and take actions, there is not much to say about this routine. Worth noting is that we always has read select
active on a port in data mode (achieved by calling do_r ecv on line 45), but turn off read selection in intermediate
and command modes (line 27 and 36).

Therest of the driver is more or less UDS specific and not of general interest.

1.5.3 Putting it all together

Totest thedistribution, onecanusethenet _ker nel : st art/ 1 function, whichisuseful asit startsthe distribution
on a running system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takes a
list as its single argument. The lists first element should be the node name (without the " @hostname”) as an atom,
and the second (and last) element should be one of the atoms shor t nanes or | ongnanes. In the example case
shor t nanes is preferred.

For net kernel to find out which distribution module to use, the command line argument - pr ot o_di st isused. The
argument is followed by one or more distribution module names, with the "_dist" suffix removed, i.e. uds dist asa
distribution moduleis specified as- prot o_di st uds.

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option - no_epnd, which
will make Erlang skip the epmd startup, both as a OS process and as an Erlang ditto.

The path to the directory where the distribution modul es reside must be known at boot, which can either be achieved by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol (in the uds_dist protocoal, it's only the uds_dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an - sname <nane> flag is present at the
command line, here follows two examples:

$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)

1> net kernel:start([bing,shortnames]).
{0k, <0.30.0>}

(bing@hador)2>

$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds \
-no_epmd -sname bong

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)

(bong@hador) 1>

One can utilize the ERL_FLAGS environment variable to store the complicated parametersin:

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

$ ERL FLAGS=-pa $ERL TOP/lib/kernel/examples/uds dist/ebin \
-proto dist uds -no_epmd

$ export ERL_FLAGS

$ erl -sname bang

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bang@hador) 1>

The ERL_FLAGS should preferably not include the name of the node.

1.6 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract format. Functionsdealing with such parsetreesareconpi | e: for s/ [1, 2]
and functionsinthe modulesepp, erl _eval ,erl _lint,erl _pp,erl_parse,andi 0. They areaso used as
input and output for parse transforms (see the module conpi | e).

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(C) .

Theword LI NE below representsan integer, and denotesthe number of thelinein the sourcefilewherethe construction
occurred. Several instances of L1 NE in the same construction may denote different lines.

Since operators are not termsin their own right, when operators are mentioned bel ow, the representation of an operator
should be taken to be the atom with a printname consisting of the same characters as the operator.

1.6.1 Module Declarations and Forms

A module declaration consists of a sequence of forms that are either function declarations or attributes.

e |f Disamodule declaration consisting of theformsF_1, ..., F_k, thenRep(D) =[Rep(F_1), ...,
Rep(F_k)].

e If Fisan attribute - nodul e(Mbd) , then Rep(F) ={at t ri but e, LI NE, nodul e, Mbd}.

« If Fisan attribute - behavi or (Behavi or) , then Rep(F) =
{attribute, LI NE, behavi or, Behavi or}.

e |If Fisanattribute - behavi our (Behavi our) , then Rep(F) =
{attribute, LI NE, behavi our, Behavi our}.

o If Fisanattribute- export ([Fun_1/ A 1, ..., Fun_k/A Kk]),thenRep(F) =
{attribute, LINE, export, [{Fun_1, A 1}, ..., {Fun_k, A k}1}.

e |IfFisanattribute-i nport (Mod, [Fun_1/A 1, ..., Fun_k/ A k]),thenRep(F) =
{attribute, LINE, i mport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}1}}.

e |If Fisanattribute- export _type([Type_1/A 1, ..., Type_k/ A K]),then Rep(F) =
{attribute, LI NE, export _type, [{Type_1,A 1}, ..., {Type_k, A k}]}.

e If Fisanattribute- conpi | e(Opti ons) ,then Rep(F) ={attri bute, LI NE, conpi | e, Opti ons}.
e IfFisanattribute-fil e(Fil e, Line),thenRep(F)={attribute, LINE file,{File,Line}}.

» |If Fisarecord declaration-record(Nane, {V_1, ..., V_k}),thenRep(F) =
{attribute, LINE, record, {Name, [Rep(V_1), ..., Rep(V_k)]1}}.ForRep(V), seebelow.
e |If Fisatypedeclaration- Type Nane(V_1, ..., V_k) :: T,whereType isether theatomt ype
or the atom opaque, each V_i isavariable, and T isatype, then Rep(F) ={attri but e, LI NE, Type,
{Name, Rep(T),[Rep(V_1), ..., Rep(V_k)]}}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 The Abstract Format

e If Fisafunction specification- Spec Name Ft_1; ...; Ft_k, whereSpec iseither the atom
spec ortheatomcal | back,andeach Ft _i isapossibly constrained function type with an argument
sequence of the samelength Ari t y, then Rep(F) ={attri but e, Li ne, Spec, {{Nane, Arity},
[Rep(Ft_1), ..., Rep(Ft_k)]1}}.

« If Fisafunction specification- spec Mbd: Nanme Ft_1; ...; Ft_k,whereeachFt i isa
possibly constrained function type with an argument sequence of the same length Ar i t y, then Rep(F) =
{attribute, Line, spec, {{Md, Nane, Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}.
 If Fisawildattribute- A(T) ,thenRep(F) ={attri bute, LI NE, A T}.
 If FisafunctiondeclarationNanme Fc_1 ; ... ; Name Fc_k,whereeach Fc_i isafunction clause

with a pattern sequence of the same length Ari t y, then Rep(F) ={f uncti on, LI NE, Nane, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

Record Fields

Each field in arecord declaration may have an optional explicit default initializer expression, as well as an optional
type.

« IfVisAthenRep(V)={record_field, LI NE Rep(A)}.

e IfVisA = E,whereEisanexpression, then Rep(V)={record field, LI NE, Rep(A), Rep(E)}.

« IfVisA :: T,whereTisatypeanditdoesnot contain undef i ned syntacticaly, then Rep(V) =
{typed_record_field,{record _field,LINE Rep(A)}, Rep(undefined | T)}.

« IfVisA :: T,whereTisatype then Rep(V)={typed record field,
{record _field, LINE Rep(A}, Rep(T)}.

e IfVisA = E :: T,whereEisanexpressionand T isatype, then Rep(V) ={typed_record_fiel d,
{record_field,LINE Rep(A), Rep(E)}, Rep(T)}.
Representation of Parse Errors and End-of-file

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
erl _par se andepp) may containtuples{ error, E} and{war ni ng, W, denoting syntactically incorrect forms
and warnings, and { eof , LI NE} , denoting an end-of-stream encountered before a complete form had been parsed.

1.6.2 Atomic Literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

« If L isaninteger or character literal, then Rep(L) ={i nt eger, LI NE, L}.
« |IfLisafloat literal, then Rep(L) ={f | oat, LI NE, L}.

« If Lisastring literal consisting of the charactersC_1, ..., C_k, thenRep(L) ={ st ri ng, LI NE,
[C1, ..., CK]}.
e If Lisanatom literal, then Rep(L) = { at om LI NE, L}.

Notethat negative integer and float literals do not occur as such; they are parsed as an application of the unary negation
operator.

1.6.3 Patterns

If Ps isasequence of patterns P_1, ..., P_k,thenRep(Ps) =[Rep(P_1), ..., Rep(P_k)]. Such
seguences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

e |f Pisan atomic literal L, then Rep(P) = Rep(L).
e If Pisacompound patternP_1 = P_2,then Rep(P) ={ mat ch, LI NE, Rep(P_1), Rep(P_2)}.

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

If Pisavariable pattern V, then Rep(P) ={ var, LI NE, A}, where A is an atom with a printname consisting of
the same charactersas V.

If Pisauniversal pattern _, then Rep(P) ={var, LINE," _'}.

If Pisatuplepattern{P_1, ..., P_k},thenRep(P)={tuple, LINE [Rep(P_1), ...,
Rep(P_k)1}.

If Pisanil pattern[], then Rep(P) ={ni | , L1 NE} .

If Pisaconspattern[P_h | P_t],then Rep(P)={cons, LI NE, Rep(P_h), Rep(P_t)}.

If Eisabinary pattern<<P_1: Size 1/TSL 1, ..., P_k:Size k/ TSL_k>>, then Rep(E)
={bin,LINE, [{bin_elenent, LINE, Rep(P_1), Rep(Size_ 1), Rep(TSL_1)}, ...,
{bin_elenent, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k)}]}.For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
If PisP_1 Op P_2,where Op isabinary operator (thisis either an occurrence of ++ applied to aliteral string
or character list, or an occurrence of an expression that can be evaluated to a number at compile time), then
Rep(P) ={ op, LI NE, Op, Rep(P_1), Rep(P_2)}.

If PisOp P_0, where Op isaunary operator (thisis an occurrence of an expression that can be evaluated to a
number at compile time), then Rep(P) ={ op, LI NE, Op, Rep(P_0)}.

If Pisarecord pattern #Name{ Fi el d_1=P_1, ..., Field_k=P_k},thenRep(P) =

{record, LI NE, Nane, [{record_field, LINE Rep(Field_1), Rep(P_1)}, ...,
{record_field,LINE Rep(Field k), Rp(P_k)}1}.

If Pis#Nane. Fi el d, then Rep(P) ={r ecord_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Pis(P_0),thenRep(P) = Rep(P_0), that is, patterns cannot be distinguished from their bodies.

Note that every pattern has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.6.4 Expressions
A body B isasequence of expressionsE_1, ..., E k,andRep(B)=[Rep(E_1), ..., Rep(E_k)].

An expression E is one of the following alternatives:

If Pisan atomic literal L, then Rep(P) = Rep(L).

If EisP = E O, then Rep(E) ={ mat ch, LI NE, Rep(P), Rep(E_0)}.

If EisavariableV, then Rep(E) = {var, LI NE, A}, where A is an atom with a printname consisting of the
same charactersas V.

If Eisatupleskeleton{E_1, ..., E_k},thenRep(E)={tuple, LINE [Rep(E_1), ...,

Rep(E k)1}.

IfEis[],thenRep(E) ={ni |, LI NE}.

If Eisaconsskeleton[E_h | E_t],thenRep(E)={cons, LI NE, Rep(E_h), Rep(E_t)}.

If Eisabinary constructor <<V_1: Size 1/TSL_1, ..., V_k:Size_k/ TSL_k>>, then Rep(E)
={bin,LINE, [{bin_elenment, LINE, Rep(V_1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_elenent, LI NE, Rep(V_Kk), Rep(Si ze_k), Rep(TSL_k)}]}.For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
IfEiISE_1 Op E_2,where Qp isabinary operator, then Rep(E) =

{op, LI NE, Op, Rep(E_1), Rep(E_2)}.

If EisOp E_O0, where Op isaunary operator, then Rep(E) ={ op, LI NE, Op, Rep(E_0) }.

If Eis#Nanme{Field_1=E 1, ..., Field _k=E k},thenRep(E)=

{record, LI NE, Nane, [{record field, LINE, Rep(Field 1), Rep(E 1)}, ...,
{record field,LINE Rep(Field k), Rep(E k)}1}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 The Abstract Format

e |IfEisE O#Nane{Field 1=E 1, ..., Field k=E k},then Rep(E) =
{record, LI NE, Rep(E_0), Nane,
[{record field, LINE Rep(Field 1), Rep(E_ 1)}, ...,
{record field,LINE Rep(Field k), Rep(E_k)}1}.
« If Eis#Nane. Fi el d, thenRep(E) ={r ecor d_i ndex, LI NE, Nane, Rep(Fi el d) }.
« |IfEisE O#Nane. Fi el d,thenRep(E) ={record_field, LINE, Rep(E_0), Nane, Rep(Field)}.

« IfEiIs#{W1, ..., WKk} whereeachW.i isamap assoc or exact field, then Rep(E) = { map, LI NE,
[Rep(W1), ..., Rep(WKk)]}.ForRep(W), seebelow.

o IfEISE O#{W1, ..., WKk} whereW.i isamap assoc or exact field, then Rep(E) =
{map, LI NE, Rep(E_0), [Rep(W 1), ..., Rep(WKk)]}.ForRep(W), seebelow.

e |IfEiscatch E 0O,thenRep(E)={' catch', LINE, Rep(E 0)}.

e IfEISE_O(E_1, ..., E_k),thenRep(E)={call,LINE Rep(E_O),[Rep(E_1), ...,
Rep(E_k)1}.

« IfEISsE MEO(E 1, ..., E K),thenRep(E)={call, LI NE,
{renote, LINE, Rep(E n),Rep(E_ 0)},[Rep(E_1), ..., Rep(E k)]}.

« IfEisalistcomprehenson[E O || W1, ..., WKk],whereeachW i isagenerator or afilter, then
Rep(E) ={l c, LINE, Rep(E_O0),[Rep(W1), ..., Rep(Wk)]}.ForRep(W), seebelow.

* If Eisabinary comprehension<<E 0 || W1, ..., Wk>> whereeachW i isagenerator or afilter,
then Rep(E) ={ bc, LI NE, Rep(E_0), [Rep(W1), ..., Rep(WXk)]}.ForRep(W), seebelow.

« |IfEisbegi n B end, whereBisabody, then Rep(E) ={ bl ock, LI NE, Rep(B) }.

o IfEisif Ic_1; ... ; lc_k end,whereeachl c_i isanif clausethenRep(E) ={"if"', LI NE,
[Rep(lc_1), ..., Rep(lc_k)]}.

e |IfEiscase EO of Cc_1; ... ; Cc_k end,whereE OisanexpressionandeachCc i isacase
clausethen Rep(E) ={' case', LI NE, Rep(E 0),[Rep(Cc_1), ..., Rep(Cc_k)]}.

e |IfEistry B catch Tc_1 ; ... ; Tc_k end,whereBisabody and each Tc_i isacatch clause
thenRep(E) ={"try' ,LINE, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_Kk)].I[1}-

e |IfEistry Bof Cc_1; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end,whereBisabody,
each Cc_i isacaseclauseandeach Tc_j isacatch clausethen Rep(E) ={'try', LI NE, Rep(B),
[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}.

e |IfEistry B after A end,whereBandAarebodiesthenRep(E)={"try', LI NE, Rep(B),[],
[].Rep(A)}.

« |IfEistry Bof Cc_1; ... ; Cc_k after A end,whereB andA areabodiesand each
Cc_i isacaseclausethenRep(E) ={"'try', LI NE Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[1,Rep(A)}.

e |IfEistry Bcatch Tc_1; ... ; Tc_k after A end,whereBandA arebodiesand

each Tc_i isacatchclausethen Rep(E) ={'try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A)}.

e |IfEistry Bof Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n after A end,
where B and A are abodies, each Cc_i isacase clause and each Tc_j isacatch clause then Rep(E)
={"try',LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,
Rep(Tc_n)], Rep(A)}.

e |IfEisreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacase clausethen Rep(E) =
{'receive',LINE [Rep(Cc_1), ..., Rep(Cc_Kk)]}.

e |IfEisreceive Cc_1; ... ; Cc_k after EO -> B t end,whereeachCc_i isacaseclause,

E Oisanexpressionand B_t isabody, then Rep(E) ={' recei ve' , LINE, [Rep(Cc_1), ...,
Rep(Cc_k)], Rep(E_0), Rep(B_t)}.
« IfEisfun Name / Arity,thenRep(E)={'fun', LI NE, {function, Nane, Arity}}.

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

e [IfEisfun Mdul e: Nanme/ Arity,thenRep(E)={"' fun', LI NE,
{function, Rep(Mdul e), Rep(Nane), Rep(Arity)}}. (Beforethe R15 release: Rep(E) =
{'fun',LINE, {function, Modul e, Nane, Arity}}.)

« |IfEisfun Fc_1 ; ... ; Fc_k endwhereeach Fc_i isafunction clausethen Rep(E) =
{"'fun',LINE {clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}.

e |IfEisfun Nanme Fc_1 ; ... ; Nanme Fc_k end whereNane isavariableandeachFc_i isa
function clause then Rep(E) = { named_f un, LI NE, Nane, [Rep(Fc_1), ..., Rep(Fc_k)]}.

« IfEis(E_O),then Rep(E) = Rep(E_O0), that is, parenthesized expressions cannot be distinguished from
their bodies.

Generators and Filters
When W is a generator or afilter (in the body of alist or binary comprehension), then:

 IfWisagenerator P <- E, whereP isapattern and E is an expression, then Rep(W) =
{generate, LI NE, Rep(P), Rep(E)}.

e IfWisagenerator P <= E, where P isapattern and E is an expression, then Rep(W) =
{b_generate, LI NE, Rep(P), Rep(E) }.

« If Wisafilter E, which is an expression, then Rep(W) = Rep(E) .

Binary Element Type Specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS 1 - ... - TS k. Rep(TSL)
=[Rep(TS_1), ..., Rep(TS k)].

When TSis atype specifier for abinary element, then:

o If TSisanatom A, then Rep(TS) = A.

« If TSisacouple A: Val ue where Aisan atom and Val ue isan integer, then Rep(TS) ={ A, Val ue}.

Map Assoc and Exact Fields
When W is an assoc or exact field (in the body of amap), then:

« IfWisanassocfield K => V, where Kand V are both expressions, then Rep(W) =
{map_field_assoc, LI NE, Rep(K), Rep(V)}.

e IfWisanexactfidddK : = V, whereKand V are both expressions, then Rep(W) =
{map_field exact, LI NE, Rep(K), Rep(V)}.

1.6.5 Clauses

There are function clauses, if clauses, case clauses and catch clauses.

A clause Cisone of the following alternatives:

« IfCisafunctionclause(Ps) -> BwherePs isa pattern sequence and B is a body, then Rep(C) =
{clause, LI NE, Rep(Ps),[], Rep(B)}.

« |fCisafunctionclause(Ps) when Gs -> BwherePs isapattern sequence, Gs isaguard sequence
and B isabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

e IfCisanif clauseGs - > Bwhere Gs isaguard sequence and B is abody, then Rep(C) ={ cl ause, LI NE,
[1,Rep(Gs),Rep(B)}.

« |fCisacaseclause P - > BwhereP isapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep(P)],[],Rep(B)}.

e |IfCisacaseclauseP when Gs -> BwherePisapattern, Gs isaguard sequence and B is abody, then
Rep(C) ={cl ause, LINE, [Rep(P)], Rep(Gs), Rep(B)}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.6 The Abstract Format

e IfCisacachclause P - > BwhereP isapattern and B is abody, then Rep(C) ={ cl ause, LI NE,
[Rep({throw, P, _})].[],Rep(B)}.

« IfCisacachclauseX : P -> BwhereXisanatomic literal or avariable pattern, P isapattern and Bisa
body, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].[], Rep(B)}.

e |fCisacachclauseP when Gs -> BwherePisapattern, Gs isaguard sequence and B is a body, then
Rep(C) ={cl ause, LI NE, [Rep({throw, P, _})], Rep(Gs), Rep(B)}.

e IfCisacachclauseX : P when Gs -> BwhereXisanatomic literal or avariable
pattern, P is apattern, Gs isaguard sequence and B is abody, then Rep(C) ={ cl ause, LI NE,
[Rep({X, P, _})],Rep(Gs),Rep(B)}.

1.6.6 Guards

A guard sequence Gsisasegquenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G_ 1), ..., Rep(GKk)].
If the guard sequenceis empty, Rep(Gs) =[] .

A guard G is a nonempty sequence of guard tests @ _1, ..., G _k,and Rep(G) =[Rep(&x _1), ...,
Rep(& _K)]T.

A guardtest G isone of the following alternatives:

e |If Gtisanatomic literal L, then Rep(Gt) = Rep(L).

» |If Gtisavariable pattern V, then Rep(Gt) ={ var, LI NE, A}, where A is an atom with a printhame consisting
of the same charactersas V.

« IfGtisatupleskeleton{& _1, ..., & _k},thenRep(Gt)={tuple, LINE [Rep(&_1), ...,
Rep(& _k)1}.

o IfGtis[],thenRep(Gt) ={nil, LI NE}.

« IfGtisaconsskeleton[& _h | &G _t],then Rep(Gt) ={cons, LI NE, Rep(& _h), Rep(G _t)}.

e |If Gtisabhinary constructor <<G _1: Size_1/TSL_1, ..., G _k: Size_k/ TSL_k>>, then Rep(Gt)
={bin, LINE, [{bin_el ement, LI NE, Rep(&G _1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_elenent, LI NE, Rep(& _k), Rep(Si ze_Kk), Rep(TSL_k) }]} . For Rep(TSL), see above. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) is represented by def aul t .

e IfGtis@G _1 Op & _2,where Op isahinary operator, then Rep(Gt) =
{op, LINE, Op, Rep(& _1),Rep(& _2)}.

o IfGtisOp & _0, where Op isaunary operator, then Rep(Gt) ={ op, LI NE, Op, Rep(& _0) }.

o IfGtis#Nane{Field_1=G _1, ..., Field_k=&_k},thenRep(E) =
{record, LI NE, Nane, [{record_field, LINE Rep(Field_ 1), Rep(&_1)}, ...,
{record_field, LINE, Rep(Field_Kk), Rep(& _k)}1}.

« If Gtis#Nane. Fi el d, then Rep(Gt) ={r ecord_i ndex, LI NE, Nare, Rep(Fi el d)}.

« |IfGtis@& _O#Nane. Fi el d, then Rep(Gt) =
{record field,LINE Rp(&_0), Nane, Rep(Field)}.

e IfGtisA(G_1, ..., & _k),whereAisanatom,then Rep(Gt) ={cal | , LI NE, Rep(A),
[Rep(G_1), ..., Rep(G _Kk)]1}.
e IfGtisA mMA(G_1, ..., G_Kk),whereA mistheatomer| ang and Aisan atom or an operator,

then Rep(Gt) ={cal |, LI NE, {renpt e, LI NE, Rep(A_m, Rep(A) },[Rep(& _1),
Rep(& _k)1}.

e IfGtis{AmA(&_1, ..., & _Kk),whereA mistheatomer| ang and Aisan atom or an operator,
then Rep(Gt) ={cal |, LI NE, Rep({A mA}),[Rep(&G _1), ..., Rep(& _Kk)]1}.

« IfGtis(G _0),then Rep(Gt) = Rep(& _0), that is, parenthesized guard tests cannot be distinguished
from their bodies.

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

Note that every guard test has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.6.7 Types

If Tisan annotated type Anno :: Type, where Anno isavariable and Type isatype, then Rep(T) =
{ann_type, LI NE, [Rep(Anno), Rep(Type)]}.
If T isan atom or integer litera L, then Rep(T) = Rep(L).

If TisL Op R, where Op isabinary operator and L and R are types (thisis an occurrence of an expression that
can be evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(L), Rep(R) }.

If TisOp A, where Qp isaunary operator and A isatype (thisis an occurrence of an expression that can be
evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(A) }.

If Tisabitstringtype<<_: M _: *N>>, where Mand N are singleton integer types, then Rep(T) =
{type, LI NE, bi nary, [Rep(M, Rep(N)] }.

If Tistheempty listtype[],then Rep(T) ={type, Line,nil,[]}.

If Tisafuntypefun(),thenRep(T)={type, LINE, ' fun',[]}.

If Tisafuntypefun((...) -> B),whereBisatype, then Rep(T) ={type, LI NE, ' fun',
[{type, LI NE, any}, Rep(B)]}.

If Tisafuntypefun(Ft),where Ft isafunction type, then Rep(T) = Rep(Ft) .

If Tisaninteger rangetypel .. H, whereL and Hare singleton integer types, then Rep(T) =
{type, LI NE, range, [Rep(L), Rep(H]}.

If Tisamaptypemap(),then Rep(T) ={t ype, LI NE, map, any}.

If Tisamaptype#{P_1, ..., P_k},whereeachP_i isamap pair type, then Rep(T) =

{type, LI NE, map, [Rep(P_1), ..., Rep(P K)]}.

If Tisamap pair typeK => V, whereK and V are types, then Rep(T) =

{type, LI NE, map_fi el d_assoc, [Rep(K), Rep(V)]}.

If Tisapredefined (or built-in) type N(A_1, ..., A k),whereeachA i isatype, then Rep(T) =
{type,LINE,N,[Rep(A 1), ..., Rep(AK]}.

If Tisarecordtype#Nane{F_1, ..., F_k},whereeachF_i isarecord fieldtype, then Rep(T) =
{type, LI NE, record, [Rep(Nane), Rep(F_1), ..., Rep(F_k)]}.

If TisarecordfieldtypeName :: Type, where Type isatype, then Rep(T) =
{type, LINE, field type, [Rep(Nane), Rep(Type)]}.

If TisaremotetypeM N(A 1, ..., A k),whereeachA i isatype, then Rep(T) =
{renmpote_type, LINE, [Rep(M, Rep(N),[Rep(A_ 1), ..., Rep(A Kk)]1}.

If Tisatupletypet upl e(),then Rep(T) ={t ype, LI NE, t upl e, any}.

If Tisatupletype{A 1, ..., A k},whereeachA i isatype, then Rep(T) ={type, LI NE, t upl e,
[Rep(A 1), ..., Rep(AK)]}.

If TisatypeunionT_1 | ... | T_k,whereeachT_i isatype, then Rep(T) ={t ype, LI NE, uni on,
[Rep(T_ 1), ..., Rep(T_Kk)]}.

If Tisatypevariable V, then Rep(T) ={ var, LI NE, A}, where Aisan atom with a printname consisting of
the same characters as V. A type variable is any variable except underscore ().

If Tisauser-definedtypeN(A_1, ..., A k),whereeachA i isatype, then Rep(T) =

{user _type,LINE, N [Rep(A_ 1), ..., Rep(AK)]}.

IfTis(T_0),thenRep(T) =Rep(T_0), that is, parenthesized types cannot be distinguished from their
bodies.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.7 tty - Acommand line interface

Function Types

e If Ftisaconstrained functiontype Ft _1 when Fc,where Ft _1 isafunction type and Fc isafunction
constraint, then Rep(T) ={t ype, LI NE, bounded_f un, [Rep(Ft _1), Rep(Fc)]}.

 If Ftisafunctiontype(A 1, ..., A n) -> B,whereeachA i and B aretypes, then Rep(Ft) =

{type, LINE, ' fun',[{type, LINE, product,[Rep(A_ 1), ..., Rep(A.n)]},Rep(B)]}.
Function Constraints
A function constraint Fc is a nonempty sequence of constraints C 1, C k, and Rep(Fc) =
[Rep(C 1), ..., Rep(CKk)].

e IfCisacongtrainti s_subtype(V, T) orV :: T,whereVisatypevariableand T isatype, then Rep(C)
={type, LINE, constraint,[{atom LINE, is_subtype},[Rep(V),Rep(T)11]}.

1.6.8 The Abstract Format After Preprocessing

The compilation option debug_i nf o can be given to the compiler to have the abstract code stored in the
abst ract _code chunk inthe BEAM file (for debugging purposes).

In OTP R9C and later, theabst r act _code chunk will contain
{raw_abstract_v1, Abstract Code}
where Abst r act Code isthe abstract code as described in this document.

In releases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM file. Thefirst
element of the tuple would be either abst ract _v1 (R7B) or abstract v2 (R8B).

1.7 tty - Acommand line interface

t t y isasimple command line interface program where keystrokes are collected and interpreted. Completed lines are
sent to the shell for interpretation. There is a smple history mechanism, which saves previous lines. These can be
edited before sending them to the shell. t t y is started when Erlang is started with the command:

erl
t t y operatesin one of two modes:

« normal mode, in which lines of text can be edited and sent to the shell.

» shell break mode, which alows the user to kill the current shell, start multiple shells etc. Shell break mode is
started by typing Control G.

1.7.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line editing
commands are supported. The following isacomplete list of the supported line editing commands.

Note: The notation C- a means pressing the control key and the letter a simultaneously. M f means pressing the ESC
key followed by the letter f . Home and End represent the keys with the same name on the keyboard, whereas Lef t
and Ri ght represent the corresponding arrow keys.

Key Sequence Function
Home Beginning of line
C-a Beginning of line

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 tty - Acommand line interface

C-b Backward character

C-Left Backward word

M-b Backward word

C-d Delete character

M-d Delete word

End End of line

C-e End of line

C Forward character

C-Right Forward word

M-f Forward word

C-g Enter shell break mode

Ck Kill line

C-u Backward kill line

CH Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer
C-t Transpose characters

C-w Backward kill word

C-y Insert previously killed text

Table 7.1: tty text editing

1.7.2 Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

e Kill or suspend the current shell
e Connect to a suspended shell
e Start anew shell

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.8 How to implement a driver

1.8 How to implement a driver

Note:

This document was written a long time ago. A lot of it is still interesting since it explains important concepts,
but it was written for an older driver interface so the examples do not work anymore. The reader is encouraged
toread erl_driver and the driver_entry documentation.

1.8.1 Introduction

This chapter tells you how to build your own driver for erlang.

A driver in Erlang is alibrary written in C, that is linked to the Erlang emulator and called from erlang. Drivers can
be used when C is more suitable than Erlang, to speed things up, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on windows), or statically loaded, linked
with the emulator when it iscompiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this chapter.

When a driver isloaded it is executed in the context of the emulator, shares the same memory and the same thread.
Thismeansthat all operationsin the driver must be non-blocking, and that any crash in the driver will bring the whole
emulator down. In short: you have to be extremely careful!

1.8.2 Sample driver

Thisisasimple driver for accessing a postgres database using the libpg C client library. Postgresis used because it's
free and open source. For information on postgres, refer to the website www.postgr es.or g.

Thedriver issynchronous, it usesthe synchronous calls of the client library. Thisisonly for simplicity, and isgeneraly
not good, since it will halt the emulator while waiting for the database. This will be improved on below with an
asynchronous sample driver.

Thecodeisquitestraight-forward: all communication between Erlang and thedriver isdonewithport _control / 3,
and the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. This is defined with a macro, DRI VER | NI T,
and returns a pointer to a C st ruct containing the entry points that are called from the emulator. The st r uct

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

The st art entry is called when the driver is opened as a port with open_port/ 2. Here we alocate memory for
auser data structure. This user data will be passed every time the emulator calls us. First we store the driver handle,
because it is needed in subsequent calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return alocated driver binaries, by setting the flag PORT_CONTROL_FLAG BI NARY, calling
set _port_control _flags. (Thisis because we don't know whether our data will fit in the result buffer of
cont r ol , which has adefault size set up by the emulator, currently 64 bytes.)

Thereisanentry i ni t whichis called when the driver isloaded, but we don't use this, sinceit is executed only once,
and we want to have the possibility of several instances of the driver.

The st op entry is called when the port is closed.

Thecontr ol entry is caled from the emulator when the Erlang code calls port _cont r ol / 3, to do the actual
work. We have defined a simple set of commands: connect to login to the database, di sconnect to log out
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

1.8 How to implement a driver

erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobinary_t o_termiscaledin Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In our simple example, we only provide
start,stopandcontrol.

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static ErlDrvEntry pq driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

NULL, /* ready input */
NULL, /* ready output */
"pg_sync", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

We have a structure to store state needed by the driver, in this case we only need to keep the database connection.

typedef struct our data s {
PGconn* conn;
} our data t;

These are control codes we have defined.

/* Keep the following definitions in alignment with the
* defines in erl pq sync.erl

*/
#define DRV_CONNECT ‘'c!
#define DRV_DISCONNECT ‘D!
#define DRV_SELECT ‘St

This just returns the driver structure. The macro DRI VER | NI T defines the only exported function. All the other
functions are static, and will not be exported from the library.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.8 How to implement a driver

/* INITIALIZATION AFTER LOADING */

/*

* This is the init function called after this driver has been loaded.
* It must *not* be declared static. Must return the address to

* the driver entry.

*/

DRIVER INIT(pg_drv)
{

}

return &pq driver entry;

Herewe do someinitialization, st ar t iscalled fromopen_port . Thedatawill be passedtocont r ol andst op.

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)

{
our data t* data;
data = (our data t*)driver alloc(sizeof(our data t));
data->conn = NULL;
set port control flags(port, PORT CONTROL FLAG BINARY);
return (ErlDrvData)data;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do disconnect(our data t* data, ei x buff* x);

static void stop(ErlDrvData drv_data)

{
our data t* data = (our _data t*)drv _data;
do disconnect(data, NULL);
driver free(data);

}

We use the binary format only to return data to the emulator; input data is a string paramater for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new_bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, since the postgres client library wants that. ei _x_t o_new_bi nary
takesanei _x_buf f buffer and allocates a binary and copiesthe datathere. Thisbinary isreturnedin* r buf . (Note
that this binary is freed by the emulator, not by us.)

static char* get s(const char* buf, int len);
static int do connect(const char *s, our data t* data, ei x buff* x);
static int do select(const char* s, our data t* data, ei x buff* x);

/* Since we are operating in binary mode, the return value from control
* is irrelevant, as long as it is not negative.

*/
static int control(ErlDrvData drv data, unsigned int command, char *buf,

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

int len, char **rbuf, int rlen)

{
int r;
ei x _buff x;
our data t* data = (our data t*)drv data;
char* s = get s(buf, len);
ei x new with version(&x);
switch (command) {
case DRV_CONNECT: r = do_connect(s, data, &x); break;
case DRV_DISCONNECT: r = do disconnect(data, &x); break;
case DRV _SELECT: r = do_select(s, data, &x); break;
default: r=-1; break;
rbuf = (char)ei x to new binary(&x);
ei x free(&x);
driver free(s);
return r;
}

do_connect iswherewelog in to the database. If the connection was successful we store the connection handlein
our driver data, and return ok. Otherwise, we return the error message from postgres, and store NULL in the driver data.

static int do connect(const char *s, our data t* data, ei x buff* x)

{
PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION_ OK) {
encode error(x, conn);
PQfinish(conn);
conn = NULL;
} else {
encode ok(x);
}
data->conn = conn;
return 0;
}

If we are connected (if the connection handle is not NULL), we log out from the database. We need to check if we
should encode an ok, since we might get here from the st op function, which doesn't return data to the emulator.

static int do disconnect(our data t* data, ei x buff* x)

if (data->conn == NULL)
return 0;
PQfinish(data->conn);
data->conn = NULL;
if (x != NULL)
encode ok(x);
return 0;

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢ which is aso
provided as sample code.

static int do select(const char* s, our data t* data, ei x buff* x)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 How to implement a driver

{

PGresult* res = PQexec(data->conn, s);
encode result(x, res, data->conn);
PQclear(res);
return 0;

I

Herewe simply check the result from postgres, and if it'sdatawe encodeit aslists of listswith column data. Everything
from postgresis C strings, sowejust useei _x_encode_st ri ng to send the result as stringsto Erlang. (The head
of the list contains the column names.)

void encode result(ei x buff* x, PGresult* res, PGconn* conn)
{
int row, n_rows, col, n cols;
switch (PQresultStatus(res)) {
case PGRES TUPLES OK:
n_rows = PQntuples(res);
n_cols = PQnfields(res);
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode list header(x, n_rows+1);
ei x encode list header(x, n _cols);
for (col = 0; col < n _cols; ++col) {
ei x encode string(x, PQfname(res, col));
)

ei x encode empty list(x);
for (row = 0; row < n_rows; ++row) {
ei x encode list header(x, n _cols);
for (col = 0; col < n cols; ++col) {
ei x encode string(x, PQgetvalue(res, row, col));
}

ei x encode empty list(x);

}
ei x encode empty list(x);
break;

case PGRES COMMAND OK:
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode string(x, PQcmdTuples(res));
break;

default:
encode error(x, conn);
break;

1.8.3 Compiling and linking the sample driver

The driver should be compiled and linked to a shared library (DLL on windows). With gcc this is done with the link
flags- shar ed and - f pi c. Since we usethe ei library we should include it too. There are several versions of ei ,
compiled for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples the obj
directory isused for theei library, meaning that we use the non-debug, single-threaded version.

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

1.8.4 Calling a driver as a port in Erlang

Before adriver can be called from Erlang, it must be loaded and opened. Loading isdoneusingtheer | _ddl I module
(theer | _ddl | driverthat loadsdynamicdriver, isactually adriver itself). If loading is ok the port can be opened with
open_port/ 2. The port name must match the name of the shared library and the name in the driver entry structure.

When the port has been opened, the driver can be called. In the pg_sync example, we don't have any data from the
port, only the return value fromtheport _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl .

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->

case erl ddll:load driver(".", "pg sync") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit({error, E})

end,

Port = open port({spawn, ?MODULE}, [1),

case binary to term(port control(Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

disconnect(Port) ->
R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
port close(Port),
R.

select(Port, Query) ->
binary to term(port control(Port, ?DRV_SELECT, Query)).

The APl is simple: connect / 1 loads the driver, opens it and logs on to the database, returning the Erlang port
if successful, sel ect/ 2 sends a query to the driver, and returns the result, di sconnect/ 1 closes the database
connection and the driver. (It does not unload it, however.) The connection string should be a connection string for
postgres.

The driver is loaded with er | _ddl | : 1 oad_dri ver/ 2, and if this is successful, or if it's already loaded, it is
opened. Thiswill cal thest art function in the driver.

Weusetheport _contr ol / 3 functionfor al callsinto thedriver, theresult fromthedriver isreturned immediately,
and converted to terms by calling bi nary_t o_t er nl 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be containedinacat ch.)

1.8.5 Sample asynchronous driver

Sometimes database queries can take long time to complete, in our pg_sync driver, the emulator halts while the
driver is doing its job. This is often not acceptable, since no other Erlang process gets a chance to do anything. To
improve on our postgres driver, we reimplement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the samplefilespg_async. ¢ and pg_asyng. er | .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

1.8 How to implement a driver

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static void ready io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pg driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

ready io, /* ready input */
ready io, /* ready output */
"pg_async", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

}i

typedef struct our data t {
PGconn* conn;
ErlDrvPort port;
int socket;
int connecting;

} our data t;

Here some things have changed from pg_sync. c: we use the entry ready_i o for ready_i nput and
r eady_out put whichwill becalled from the emulator only when thereisinput to be read from the socket. (Actually,
the socketisusedinasel ect function inside the emulator, and when the socket is signalled, indicating there is data
toread, ther eady_i nput entry iscalled. More on this below.)

Our driver datais also extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflag connect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed sincethe entry r eady _i o
will be called both when connecting and when there is a query result.)

static int do connect(const char *s, our data t* data)
{
PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION BAD) {
ei x buff x;
ei x new with version(&x);
encode error(&x, conn);
PQfinish(conn);
conn = NULL;
driver output(data->port, x.buff, x.index);
ei x free(&x);
}
PQconnectPoll(conn);
int socket = PQsocket(conn);
data->socket = socket;
driver select(data->port, (ErlDrvEvent)socket, DO READ, 1);

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

driver select(data->port, (ErlDrvEvent)socket, DO WRITE, 1);

data->conn = conn;
data->connecting = 1;
return 0;

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket is used with the
dri ver_sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady_i o
function will be called.

Note that we only return data (with dr i ver _out put) if thereisan error here, otherwise we wait for the connection

to be completed, in which case our r eady_i o function will be called.

static int do select(const char* s, our data t* data)

{

data->connecting = 0;
PGconn* conn = data->conn;
/* if there's an error return it now */
if (PQsendQuery(conn, s) == 0) {
ei x buff x;
ei x new with version(&x);
encode error(&x, conn);
driver output(data->port, x.buff, x.index);
ei x free(&x);
¥
/* else wait for ready output to get results */
return 0;

Thedo_sel ect functioninitiatesaselect, and returnsif thereisnoimmediate error. The actual result will bereturned
whenr eady_i oiscalled.

static void ready io(ErlDrvData drv_data, ErlDrvEvent event)

{

PGresult* res = NULL;
our data t* data = (our data t*)drv data;
PGconn* conn = data->conn;
ei x buff x;
ei x new with version(&x);
if (data->connecting) {
ConnStatusType status;
PQconnectPoll(conn);
status = PQstatus(conn);
if (status == CONNECTION OK)
encode ok(&x);
else if (status == CONNECTION BAD)
encode error(&x, conn);
} else {
PQconsumeInput(conn);
if (PQisBusy(conn))
return;
res = PQgetResult(conn);
encode result(&x, res, conn);
PQclear(res);
for (;;) {
res = PQgetResult(conn);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.8 How to implement a driver

if (res == NULL)
break;
PQclear(res);

}

if (x.index > 1) {
driver output(data->port, x.buff, x.index);
if (data->connecting)
driver select(data->port, (ErlDrvEvent)data->socket, DO WRITE, 0);
}

ei x free(&x);

Ther eady_i o functionwill be called when the socket we got from postgresisready for input or output. Herewefirst
check if we are connecting to the database. In that case we check connection status and return ok if the connection is
successful, or error if it'snot. If the connectionisnot yet established, wesimply return; r eady _i o will becalled again.

If we have aresult from a connect, indicated by having data in the x buffer, we no longer need to select on output
(ready_out put), soweremovethisby calingdri ver _sel ect.

If were not connecting, we're waiting for results from a PQsendQuer y, so we get the result and return it. The
encoding is done with the same functions asin the earlier example.

We should add error handling here, for instance checking that the socket is still open, but thisisjust asimple example.

The Erlang part of the asynchronous driver consists of the sasmplefilepg_async. erl .

-module(pg_async).

-define(DRV_CONNECT, $C).
-define (DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->
case erl ddll:load driver(".", "pg async") of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
Port = open port({spawn, ?MODULE}, [binaryl]),
port control(Port, ?DRV_CONNECT, ConnectStr),
case return port data(Port) of
ok ->
{ok, Port};
Error ->
Error
end.

disconnect(Port) ->
port control(Port, ?DRV_DISCONNECT, ""),
R = return port data(Port),
port close(Port),
R.

select(Port, Query) ->
port control(Port, ?DRV_SELECT, Query),
return_port data(Port).

return_port data(Port) ->

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

receive
{Port, {data, Data}} ->
binary to term(Data)
end.

The Erlang code is dightly different, thisis because we don't return the result synchronously fromport _control ,
instead we get it fromdri ver _out put asdatain the message queue. The functionr et ur n_port _dat a above
receives data from the port. Since the data is in binary format, we use bi nary_to_term 1 to convert it to an
Erlang term. Note that the driver is opened in binary mode (open_port/ 2 is called with the option [bi nar y]).
This means that data sent from the driver to the emulator is sent as binaries. Without the bi nar y option, they would
have been lists of integers.

1.8.6 An asynchronous driver using driver_async

Asafinal example we demonstrate the use of dr i ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We will use the next _per nrut at i on agorithm to
get the next permutation of alist of integers. For large lists (more than 100000 elements), this will take some time,
so we will perform this as an asynchronous task.

The asynchronous API for drivers is quite complicated. First of all, the work must be prepared. In our example we
do thisin out put . We could have used cont r ol just aswell, but we want some variation in our examples. In our
driver, we alocate a structure that contains anything that's needed for the asynchronous task to do the work. Thisis
done in the main emulator thread. Then the asynchronous function is called from a driver thread, separate from the
main emulator thread. Note that the driver-functions are not reentrant, so they shouldn't be used. Finally, after the
function is completed, the driver callback r eady_async is caled from the main emulator thread, thisis where we
return the result to Erlang. (We can't return the result from within the asynchronous function, since we can't call the
driver-functions.)

The code below is from the samplefilenext _perm cc.
The driver entry looks like before, but also contains the call-back r eady _async.

static ErlDrvEntry next perm driver entry = {

NULL, /* init */

start,

NULL, /* stop */

output,

NULL, /* ready input */
NULL, /* ready output */
"next perm", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready async,

NULL, /* flush */

NULL, /* call */

NULL /* event */

The out put function allocates the work-area of the asynchronous function. Since we use C++, we use a struct, and
stuff the datainit. We have to copy the original data, it is not valid after we have returned from the out put function,
and the do_per mfunction will be called later, and from another thread. We return no data here, instead it will be
sent later from ther eady_async call-back.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.8 How to implement a driver

The async_dat a will be passed to the do_per mfunction. We do not use a async_free function (the last
argumenttodr i ver _async), it'sonly used if the task is cancelled programmatically.

struct our _async data {

bool prev;

vector<int> data;

our_async_data(ErlDrvPort p, int command, const char* buf, int len);
}

our_async _data::our _async data(ErlDrvPort p, int command,
const char* buf, int len)
: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
}

static void do perm(void* async data);

static void output(ErlDrvData drv_data, char *buf, int len)

{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
void* async _data = new our _async data(port, *buf, buf+l, len);
driver _async(port, NULL, do perm, async data, do free);

}

Inthedo_per mwe simply do the work, operating on the structure that was allocated in out put .

static void do perm(void* async data)

{
our _async _data* d = reinterpret cast<our async data*>(async data);
if (d->prev)
prev_permutation(d->data.begin(), d->data.end());
else
next permutation(d->data.begin(), d->data.end());
}

In the r eady_async function, the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_termn 1. In our simple example this works well, and we don't need to use ei to handle the binary
term format.

When the datais returned we deallocate our data.

static void ready async(ErlDrvData drv_data, ErlDrvThreadData async data)
{
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
our_async _data* d = reinterpret cast<our async data*>(async data);
int n = d->data.size(), result n = n*2 + 3;
ErlDrvTermData *result = new ErlDrvTermData[result n], *rp = result;
for (vector<int>::iterator i = d->data.begin();
i !'= d->data.end(); ++i) {
*rp++ = ERL_DRV_INT;
*rp++ = *i;

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

*rp++ = ERL DRV NIL;
*rp++ = ERL DRV _LIST;
*rp++ = n+l;

driver output term(port, result, result n);
delete[] result;
delete d;

This driver is caled like the others from Erlang, however, sincewe use dri ver _out put _t er m there is no need

to call binary_to_term. The Erlang codeisin the samplefilenext _permerl .

The input is changed into alist of integers and sent to the driver.

-module(next perm).
-export([next perm/1, prev_perm/1l, load/0, all perm/1]).
load() ->

case whereis(next perm) of
undefined ->

case erl ddll:load driver(".", "next perm") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit(E)

end,

Port = open port({spawn, "next perm"}, []),
register(next perm, Port);
->
~ ok
end.

list to integer binaries(L) ->
[<<I:32/integer-native>> || I <- L].

next perm(L) ->
next perm(L, 1).

prev_perm(L) ->
next perm(L, 2).

next perm(L, Nxt) ->

load(),
B = list to integer binaries(L),
port control(next perm, Nxt, B),
receive

Result ->

Result

end.

all perm(L) ->
New = prev_perm(L),
all perm(New, L, [New]).

all perm(L, L, Acc) ->
Acc;
all perm(L, Orig, Acc) ->
New = prev_perm(L),
all perm(New, Orig, [New | Accl).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.9 Inet configuration

1.9 Inet configuration
1.9.1 Introduction

Thischapter tellsyou how the Erlang runtime system s configured for | Pcommunication. It al so explainshow you may
configure it for your own particular needs by means of a configuration file. The information here is mainly intended
for users with special configuration needs or problems. There should normally be no need for specific settings for
Erlang to function properly on a correctly IP configured platform.

When Erlang startsup it will read the kernel variablei net r ¢ which, if defined, should specify the location and name
of auser configuration file. Example:

% erl -kernel inetrc ./lcfg_files/erl _inetrc

Note that the usage of a. i net r ¢ file, which was supported in earlier Erlang versions, is now obsolete.

A second way to specify the configuration file is to set the environment variable ERL_| NETRC to the full name of
the file. Example (bash):

% export ERL I NETRC=./cfg files/erl _inetrc
Note that the kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang will use default configuration settings and a native lookup method that should work correctly under most
circumstances. Erlang will not read any information from system inet configuration files (like /etc/host.conf, /etc/
nsswitch.conf, etc) in these modes, except for /etc/resolv.conf and /etc/hosts that is read and monitored for changes
on Unix platformsfor the internal DNS client inet_res.

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and will read
system inet configuration files for this information. Any hosts and resolver information found then is aso recorded,
but not used aslong as Erlang is configured for native lookups. (The information becomes useful if the lookup method
ischangedto' fil e' or' dns', seebelow).

Native lookup (system calls) is always the default resolver method. Thisistrue for all platforms except VxWorks and
OSE Deltawhere' fi |l e' or' dns' isused (inthat order of priority).

On Windows platforms, Erlang will search the system registry rather than look for configuration files when started
in long name distributed mode.

1.9.2 Configuration Data

Erlang records the following datain alocal databaseif found in system inet configuration files (or system registry):
* Host names and addresses

* Domain name

¢ Nameservers

e Search domains

e Lookup method

This data may also be specified explicitly in the user configuration file. The configuration file should contain lines
of configuration parameters (each terminated with a full stop). Some parameters add data to the configuration (e.g.
host and nameserver), others overwrite any previous settings (e.g. domain and lookup). The user configuration fileis
always examined last in the configuration process, making it possible for the user to override any default values or
previously made settings. Call i net : get _rc() to view the state of the inet configuration database.

These are the valid configuration parameters:

{file, Format, File}.

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Inet configuration

Format = atom()
File = string()
Specify a system file that Erlang should read configuration data from. For mat tells the parser how
the file should be interpreted: r esol v (Unix resolv.conf), host _conf _freebsd (FreeBSD host.conf),

host _conf_bsdos (BSDOS host.conf), host _conf _I i nux (Linux host.conf), nsswi t ch_conf (Unix
nsswitch.conf) or host s (Unix hosts). Fi | e should specify the name of the file with full path.

{resolv_conf, File}.
File = string()

Specify a system file that Erlang should read resolver configuration from for the internal DNS client inet_res,
and monitor for changes, even if it does not exist. The path must be absolute.

This may override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They may also change any time in the future reflecting the file contents.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to / et c/ resol v. conf unless the environment variable
ERL | NET_ETC DI Risset which definesthe directory for this file to some maybe other than/ et c.

{hosts file, File}.
File = string()

Specify a system file that Erlang should read resolver configuration from for the internal hosts file resolver and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after al added with {fil e, hosts, File} aboveor{host, IP,
Al i ases} below when the lookup optionfi | e isused.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to /etc/hosts unless the environment variable
ERL_| NET_ETC DI Ris set which defines the directory for this file to some maybe other than/ et c.

{registry, Type}.
Type = atom()

Specify a system registry that Erlang should read configuration data from. Currently, wi n32 is the only valid
option.

{host, IP, Aliases}.

IP = tuple()
Aliases = [string()]

Add host entry to the hosts table.
{domai n, Donai n}.

Domain = string()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.9 Inet configuration

Set domain name.
{naneserver, IP [,Port]}.

I P = tuple()
Port = integer()

Add address (and port, if other than default) of primary nameserver to use for inet_res.
{al t_nameserver, IP [,Port]}.

IP = tuple()
Port = integer()

Add address (and port, if other than default) of secondary nameserver for inet_res.
{search, Donuins}.

Domains = [string()]

Add search domainsfor inet_res.
{I ookup, Methods}.

Met hods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are: nat i ve (use system cals),
fil e (usehost dataretrieved from system configuration files and/or the user configuration file) or dns (usethe
Erlang DNS client inet_res for nameserver queries).

The lookup method st ri ng tries to parse the hostname as a IPv4 or 1Pv6 string and return the resulting IP
address. It isautomatically tried first when nat i ve isnot inthe Met hods list. To skip it in this case the pseudo
lookup method nost r i ng can beinserted anywhere in the Met hods list.

{cache_si ze, Size}.

Size = integer()

Set size of resolver cache. Default is 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in millisec) the resolver cache for inet_res. is refreshed (i.e. expired DNS records are del eted).
Default is1 h.

{timeout, Tine}.
Time = integer()
Set the time to wait until retry (in millisec) for DNS queries made by inet_res. Default is 2 sec.

{retry, N}.

N = integer()

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Inet configuration

Set the number of DNS queriesinet_reswill try before giving up. Default is 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto look up |Pv6 addresses. Default isfalse.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto use TCP (Virtual Circuit) instead of UDP. Default isfalse.
{edns, Version}.

Version = false | O

Sets the EDNS version that inet_res will use. The only allowed is zero. Default is false which means to not use
EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size inet_res will advertise in EDNS queries. Also sets the limit when the DNS
query will be deemed too large for UDP forcing a TCP query instead, which is not entirely correct since the
advertised UDP payload size of the individual nhameserver is what should be used, but this simple strategy will
do until amore intelligent (probing, caching) algorithm need be implemented. The default is 1280 which stems
from the standard Ethernet MTU size.

{udp, Mbodul e}.

Modul e = at om()

Tell Erlang to use other primitive UDP module than inet_udp.
{tcp, Modul e}.

Modul e = at om()

Tell Erlang to use other primitive TCP module than inet_tcp.
cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear thelist of recorded nameservers (primary and secondary).
cl ear _search.

Clear the list of search domains.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.10 External Term Format

1.9.3 User Configuration Example
Here follows a user configuration example.

Assume auser does not want Erlang to use the native lookup method, but wants Erlang to read all information necessary
from start and use that for resolving names and addresses. In case lookup fails, Erlang should request the data from
anameserver (using the Erlang DNS client, set to use EDNS alowing larger responses). The resolver configuration
will be updated when its configuration file changes, furthermore, DNS records should never be cached. The user
configuration file (in this example named er | _i net rc, stored in directory . / cfg_fi | es) could then look like
this (Unix):

% -- ERLANG INET CONFIGURATION FILE --

% read the hosts file

{file, hosts, "/etc/hosts"}.

add a particular host

host, {134,138,177,105}, ["finwe"]}.

%% do not monitor the hosts file

{hosts file, ""}.

%% read and monitor nameserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enable EDNS

{edns,0}.

%% disable caching

{cache size, 0}.

%% specify lookup method

{lookup, [file, dns]}.

()
“©
()

“©

o°

~ o0

And Erlang could, for example, be started like this:
%erl -sname nmy_node -kernel inetrc ""./cfg_files/erl_inetrc"'

1.10 External Term Format
1.10.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

Since Erlang has a fixed number of types, there is no need for a programmer to define a specification for the external
format used within some application. All Erlang terms has an externa representation and the interpretation of the
different terms are application specific.

InErlangthe BIFterm to_binary/1,2 isusedto convert aterminto the external format. To convert binary dataencoding
atermthe BIF binary to_ternvl isused.

The distribution does thisimplicitly when sending messages across node boundaries.
The overall format of the term format is:

131 Tag Dat a

Table 10.1:

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

Note:

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. This since the version
number isimplied by the version number in the distribution header.

A compressed term looks like this:

1 1 4 N

131 80 UncompressedSize Zlib-compressedData

Table 10.2:

Uncompressed Size (unsigned 32 bit integer in big-endian byte order) isthe size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Data

Table 10.3:

Note:

Asof ERTSversion’5.10 (OTP-R16) support for UTF-8 encoded atoms has been introduced in the external format.
However, only characters that can be encoded using Latinl (1SO-8859-1) are currently supported in atoms. The
support for UTF-8 encoded atoms in the external format has been implemented in order to be able to support all
Unicode characters in atoms in some future release. Until full Unicode support for atoms has been introduced, it
isan error to pass atoms containing characters that cannot be encoded in Latinl, and the behavior is undefined.

When the DFLAG_UTF8_ATQVS distribution flag has been exchanged between both nodes in the distribution
handshake, all atomsin the distribution header will be encoded in UTF-8; otherwise, all atomsin the distribution
header will be encoded in Latinl. The two new tags ATOM_UTF8 EXT, and SMALL_ATOM_UTF8 EXT will
only be used if the DFLAG_UTF8_ATOVS distribution flag has been exchanged between nodes, or if an atom
containing characters that cannot be encoded in Latinl is encountered.

The maximum number of allowed characters in an atom is 255. In the UTF-8 case each character may need 4
bytes to be encoded.

1.10.2 Distribution header

As of erts version 5.7.2 the old atom cache protocol was dropped and a new one was introduced. This atom cache
protocol introduced the distribution header. Nodeswith ertsversions earlier than 5.7.2 can still communi cate with new
nodes, but no distribution header and no atom cache will be used.

The distribution header currently only contains an atom cache reference section, but could in the future contain more
information. The distribution header precedes one or more Erlang terms on the external format. For more information
see the documentation of the protocol between connected nodes in the distribution protocol documentation.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.10 External Term Format

ATOM_CACHE_REF entrieswith corresponding At onCacheRef er encel ndex intermsencoded on the external
format following a distribution header refers to the atom cache references made in the distribution header. The range
is0 <= At onCacheRef er encel ndex <255, i.e., at most 255 different atom cache references from the following
terms can be made.

The distribution header format is:

1 1 1 Nun1berOfAt01n0CacheRefs 2+1 N|O
131 68 Nurfber OF At omCacheRefs Fl ags At onCacheRef s
Table 10.4:

Fl ags consists of Number OF At omCacheRef s/ 2+1 bytes, unless Nunber Of At onCacheRef s is 0. If
Nunber O At onCacheRef s is0, Fl ags and At omCacheRef s are omitted. Each atom cache reference have
a half byte flag field. Flags corresponding to a specific At ontCacheRef er encel ndex, are located in flag byte
number At omCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber O At omCacheRef s
byte. Flags for an even At omCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At ontCacheRef er encel ndex arelocated in the most significant half byte.

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segmrent | ndex

Table 10.5:

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrment | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments each of size 256, i.e., an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located which has the following format:

3 bits 1 bit

Currentl yUnused LongAt ors

Table 10.6:

The least significant bit in that half byteisthe LongAt ons flag. If it is set, 2 bytes are used for atom lengths instead
of 1 bytein the distribution header.

After the Fl ags field follow the At omCacheRef s. The first At onCacheRef is the one corresponding to
At onCacheRef er encel ndex 0. Higher indices follows in sequence up to index Nunber OF At omCacheRef s
- 1

If the NewCacheEnt r yFl ag for the next At omCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format will follow:

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

1 1|2 Length

I nt er nal Segnent | ndex Lengt h At onText

Table 10.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom
cache entry in the atom cache. Lengt h is number of bytes that At omText consists of. Length is a two
byte big endian integer if the LongAt ons flag has been set, otherwise a one byte integer. When the
DFLAG _UTF8_ATQMVS distribution flag has been exchanged between both nodes in the distribution handshake,
charactersin At onTText isencoded in UTF-8; otherwise, encoded in Latinl. Subsequent CachedAt onRef swith
the same Segrrent | ndex and | nt er nal Segrent | ndex as this NewAt onCacheRef will refer to this atom
until anew NewAt onCacheRef with the same Segrent | ndex and | nt er nal Segnent | ndex appear.

For more information on encoding of atoms, see note on UTF-8 encoded atoms in the beginning of this document.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef on thefollowing
format will follow:

1

I nt er nal Segnent | ndex

Table 10.8:

I nt er nal Segnent | ndex together with the Segrent | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previously passed distribution header.

1.10.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 10.9:

Refers to the atom with At onCacheRef er encel ndex in the distribution header.

1.10.4 SMALL_INTEGER_EXT

97 Int

Table 10.10:

Unsigned 8 bit integer.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.10 External Term Format

1.10.5 INTEGER_EXT

98 Int

Table 10.11:

Signed 32 bit integer in big-endian format (i.e. MSB first)

1.10.6 FLOAT_EXT

1 31

99 Float String

Table 10.12:

A float isstored in string format. the format used in sprintf to format thefloat is"%.20€e" (there are more bytes allocated
than necessary). To unpack the float use sscanf with format "%l f".

Thisterm isused in minor version 0 of the external format; it has been superseded by NEW_FLOAT EXT .

1.10.7 ATOM_EXT

100 Len At omNane

Table 10.13:

Anatomisstored with a2 byte unsigned lengthin big-endian order, followed by Len numbersof 8 bit Latinl characters
that forms the At onNarre. Note: The maximum allowed value for Len is 255.

1.10.8 REFERENCE_EXT

1 N 4 1

101 Node ID Creation

Table 10.14:

Encode a reference object (an object generated with make_ref / 0). The Node term is an encoded atom, i.e.
ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thel Dfield contains abig-endian unsigned integer, but
should be regarded as uninterpreted data since this field is node specific. Cr eat i on is a byte containing a node
serial number that makes it possible to separate old (crashed) nodes from a new one.

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

Inl D, only 18 bits are significant; the rest should be 0. In Cr eat i on, only 2 bits are significant; the rest should be
0. See NEW_REFERENCE_EXT.

1.10.9 PORT_EXT

1 N 4 1

102 Node ID Creation

Table 10.15:

Encode a port object (obtained form open_port/ 2). The | D is a node specific identifier for a local port. Port
operations are not allowed across node boundaries. The Cr eat i on worksjust likein REFERENCE_EXT.

1.10.10 PID_EXT

1 N 4 4 1
103 Node I D Seri al Creation
Table 10.16:

Encode a process identifier object (obtained from spawn/ 3 or friends). The | D and Cr eat i on fields works just
likein REFERENCE_EXT, whilethe Ser i al field isused to improve safety. In | D, only 15 bits are significant; the
rest should be 0.

1.10.11 SMALL TUPLE_EXT

104 Arity Elements

Table 10.17:

SMALL_ TUPLE EXT encodesatuple. The Ari ty field is an unsigned byte that determines how many element that
followsin the El enent s section.

1.10.12 LARGE_TUPLE_EXT

105 Arity Elements

Table 10.18:

Same as SMALL_TUPLE_EXT with the exception that Ar i t y isan unsigned 4 byte integer in big endian format.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

1.10 External Term Format

1.10.13 MAP_EXT

1 4 N

116 Arity Pairs

Table 10.19:

MAP_EXT encodes a map. The Ari ty field is an unsigned 4 byte integer in big endian format that determines the
number of key-value pairs in the map. Key and value pairs (Ki => Vi) are encoded in the Pai r s section in the
following order: K1, V1, K2, V2,..., Kn, Vn.Duplicatekeysare not allowed within the same map.

Snce: OTP 17.0

1.10.14 NIL_EXT

106

Table 10.20:

The representation for an empty list, i.e. the Erlang syntax [] .

1.10.15 STRING_EXT

1 2 Len

107 Length Characters

Table 10.21:

String does NOT have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Since the Lengt h field is an unsigned 2 byte integer (big
endian), implementations must make sure that lists longer than 65535 elements are encoded as LIST_EXT.

1.10.16 LIST_EXT

1 4

108 Length Elements Tall

Table 10.22:

Lengt h is the number of elements that follows in the El enent s section. Tai | is the final tail of the list; it is
NIL_EXT for aproper list, but may be anything type if thelist isimproper (for instance [a| b]).

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

1.10.17 BINARY_EXT

1 4 Len

109 Len Data

Table 10.23:

Binaries are generated with bit syntax expression or with list_to_binary/1, term to_binary/1, or asinput from binary
ports. The Len length field is an unsigned 4 byte integer (big endian).

1.10.18 SMALL_BIG_EXT

1 1 1 n

110 n Sign d(0) ... d(n-1)

Table 10.24:

Bignums are stored in unary form with a Si gn byte that is 0 if the binum is positive and 1 if is negative. The digits
are stored with the LSB byte stored first. To calculate the integer the following formula can be used:

B =256

(do*B™0 + d1*B~1 + d2*B”2 + ... d(N-1)*B~(n-1))

1.10.19 LARGE_BIG_EXT

1 4 1 n

111 n Sign d(0) ... d(n-1)

Table 10.25:

Same as SVIALL_BIG_EXT with the difference that the length field is an unsigned 4 byte integer.

1.10.20 NEW_REFERENCE_EXT

1 2 N 1 N’
114 Len Node Creation ID ...
Table 10.26:

Node and Creation are asin REFERENCE_EXT.

I D contains a sequence of big-endian unsigned integers (4 byteseach, soN' isamultiple of 4), but should be regarded
as uninterpreted data.

N =4*Len.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

1.10 External Term Format

In the first word (four bytes) of | D, only 18 hits are significant, the rest should be 0. In Cr eat i on, only 2 bitsare
significant, the rest should be 0.

NEW_REFERENCE_EXT was introduced with distribution version 4. In version 4, N should be at most 12.
See REFERENCE_EXT).

1.10.21 SMALL ATOM_EXT

Len

115 Len At omNane

Table 10.27:

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8 bit Latinl characters that forms
the At onfNan®e. Longer atoms can be represented by ATOM_EXT. Note the SMALL_ ATOM EXT was introduced in
erts version 5.7.2 and require an exchange of the DFLAG_SMALL_ATOM TAGS distribution flag in the distribution
handshake.

1.10.22 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 NumFree Pid Module Index Uniq Freevars...
Table 10.28:

Pid
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.

Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the funisimplemented in.

| ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER _EXT. It istypically asmall index into the
module's fun table.

Uni g
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
for the fun.

Free vars
is Nuntr ee number of terms, each one encoded according to its type.

1.10.23 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5

. . . . ' Free

112 Size Arity Uniq Index |NumFree| Module |Oldindex | OldUniq Pid Vars
Table 10.29:

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

Thisisthe new encoding of internal funs: fun F/ Aandfun(Argl,..) -> ... end.
Si ze
isthe total number of bytes, including the Si ze field.
Arity
isthe arity of the function implementing the fun.
Uni q
isthe 16 bytes MD5 of the significant parts of the Beam file.
| ndex
isan index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nunfr ee
isthe number of free variables.
Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the funisimplemented in.
a dl ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER _EXT. It istypically asmall index into the
module's fun table.
a duni q
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
tree for the fun.
Pid
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.
Free vars
is Nuntr ee number of terms, each one encoded according to its type.

1.10.24 EXPORT_EXT

1 N1 N2 N3

113 Module Function Arity

Table 10.30:

Thisterm isthe encoding for external funs. f un M F/ A.
Modul e and Funct i on are atoms (encoded using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF).
Ari ty isaninteger encoded using SMALL_INTEGER EXT.

1.10.25 BIT_BINARY_EXT

1 4 1 Len

77 Len Bits Data

Table 10.31:

Thisterm represents a bitstring whose length in bits does not have to be amultiple of 8. The Len field isan unsigned
4 byte integer (big endian). The Bi t s field isthe number of bits (1-8) that are used in the last byte in the data field,
counting from the most significant bit towards the least significant.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

1.11 Distribution Protocol

1.10.26 NEW_FLOAT EXT

1 8

70 |EEE float
Table 10.32:
A float is stored as 8 bytes in big-endian |EEE format.
Thisterm isused in minor version 1 of the external format.
1.10.27 ATOM UTF8 EXT

1 2 Len
118 Len At omNane

Table 10.33:

Anatom isstored with a2 byte unsigned length in big-endian order, followed by Len bytes containing the At onmNane
encoded in UTF-8.

For more information on encoding of atoms, see note on UTF-8 encoded atoms in the beginning of this document.

1.10.28 SMALL ATOM UTF8_EXT

1 1 Len

119 Len At omNane

Table 10.34:

Anatomisstored with a1 byte unsigned length, followed by Len bytes containing the At ormNane encoded in UTF-8.
Longer atoms encoded in UTF-8 can be represented using ATOM_UTF8_EXT.

For more information on encoding of atoms, see note on UTF-8 encoded atoms in the beginning of this document.

1.11 Distribution Protocol

The description here is far from complete and will therefore be further refined in upcoming releases. The protocols
both from Erlang nodes towards EPMD (Erlang Port Mapper Daemon) and between Erlang nodes, however, are stable
since many years.

The distribution protocol can be divided into four (4) parts:

e 1. Low level socket connection.

e 2. Handshake, interchange node name and authenticate.
* 3. Authentication (done by net_kernel).

e 4. Connected.

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

A node fetches the Port number of another node through the EPMD (at the other host) in order to initiate a connection
request.

For each host where a distributed Erlang node is running there should also be an EPMD running. The EPMD can be
started explicitly or automatically as a result of the Erlang node startup.

By default EPMD listens on port 43609.

3 and 4 are performed at the same level but the net_kernel disconnects the other node if it communicates using an
invalid cookie (after one (1) second).

Theintegersin all multi-byte fields are in big-endian order.

1.11.1 EPMD Protocol
The requests served by the EPMD (Erlang Port Mapper Daemon) are summarized in the figure below.

Client Cor Model EPMD
ALIVEZ_REQ "
ALIYEZ _RESP
‘ __
ALIYE_CLOSE_RED h‘
PORT_FPLEASEZ_REQ "
PORTZ_RESP
‘ __
NAMES _FEQ h‘
NAMES_RESF
‘ ..
OUMP_REQ P’
OUMP_RESP
‘ ..
KILL_REC h‘
KILL_RESP
.‘ ..
STOP_RE() h
STOP_Ok_RESP
‘ ..
STOP_MWOTOK_RESP
‘ ..

Figure 11.1: Summary of EPMD requests.

Each request * _REQis preceded by a two-byte length field. Thus, the overall request format is:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

1.11 Distribution Protocol

Length Request

Table 11.1:

Register a node in the EPMD

When a distributed node is started it registers itself in EPMD. The message ALIVE2_REQ described below is sent
from the node towards EPMD. The response from EPMD is ALIVE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 PortNo |NodeType| ProtocolH|ghestVerdi JwestVersicrn Nlen [NodeNamg Elen Extra

Table 11.2: ALIVE2_REQ (120)

Por t No
The port number on which the node accept connection requests.
NodeType
77 = normal Erlang node, 72 = hidden node (C-node),...
Pr ot ocol
0 =tcplip-v4, ...
H ghest Ver si on
The highest distribution version that this node can handle. The value in R6B and later is 5.
Lowest Ver si on
The lowest distribution version that this node can handle. The valuein R6B and later is 5.
N en
The length (in bytes) of the NodeNane field.
NodeNane
The NodeName as an UTF-8 encoded string of NI en bytes.
El en
The length of the Ext r a field.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed the node is automatically unregistered from the EPMD.

The response message ALIVE2 RESP is described below.

1 1 2

121 Result Creation

Table 11.3: ALIVE2_RESP (121)

Result = 0 -> ok, Result > 0 -> error

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

Unregister a node from the EPMD

A node unregisters itself from the EPMD by simply closing the TCP connection towards EPMD established when
the node was registered.

Get the distribution port of another node

When one node wants to connect to another node it starts with a PORT_PLEASE2 REQ request towards EPMD on
the host where the node resides in order to get the distribution port that the node listens to.

1 N

122 NodeName

Table 11.4: PORT_PLEASE2_REQ (122)

whereN = Length - 1

1 1

119 Result

Table 11.5: PORT2_RESP (119) response indicating error, Result > 0.

Or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 Result | PortNo [NodeTypd Protocchigh&stVeLcillw&stVersion Nlen \lodeNamT Elen Extra

Table 11.6: PORT2_RESP when Result = 0.

If Result > 0, the packet only consists of [119, Result].
EPMD will close the socket as soon as it has sent the information.

Get all registered names from EPMD

This request is used via the Erlang function net _adm names/ 1, 2. A TCP connection is opened towards EPMD
and thisrequest is sent.

110

Table 11.7: NAMES_REQ (110)

The response for aNAMVES _REQIooks like this:

4

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

1.11 Distribution Protocol

EPMDPortNo Nodel nfo*

Table 11.8: NAMES_RESP

Nodelnfo is a string written for each active node. When all Nodelnfo has been written the connection is closed by
EPMD.

Nodelnfo is, as expressed in Erlang:

io:format("name ~ts at port ~p~n", [NodeName, Port]).

Dump all data from EPMD
Thisreguest is not really used, it should be regarded as a debug feature.

1
100
Table 11.9: DUMP_REQ
The response for a DUMP_REQIooks like this:
4
EPMDPortNo Nodel nfo*

Table 11.10: DUMP_RESP

Nodel nfoisastring written for each node kept in EPMD. When all Nodel nfo has been written the connection is closed
by EPMD.

Nodelnfo is, as expressed in Erlang:

io:format("active name ~ts at port ~p, fd = ~p ~n",
[NodeName, Port, Fd]).
or
io:format("old/unused name ~ts at port ~p, fd = ~p~n",
[NodeName, Port, Fd]).
Kill the EPMD

This request will kill the running EPMD. It is amost never used.

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

1

107
Table 11.11: KILL_REQ
Theresponsefo aKl LL_REQIlooks like this:

2

OK String
Table 11.12: KILL RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeName

Table 11.13: STOP_REQ

wheren =Length- 1

The current implementation of Erlang does not care if the connection to the EPMD is broken.

The response for a STOP_REQIooks like this.

7
OKString
Table 11.14: STOP_RESP
where OKString is"STOPPED".
A negative response can look like this.
7
NOK String

Table 11.15: STOP_NOTOK_RESP

where NOK String is "NOEXIST".

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

1.11 Distribution Protocol

1.11.2 Distribution Handshake

This section describes the distribution handshake protocol introduced in the OTP-R6 release of
Erlang/OTP. This description was previously located in $ERL_TOP/ | i b/ kernel /i nternal _doc/
di stribution_handshake. t xt, and has more or less been copied and "formatted” here. It has been more or
less unchanged since the year 1999, but the handshake should not have changed much since then either.

General

The TCP/IP distribution uses a handshake which expects a connection based protocal, i.e. the protocol does not include
any authentication after the handshake procedure.

This is not entirely safe, as it is vulnerable against takeover attacks, but it is a tradeoff between fair safety and
performance.

The cookies are never sent in cleartext and the handshake procedure expects the client (called A) to be the first one
to prove that it can generate a sufficient digest. The digest is generated with the MD5 message digest algorithm and
the challenges are expected to be very random numbers.

Definitions

A challengeisa32 hit integer number in big endian order. Below thefunctiongen_chal | enge() returnsarandom
32 bit integer used as a challenge.

A digestisa (16 bytes) MD5 hash of the Challenge (astext) concatenated with the cookie (astext). Below, thefunction
gen_di gest (Chal | enge, Cooki e) generatesadigest as described above.

An out_cookie is the cookie used in outgoing communication to a certain node, so that A's out_cookie for B should
correspond with B'sin_cookie for A and the other way around. A's out_cookie for B and A's in_cookie for B need
NOT be the same. Below the function out _cooki e(Node) returnsthe current node's out_cookie for Node.

Anin_cookie is the cookie expected to be used by another node when communicating with us, so that A'sin_cookie
for B corresponds with B's out_cookie for A. Below the function i n_cooki e(Node) returns the current node's
i n_cooki e for Node.

The cookies are text strings that can be viewed as passwords.

Every message in the handshake starts with a 16 bit big endian integer which contains the length of the message (not
counting the two initial bytes). In erlang this correspondsto thegen_t cp option { packet, 2}.Notethat after the
handshake, the distribution switchesto 4 byte packet headers.

The Handshake in Detail
Imagine two nodes, node A, which initiates the handshake and node B, which accepts the connection.
1) connect/accept
A connectsto B via TCP/IP and B accepts the connection.
2) send_name/receive_name

A sends an initial identification to B. B receives the message. The message looks like this (every "square” being
one byte and the packet header removed):

oot Fommmee - +----- +o---- +----- +o---- R oo I +
| 'n'|Version@|Versionl|Flag0|Flagl|Flag2|Flag3|Name®|Namel| ... |NameN|
T Fommmee - +----- +o---- +----- +o---- R oo I +

The 'n' is just a message tag. Version0 and Versionl is the distribution version selected by node A, based on
information from EPMD. (16 bit big endian) Flag0 ... Flag3 are capability flags, the capabilities defined in

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

$ERL_TOP/ |'i b/ kernel /i ncl ude/ di st. hrl.(32bitbigendian) NameO ... NameN isthe full nodename
of A, asastring of bytes (the packet length denotes how long it is).

3) recv_status/send_status
B sendsastatusmessageto A, whichindicatesif the connectionisallowed. Thefollowing status codes are defined:

ok
The handshake will continue.

ok _si mul t aneous
The handshake will continue, but A isinformed that B has another ongoing connection attempt that will
be shut down (simultaneous connect where A's name is greater than B's name, compared literally).

nok
The handshake will not continue, as B already has an ongoing handshake which it itself has initiated.
(simultaneous connect where B's name is greater than A's).

not _al | owed
The connection is disallowed for some (unspecified) security reason.

alive
A connection to the node is already active, which either means that node A is confused or that the TCP
connection breakdown of a previous node with this name has not yet reached node B. See 3B below.

Thisisthe format of the status message:

'S isthe message tag StatusO ... StatusN is the status as a string (not terminated)
3B) send_status/recv_status

If status was 'alive', node A will answer with another status message containing either ‘true’ which meansthat the
connection should continue (The old connection from this node is broken), or * f al se' , which simply means
that the connection should be closed, the connection attempt was a mistake.

4) recv_challenge/send_challenge

If the status was ok or ok _si rul t aneous, The handshake continues with B sending A another message, the
challenge. The challenge contains the same type of information as the "name" message initially sent from A to
B, with the addition of a 32 hit challenge:

R R oo - ---i- o -mie 4- oo o-mim 4- oo - --ei- o -mie - oo +--n-- +--m-- I +

['n' |Ver51on0|Ver51on1|Flag@|F1agl|FlagZ|Flag3|Cha10|Chall|Cha12|Chal3|Name0|Name1| ... |NameN|
B R PP +----- +----- +----- +----- +----- +----- +----- +----- +----- +----- R +

Where Chal0 ... Chal3 is the challenge as a 32 hit big endian integer and the other fields are B's version, flags
and full nodename.

5) send_challenge reply/recv_challenge reply
Now A has generated a digest and its own challenge. Those are sent together in a package to B:

R R +----- +----- +----- +----- +----- +----- +----- - - +
| ‘r'|[Chalo|Chall|Chal2|Chal3|DigeO|Digel|Dige2|Dige3| ... |Digel5|
R R +----- +----- +----- +----- +----- +----- +----- - - +

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

1.11 Distribution Protocol

Where 'r' is the tag, Chal0 ... Chal3 is A's challenge for B to handle and Dige0 ... Digel5 is the digest that A
constructed from the challenge B sent in the previous step.

6) recv_challenge ack/send challenge ack

B checks that the digest received from A is correct and generates a digest from the challenge received from A.
The digest isthen sent to A. The message looks like this:

R R +o---- Fo---- - +
|'a'|Dige0®|Digel|Dige2|Dige3| ... |Digel5|
R R +o---- Fo---- - +
Where 'a isthe tag and Dige0 ... Digel5 isthe digest calculated by B for A's challenge.
7)
A checks the digest from B and the connection is up.

Semigraphic View

A (initiator) B (acceptor)
TCP conneCt ------------------o oo >
TCP accept
send Name - - -----om oo >
recv_name
A e T send status

recv_status
(if status was 'alive'
send status - - - - - - - - - - - - - o - o o o o o >
recv_status)
ChB = gen challenge()
(ChB)

recv_challenge
ChA

0CA
DiA

gen_challenge(),
out cookie(B),
gen_digest(ChB,0CA)
(ChA, DiA)
send challenge reply -----------------oomom o >

recv_challenge reply

ICB = in cookie(A),

check:

DiA == gen digest

(ChB, ICB) ?
- if OK:
0CB = out cookie(A),
DiB = gen digest
(DiB) (ChA, 0CB)
e T T send challenge ack

recv_challenge ack DONE
ICA = in cookie(B), - else
check: CLOSE
DiB == gen digest(ChA,ICA) ?
- if OK
DONE
- else

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11

Distribution Protocol

CLOSE

The Currently Defined Distribution Flags
Currently (OTP-R16) the following capability flags are defined:

%% The node should be published and part of the global namespace
-define(DFLAG _PUBLISHED,1).

oP

% The node implements an atom cache (obsolete)
define (DFLAG_ATOM CACHE,2).

%% The node implements extended (3 * 32 bits) references. This is
%% required today. If not present connection will be refused.
-define(DFLAG_EXTENDED REFERENCES,4).

%% The node implements distributed process monitoring.
-define(DFLAG _DIST MONITOR,8).

%% The node uses separate tag for fun's (lambdas) in the distribution protocol.

-define (DFLAG FUN TAGS,16#10).

oP

% The node implements distributed named process monitoring.
define(DFLAG DIST MONITOR NAME, 16#20) .

%% The (hidden) node implements atom cache (obsolete)
-define(DFLAG_HIDDEN ATOM CACHE, 16#40).

%% The node understand new fun-tags
-define(DFLAG_NEW FUN TAGS, 16#80) .

% The node is capable of handling extended pids and ports. This is

)
o
)

o

% required today. If not present connection will be refused.
-define (DFLAG_EXTENDED PIDS PORTS, 16#100) .

\0
&

define(DFLAG_EXPORT PTR TAG, 16#200) .

\0
&

define(DFLAG BIT BINARIES, 16#400) .

%% The node understands new float format
-define (DFLAG_NEW FLOATS, 16#800) .

\0
&

define(DFLAG _UNICODE IO, 16#1000).

%% The node implements atom cache in distribution header.
-define (DFLAG DIST HDR ATOM CACHE,16#2000).

%% The node understand the SMALL ATOM EXT tag
-define(DFLAG_SMALL ATOM TAGS, 16#4000).

%% The node understand UTF-8 encoded atoms
-define (DFLAG_UTF8 ATOMS, 16#10000) .

1.11.3 Protocol between connected nodes

As of ertsversion 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. M essages passed between nodes are in this case on the following format:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

1.11 Distribution Protocol

4 d n m

Length Di stributi onHeader Cont r ol Message Message

Table 11.16:

where:
Lengthisequa tod+n+m
Cont r ol Message isatuple passed using the external format of Erlang.

Message is the message sent to another node using the '!" (in external format). Note that Message is only passed
in combination with aCont r ol Message encoding asend ('!").

Also note that the version number is omitted from the terms that follow a distribution header.

Nodes with an erts version less than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes are in this case on the following format:

4 1 n m

Length Type Cont r ol Message Message

Table 11.17:

where:

Lengthisequatol+n+m

Typeis: 112 (pass through)

Cont r ol Message isatuple passed using the externa format of Erlang.

Message is the message sent to another node using the '!" (in external format). Note that Message is only passed
in combination with a Cont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes.
LI NK

{1, FronPid, ToPid}
SEND

{2, Cookie, ToPid}

Note followed by Message

EXIT

{3, FronPid, ToPid, Reason}
UNLI NK

{4, FronPid, ToPid}
NODE_LI NK

{5}

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11

Distribution Protocol

REG_SEND
{6, FronPid, Cookie, ToNane}
Note followed by Message
GROUP_LEADER
{7, FronPid, ToPid}
EXI T2
{8, FronPid, ToPid, Reason}

1.11.4 New Ctrlmessages for distrvsn = 1 (OTP R4)

SEND TT
{12, Cookie, ToPid, TraceToken}
Note followed by Message
EXIT_TT
{13, FronPid, ToPid, TraceToken, Reason}
REG SEND TT
{16, FronPid, Cookie, ToNane, TraceToken}
Note followed by Message
EXIT2_TT
{18, FronPid, ToPid, TraceToken, Reason}

1.11.5 New Ctrlmessages for distrvsn = 2

distrvsn 2 was never used.

1.11.6 New Ctrlmessages for distrvsn = 3 (OTP R5C)

None, but the version number was increased anyway.

1.11.7 New Ctrimessages for distrvsn = 4 (OTP R6)

These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref} FronPi d = monitoring process ToPr oc = monitored process pid or

name (atom)
DEMONI TOR_P

{20, FronPid, ToProc, Ref} Weincludethe FromPid justin case we want to trace this. Fr onPi d =

monitoring process ToPr oc = monitored process pid or name (atom)

MONI TOR P_EXI T

{21, FronProc, ToPid, Ref, Reason} FronProc =monitored process pid or name (atom) ToPi d

= monitoring process Reason = exit reason for the monitored process

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

1.11 Distribution Protocol

2 Reference Manual

The Erlang Runtime System Application ERTS.

Note:

By default, the er t s is only guaranteed to be compatible with other Erlang/OTP components from the same
release asthe er t s itself. See the documentation of the system flag +R on how to communicate with Erlang/
OTP components from earlier rel eases.

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

erl_prim_loader

Erlang module

erl _priml oader isusedtoload al Erlang modules into the system. The start script is also fetched with this
low level loader.

erl _prim.| oader knows about the environment and how to fetch modules.

The -1 oader Loader command line flag can be used to choose the method used by theer | _pri m | oader.
Two Loader methods are supported by the Erlang runtime system: ef i | e andi net .

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before
it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future
release. Thefunctionsl i st _dir/1andread fil e_ i nfo/1aswell astheflag-| oader debug arealso
experimental

Data Types
host() = atom()

Exports

start(Id, Loader, Hosts) -> {ok, Pid} | {error, What}
Types:
Id = term()
Loader = atom() | string()
Hosts = Host | [Host]
Host = host ()
Pid = pid()
What = term()
Startsthe Erlang low level loader. Thisfunctioniscalled by thei ni t process (and module). Thei ni t processreads

the command lineflags-i d 1d, -1 oader Loader, and-hosts Hosts. These are the arguments supplied
tothest art/ 3 function.

If - | oader isnot given, the default loader isef i | e which tells the system to read from the file system.

If -1 oader isinet,the-id I1d,-hosts Hosts, and-setcooki e Cooki e flags must also be supplied.
Host s identifies hosts which this node can contact in order to load modules. One Erlang runtime system with a
erl _boot _server process must be started on each of hosts givenin Host s in order to answer the requests. See
erl_boot_server(3).

get file(Filename) -> {ok, Bin, FullName} | error
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

erl_prim_loader

Filename = atom() | string()

Bin = binary()

FullName = string()
This function fetches afile using the low level loader. Fi | enarme is either an absolute file name or just the name of
thefile, for example" | i st s. beant . If aninternal pathis set to the loader, this path is used to find thefile. If auser

supplied loader is used, the path can be stripped off if it is obsolete, and the loader does not use apath. Ful | Nane is
the complete name of the fetched file. Bi n isthe contents of the file as a binary.

The Fil ename can aso be a file in an archive. For example $OTPROOT/ | i b/ mesi a-4.4.7. ez/
mmesi a- 4. 4. 7/ ebi n/ mesi a. beam See code(3) about archivefiles.

get path() -> {ok, Path}
Types:
Path = [Dir :: string()]

This function gets the path set in the loader. The path is set by thei ni t process according to information found in
the start script.

list dir(Dir) -> {ok, Filenames} | error

Types:
Dir = string()
Filenames = [Filename :: string()]

Listsall thefilesinadirectory. Returns{ ok, Fi | enames} if successful. Otherwise, itreturnser r or .Fi | enanes
isalist of the names of all the filesin the directory. The names are not sorted.

The Dir can aso be a directory in an archive. For example $OTPROOT/ | i b/ mesi a-4.4.7. ez/
mmesi a- 4. 4. 7/ ebi n. See code(3) about archivefiles.

read file info(Filename) -> {ok, FileInfo} | error

Types.
Filename = string()
FileInfo = file:file_info()

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Fil el nfoisa
record f i | e_i nf o, defined in the Kernel include file fi | e. hr | . Include the following directive in the module
from which the function is called:

-include lib("kernel/include/file.hrl").

Seefile(3) for moreinfo about therecordfi | e_i nf o.

The Fil ename can also be a file in an archive. For example $OTPROOT/ | i b/ nmesi a-4.4.7. ez/
mesi a- 4. 4. 7/ ebi n/ mesi a. See code(3) about archive files.

read link info(Filename) -> {ok, FileInfo} | error
Types:

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

Filename = string()
FileInfo = file:file_info()

Thisfunction workslikeread file info/1 except that if Fi | enamne isasymbolic link, information about the link will
bereturnedinthef i | e_i nf o record and thet ype field of the record will be set tosym i nk.

If Fi | enane isnot a symbolic link, this function returns exactly the same result asread _file_info/ 1. On
platforms that do not support symbolic links, this function isaways equivalenttor ead_fil e i nfo/ 1.

set path(Path) -> ok
Types:
Path = [Dir :: string()]
This function sets the path of the loader if i ni t interpretsapat h command in the start script.

Command Line Flags
Theer| _pri m| oader moduleinterprets the following command line flags:
-1 oader Loader

Specifiesthename of theloader usedbyer | _pri m | oader .Loader canbeefi | e (usethelocal file system)
ori net (load usingtheboot _ser ver on another Erlang node).

If the- | oader flagisomitted, it defaultstoefi | e.
-| oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifies which other Erlang nodesthei net loader can use. Thisflagismandatory if the- | oader i net flag
is present. On each host, there must be on Erlang node with theer | _boot _ser ver which handles the load
requests. Host s isalist of |P addresses (hostnames are not acceptable).

-id Id

Specifiesthe identity of the Erlang runtime system. If the system runs as a distributed node, | d must beidentical
to the name supplied with the - snare or - nane distribution flags.

-set cooki e Cooki e

Specifiesthe cookie of the Erlang runtime system. Thisflag ismandatory if the- | oader i net flagispresent.

SEE ALSO

init(3), erl_boot_server(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

erlang

erlang

Erlang module

By convention, most Built-In Functions (BIFs) are seen as being in this module. Some of the BlIFs are viewed more or
less as part of the Erlang programming language and are auto-imported. Thus, it is not necessary to specify the module
name. For example, thecallsat om to_| i st (Erl ang) anderl ang: atom to_|i st (Erl ang) areidentical.

Auto-imported BIFs are listed without module prefix. BlIFs listed with module prefix are not auto-imported.

BIFs can fail for various reasons. All BIFsfail with reason badar g if they are called with arguments of an incorrect
type. The other reasons are described in the description of each individual BIF.

Some BIFs can be used in guard tests and are marked with "Allowed in guard tests'.

Data Types
ext binary()
A binary data object, structured according to the Erlang external term format.

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

See erlang: timestamp/O.

time unit() =
integer() >= 1 |
seconds |
milli seconds |
micro_seconds |
nano_seconds |
native

Supported time unit representations:
PartsPerSecond :: integer() >=1

Time unit expressed in parts per second. That is, the time unit equals 1/ Par t sPer Second second.
seconds

Symbolic representation of the time unit represented by the integer 1.
mlli_seconds

Symbolic representation of the time unit represented by the integer 1000.
m cro_seconds

Symbolic representation of the time unit represented by the integer 1000000.
nano_seconds

Symbolic representation of the time unit represented by the integer 2000000000.
native

Symbolic representation of the native time unit used by the Erlang runtime system.

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The nat i ve time unit is determined at runtime system start, and remains the same until the runtime system
terminates. If aruntime system is stopped and then started again (even on the same machine), thenat i ve time
unit of the new runtime system instance can differ fromthenat i ve time unit of the old runtime system instance.

One can get an approximation of the nati ve time unit by calling er | ang: convert tinme_unit (1,
seconds, native). The result equals the number of whole nat i ve time units per second. In case the
number of nat i ve time units per second does not add up to awhole number, the result is rounded downwards.

Note:

The value of the nat i ve time unit gives you more or less no information at al about the quality of time
values. It sets a limit for the resolution as well as for the precision of time values, but it gives absolutely
no information at all about the accuracy of time values. The resolution of the nat i ve time unit and the
resolution of time values can differ significantly.

Thet i me_uni t/ 0typemay beextended. Useer | ang: convert _ti ne_uni t/ 3inordertoconverttimevaues
between time units.

Exports

abs(Float) -> float()
abs(Int) -> integer() >= 0

Types:
Int = integer()
Types:
Fl oat = float()
Int = integer()

Returns an integer or float that is the arithmetical absolute value of Fl oat or | nt , for example:

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.
erlang:adler32(Data) -> integer() >= 0
Types.

Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erlang:adler32(0ldAdler, Data) -> integer() >= 0
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

erlang

OldAdler = integer() >= 0
Data = iodata()

Continues computing the adler32 checksum by combining the previous checksum, A dAdl er , with the checksum
of Dat a.

The following code:

erlang:adler32(Datal),
erlang:adler32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:adler32([Datal,Data2]).

erlang:adler32 combine(FirstAdler, SecondAdler, SecondSize) ->
integer() >= 0
Types:
FirstAdler = SecondAdler = SecondSize = integer() >= 0

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erlang:adler32(Datal),
erlang:adler32(Y,Data2).

N
nn

assigns the same valueto Z asthis:

erlang:adler32(Datal),
erlang:adler32(Data2),
erlang:adler32 combine(X,Y,iolist size(Data2)).

N < X
I nn

erlang:append element(Tuplel, Term) -> Tuple2
Types:
Tuplel = Tuple2 = tuple()
Term = term()
Returnsanew tuplethat has one element morethan Tupl el, and containstheelementsin Tupl el followedby Ter m

asthe last element. Semantically equivalenttol i st _to_tupl e(tuple_to_list(Tuplel) ++ [Terni),
but much faster.

Example:

> erlang:append element({one, two}, three).
{one, two, three}

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

apply(Fun, Args) -> term()
Types:
Fun = function()
Args = [term()]
Callsafun, passing the elementsin Ar gs as arguments.

If the number of elements in the arguments are known at compile time, the call is better written as Fun(Ar g1,
Arg2, ... ArgN).

Warning:

Earlier, Fun could also be given as{ Modul e, Functi on}, equivalenttoappl y(Modul e, Functi on,
Ar gs) . Thisuseis deprecated and will stop working in afuture release.

apply(Module, Function, Args) -> term()
Types:

Module = module()

Function = atom()

Args = [term()]

Returnstheresult of applying Funct i on inModul e to Ar gs. The applied function must be exported from Mbdul e.
The arity of the function isthe length of Ar gs.

Example:

> apply(lists, reverse, [[a, b, c]]).
[c,b,a]

> apply(erlang, atom to list, ['Erlang']).
"Erlang"

If the number of arguments are known at compile time, the call is better written as Mbdul e: Functi on(Ar g1,
Arg2, ..., ArgN).

Failure: er r or _handl er: undefi ned_f uncti on/ 3 iscalledif theapplied function is not exported. The error
handler can be redefined (see process flag/2). If error _handl er is undefined, or if the user has redefined the
default er r or _handl er so the replacement module is undefined, an error with the reason undef is generated.

atom to binary(Atom, Encoding) -> binary()
Types:
Atom = atom()
Encoding = latinl | unicode | utf8
Returns a binary corresponding to the text representation of At om If Encodi ng isl ati nl, thereis one byte for

each character inthetext representation. If Encodi ngisut f 8 or uni code, the charactersare encoded using UTF-8
(that is, characters from 128 through 255 are encoded in two bytes).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

erlang

Note:

atomto_binary(Atom | atinl) neverfailsbecausethetext representation of an atom can only contain
characters from O through 255. In a future release, the text representation of atoms can be allowed to contain
any Unicode character and at om t o_bi nary(Atom | ati nl) will then fail if the text representation for
At omcontains a Unicode character greater than 255.

Example:

> atom to binary('Erlang', latinl).
<<"Erlang">>

atom to list(Atom) -> string()
Types:
Atom = atom()
Returns a string corresponding to the text representation of At om for example:

> atom to list('Erlang').
"Erlang"

binary part(Subject, PosLen) -> binary()
Types.
Subject = binary()
PosLen = {Start :: integer() >= 0, Length :: integer()}
Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of a binary, for example:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.

2> binary part(Bin, {byte size(Bin), -5}).

<<6,7,8,9,10>>

Failure: badar g if PosLen in any way references outside the binary.
St art iszero-based, that is:

1> Bin = <<1,2,3>>
2> binary part(Bin,{0,2}).

<<1,2>>

For details about the PosLen semantics, see the binary manual pagein STDLI B.
Allowed in guard tests.

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

binary part(Subject, Start, Length) -> binary()
Types:

Subject = binary()

Start = integer() >= 0

Length = integer()
Thesameasbi nary_part (Subj ect, {Start, Length}).
Allowed in guard tests.

binary to atom(Binary, Encoding) -> atom()
Types:
Binary = binary()
Encoding = latinl | unicode | utf8
Returns the atom whose text representation is Bi nary. If Encodi ng is| ati n1, no trandation of bytes in the

binary isdone. If Encodi ng isut f 8 or uni code, the binary must contain valid UTF-8 sequences. Only Unicode
characters up to 255 are allowed.

Note:

bi nary_to_at om(Bi nary, utf8) failsif the binary contains Unicode characters greater than 255. In a
future release, such Unicode characters can be allowed and bi nary_t o_at om(Bi nary, utf8) doesthen
not fail. For more information on Unicode support in atoms, see the note on UTF-8 encoded atoms in Section
"External Term Format” in the User's Guide.

Examples:

> binary to atom(<<"Erlang">>, latinl).
'Erlang'’
> binary to atom(<<1024/utf8>>, utf8).
** exception error: bad argument
in function binary to atom/2
called as binary to atom(<<208,128>>,utf8)

binary to existing atom(Binary, Encoding) -> atom()
Types:

Binary = binary()

Encoding = latinl | unicode | utf8
Asbinary to atom/2, but the atom must exist.

Failure: badar g if the atom does not exist.

binary to float(Binary) -> float()
Types:
Binary = binary()
Returns the float whose text representation is Bi nar y, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

erlang

> binary to float(<<"2.2017764e+0">>).
2.2017764

Failure: badar g if Bi nary contains abad representation of afloat.
binary to_integer(Binary) -> integer()
Types:

Binary = binary()
Returns an integer whose text representation is Bi nar y, for example:

> binary to integer(<<"123">>).
123

Failure: badar g if Bi nary contains a bad representation of an integer.

binary to integer(Binary, Base) -> integer()

Types.
Binary = binary()
Base = 2..36

Returns an integer whose text representation in base Base isBi nar y, for example:

> binary to integer(<<"3FF">>, 16).
1023

Failure: badar g if Bi nar y contains a bad representation of an integer.

binary to list(Binary) -> [byte()]
Types:
Binary = binary()
Returns alist of integers corresponding to the bytes of Bi nary.

binary to list(Binary, Start, Stop) -> [byte()]
Types.

Binary = binary()

Start = Stop = integer() >=1

1..byte size(Bi nary)

Asbinary to_|ist/1,butreturnsalist of integers corresponding to the bytes from position St ar t to position
St op in Bi nar y. The positions in the binary are numbered starting from 1.

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

The one-based indexing for binaries used by this function is deprecated. New code isto use binary:bin_to list/3
in STDLI B instead. All functionsin module bi nar y consistently use zero-based indexing.

bitstring to list(Bitstring) -> [byte() | bitstring()]
Types:
Bitstring = bitstring()

Returnsalist of integers corresponding to the bytesof Bi t st r i ng. If the number of bitsin the binary isnot divisible
by 8, the last element of thelist is abitstring containing the remaining 1-7 bits.

binary to term(Binary) -> term()
Types:
Binary = ext_binary()

Returns an Erlang term that is the result of decoding binary object Bi nar y, which must be encoded according to the
Erlang external term format.

Warning:

When decoding binaries from untrusted sources, consider using bi nary _to_term 2 to prevent Denia of
Service attacks.

See alsoterm to_binary/1 and binary_to termv2.

binary to term(Binary, Opts) -> term()
Types:
Binary = ext _binary()
Opts = [safe]
Asbi nary_to_terni 1, buttakesoptions that affect decoding of the binary.
safe
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that can be used to attack the Erlang system. In the event of receiving
unsafe data, decoding failswith abadar g error.

This prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded in certain
structures, such as process identifiers, refs, and funs), and creation of new external function references. None of
those resources are garbage collected, so unchecked creation of them can exhaust available memory.

Failure: badar g if saf e is specified and unsafe data is decoded.
See also term to_binary/1, binary to termyl, and list_to_existing_atonv1i.

bit size(Bitstring) -> integer() >= 0
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

erlang

Bitstring = bitstring()
Returns an integer that isthe sizein bitsof Bi t st ri ng, for example:

> bit size(<<433:16,3:3>>).
19

> bit size(<<l,2,3>>).

24

Allowed in guard tests.

erlang:bump reductions(Reductions) -> true
Types:
Reductions = integer() >=1
This implementation-dependent function increments the reduction counter for the calling process. In the Beam

emulator, the reduction counter is normally incremented by one for each function and BIF call. A context switch is
forced when the counter reaches the maximum number of reductions for a process (2000 reductionsin OTP R12B).

Warning:

This BIF can be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()
Returns an integer that is the number of bytes needed to contain Bi t stri ng. That is, if the number of bits in
Bi t st ri ng isnot divisible by 8, the resulting number of bytesis rounded up.

Examples:

> byte size(<<433:16,3:3>>).
3

> byte size(<<l1,2,3>>).

3

Allowed in guard tests.

erlang:cancel timer(TimerRef, Options) -> Result | ok
Types:

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

TimerRef = reference()

Async = Info = boolean()

Option = {async, Async} | {info, Info}
Options = [Option]

Time = integer() >= 0

Result = Time | false

Cancels atimer that has been created by er | ang: start _timer(),orerl ang: send_after (). Ti mer Ref
identifies the timer, and was returned by the BIF that created the timer.

Available Opt i ons:

{async, Async}
Asynchronous request for cancellation. Async defaults to f al se which will cause the cancellation to be
performed synchronously. When Async issettot r ue, the cancel operation is performed asynchronously. That
is, erl ang: cancel _ti mer () will send an asynchronous request for cancellation to the timer service that
manages the timer, and then return ok.

{info, Info}

Request information about the Resul t of the cancellation. | nf o defaultsto t r ue which means the Resul t
isgiven. When | nf o isset to f al se, no information about the result of the cancellation is given. When the
operation is performed

synchronously
If I nfoistrue,theResul t isreturned by er | ang: cancel _ti mer () ; otherwise, ok isreturned.
asynchronously

If I nfoistrue, amessage on the form {cancel _tinmer, TinmerRef, Result} issenttothe
caler of erl ang: cancel _ti ner () when the cancellation operation has been performed; otherwise,
no message is sent.

More Opt i ons may be added in the future.

If Resul t isaninteger, it represents the time in milli-seconds left until the canceled timer would have expired.

If Resul t isf al se, atimer corresponding to Ti mer Ref could not be found. This can be either because the timer
had expired, aready had been canceled, or because Ti ner Ref never corresponded to atimer. Even if the timer had
expired, it does not tell you whether or not the timeout message has arrived at its destination yet.

Note:

The timer service that manages the timer may be co-located with another scheduler than the scheduler that the
calling process is executing on. If thisis the case, communication with the timer service takes much longer time
than if it is located locally. If the calling process is in critical path, and can do other things while waiting for
the result of this operation, or is not interested in the result of the operation, you want to use option { async,

true}.If usingoption{ async, fal se}, the calling process blocks until the operation has been performed.

Seeadsoerl ang: send_after/4,erlang:start_tinmer/4,anderl ang:read_tinmer/2.

erlang:cancel timer(TimerRef) -> Result
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

erlang

TimerRef = reference()
Time = integer() >= 0
Result = Time | false
Cancelsatimer. Thesameascalinger | ang: cancel _timer(TinerRef, []).

check old code(Module) -> boolean()
Types:

Module = module()
Returnst r ue if Modul e hasold code, otherwisef al se.

See a'so code(3).

check process code(Pid, Module) -> CheckResult
Types:

Pid = pid()

Module = module()

CheckResult = boolean()

Thesameaser| ang: check_process_code(Pid, Mdule, []).

check process code(Pid, Module, OptionList) -> CheckResult | async
Types:
Pid = pid()
Module = module()
RequestId = term()
Option = {async, RequestId} | {allow gc, boolean()}
OptionList = [Option]
CheckResult = boolean() | aborted
Checksif the node local process identified by Pi d executes old code for Modul e.
The available Opt i onsareasfollows:
{all ow_gc, bool ean()}

Determines if garbage collection is alowed when performing the operation. If {al | ow_gc, false} is
passed, and a garbage collection is needed to determine the result of the operation, the operation is aborted
(see information on CheckResul t in the following). The default is to allow garbage collection, that is,
{all ow_gc, true}.

{async, Request|d}

Thefunctioncheck _process_code/ 3 returnsthevalueasync immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{check_process_code, Requestld, CheckResult}.

If Pi d equalssel f () ,andnoasync option hasbeen passed, the operation is performed at once. Otherwise arequest
for the operation is sent to the process identified by Pi d, and is handled when appropriate. If no async option has
been passed, the caller blocks until CheckResul t isavailable and can be returned.

CheckResul t informs about the result of the request as follows:

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

true

The process identified by Pi d executes old code for Modul e. That is, the current call of the process executes
old code for this module, or the process has references to old code for this module, or the process contains funs
that references old code for this module.

fal se
The processidentified by Pi d does not execute old code for Mbdul e.
aborted

The operation was aborted, as the process needed to be garbage collected to determine the operation result, and
the operation was requested by passing option{al | ow_gc, fal se}.

See also code(3).
Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Mbdul e isnot an atom.
badar g

If Opti onLi st isaninvalidlist of options.

erlang:convert time unit(Time, FromUnit, ToUnit) -> ConvertedTime
Types:

Time = ConvertedTime = integer()

FromUnit = ToUnit = time_unit()

ConvertstheTi me valueof timeunit Fr orrni t tothecorresponding Conver t edTi ne valueof timeunit ToUni t .
Theresult is rounded using the floor function.

Warning:

Y ou may lose accuracy and precision when converting between time units. In order to minimize such loss, collect
al dataat nat i ve time unit and do the conversion on the end result.

erlang:crc32(Data) -> integer() >= 0
Types:
Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang:crc32(0ldCrc, Data) -> integer() >= 0
Types.

0ldCrc = integer() >= 0

Data = iodata()

Continues computing the crc32 checksum by combining the previous checksum, A dCr ¢, with the checksum of
Dat a.

The following code:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erlang

erlang:crc32(Datal),
erlang:crc32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:crc32([Datal,Data2]).

erlang:crc32_combine(FirstCrc, SecondCrc, SecondSize) ->
integer() >= 0
Types:
FirstCrc = SecondCrc = SecondSize = integer() >= 0

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erlang:crc32(Datal),
erlang:crc32(Y,Data2).

assigns the same value to Z asthis:

erlang:crc32(Datal),
erlang:crc32(Data2),
erlang:crc32 combine(X,Y,iolist size(Data2)).

N < X
nnn

date() -> Date
Types:
Date = cal endar: date()
Returnsthe current date as{ Year, Mont h, Day}.
The time zone and Daylight Saving Time correction depend on the underlying OS.

Example:

> date().
{1995,2,19}

erlang:decode packet(Type, Bin, Options) ->
{ok, Packet, Rest} |
{more, Length} |
{error, Reason}
Types.
Type =
raw |

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

N = O

|
|
|
4 |
asnl |
cdr |
sunrm |
fcgi |
tpkt |
line |

http |

http bin |

httph |

httph bin
Bin = binary()
Options = [Opt]
Opt =

{packet size, integer() >= 0} |

{line length, integer() >= 0}
Packet = binary() | HttpPacket
Rest = binary()

Length = integer() >= 0 | undefined
Reason = term()
HttpPacket =

HttpRequest | HttpResponse | HttpHeader | http eoh | HttpError
HttpRequest = {http request, HttpMethod, HttpUri, HttpVersion}

HttpResponse =
{http_response, HttpVersion, integer(), HttpString}

HttpHeader =
{http header,
integer(),
HttpField,
Reserved :: term(),
Value :: HttpString}

HttpError = {http error, HttpString}

HttpMethod =
"OPTIONS' |
'"GET' |
'"HEAD' |
'POST' |
'PUT' |
'DELETE"' |
'"TRACE' |
HttpString

HttpUri =
11
{absoluteURI,
http | https,
Host :: HttpString,

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

Port :: inet:port_nunber() | undefined,
Path :: HttpString} |
{scheme, Scheme :: HttpString, HttpString} |
{abs_path, HttpString} |
HttpString
HttpVersion =
{Major :: integer() >= 0, Minor :: integer() >= 0}
HttpField =
'Cache-Control' |
"Connection' |
'Date' |
'Pragma’ |
'Transfer-Encoding' |
"Upgrade’' |
'Via' |
"Accept’' |
"Accept-Charset' |
"Accept-Encoding' |
'Accept-Language’ |
'Authorization’ |
"From' |
'Host' |
'If-Modified-Since' |
'If-Match' |
'If-None-Match' |
'If-Range’ |
'If-Unmodified-Since' |
'Max-Forwards' |
'Proxy-Authorization' |
'Range’ |
'Referer' |
'User-Agent' |
'Age' |
"Location' |
'Proxy-Authenticate' |
"Public' |
'Retry-After!’
'Server' |
'Vary' |
'Warning' |
"Www-Authenticate' |
"Allow' |
'Content-Base’' |
"Content-Encoding' |
'Content-Language' |
"Content-Length' |
'Content-Location' |
'Content-Md5"' |
'Content-Range’' |
'Content-Type' |
'Etag' |
"Expires"' |

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

'Last-Modified' |
"Accept-Ranges’' |
'Set-Cookie' |
'Set-Cookie2' |
'X-Forwarded-For'
'Cookie' |
'Keep-Alive' |
'Proxy-Connection' |
HttpString

HttpString = string() | binary()

Decodes the binary Bi n according to the packet protocol specified by Type. Similar to the packet handling done by
sockets with option { packet, Type} .

If an entire packet is contained in Bin, it is returned together with the remainder of the binary as
{ok, Packet , Rest}.

If Bi n does not contain the entire packet, { mor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet, or undef i ned if the expected packet size is unknown. decode_packet can then be caled again
with more data added.

If the packet does not conform to the protocol format, { er r or , Reason} isreturned.

Thefollowing Typesarevalid:

raw | O
No packet handling is done. The entire binary is returned unlessit is empty.

1] 2] 4
Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of the header can be one, two, or four bytes; the order of the bytes is big-endian. The header is stripped
off when the packet is returned.

line
A packet is a line terminated by a delimiter byte, default is the latinl newline character. The delimiter byte is
included in the returned packet unless the line was truncated according to option | i ne_| engt h.

asnl | cdr | sunrm| fcgi | tpkt
The header is not stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER
sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)
fcgi - Fast CGI
t pkt - TPKT format [RFC1006]
http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
earlier. A packet is either a request, a response, a header, or an end of header mark. Invalid lines are returned
asHtt pError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings. Strings of
unrecognized header fields are formatted with only capital lettersfirst and after hyphen characters, for example,
" Sec- Websocket - Key".

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

erlang

The protocol type ht t p is only to be used for the first line when an Ht t pRequest or an Ht t pResponse
is expected. The following calls are to use ht t ph to get Ht t pHeader s until ht t p_eoh is returned, which
marks the end of the headers and the beginning of any following message body.

Thevariantshtt p_bi nand ht t ph_bi n return strings (Ht t pSt r i ng) as binariesinstead of lists.
The following options are available:
{packet _si ze, integer() >= 0}

Sets the maximum allowed size of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet isconsidered invalid. Default is 0, which meansno sizelimit.

{l'ine_length, integer() >= 0}
For packet typel i ne, lineslonger than the indicated length are truncated.

Option | i ne_l| ength aso applies to htt p* packet types as an alias for option packet si ze if
packet _si ze itself isnot set. Thisuseisonly intended for backward compatibility.

{l'ine_delimter, 0 =< byte() =< 255}
For packet typel i ne, setsthe delimiting byte. Default is the latinl character $\ n.
Examples:

> erlang:decode packet(1l,<<3,"abcd">>,[1]).
{ok,<<"abc">>,<<"d">>}

> erlang:decode packet(1l,<<5,"abcd">>,[1]).
{more, 6}

erlang:delete element(Index, Tuplel) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel)

Tuplel = Tuple2 = tuple()

Returns a new tuple with element at | ndex removed from tuple Tupl el, for example:

> erlang:delete element(2, {one, two, three}).
{one, three}

delete module(Module) -> true | undefined
Types:
Module = module()

Makesthe current code for Modul e become old code, and deletes all references for this modul e from the export table.
Returnsundef i ned if the module does not exist, otherwiset r ue.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used el sewhere.

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Failure: badar g if there already is an old version of Mbdul e.

demonitor(MonitorRef) -> true
Types.
MonitorRef = reference()

If Moni t or Ref isareference that the calling process obtained by calling monitor/2, this monitoring is turned off.
If the monitoring is aready turned off, nothing happens.

Once denoni t or (Moni t or Ref) has returned, it is guaranteed that no {' DOAN' , NbnitorRef, , |
_} message, because of the monitor, will be placed in the caler message queue in the future. A {' DOWN
MonitorRef, _, , _} message can have been placed in the caller message queue before the call, though. It
istherefore usually advisable to remove such a' DOAN' message from the message queue after monitoring has been
stopped. denoni t or (Moni t or Ref, [fl ush]) can be used instead of denoni t or (Moni t or Ref) if this

cleanup is wanted.

Note:

Prior to OTP release R11B (ERTS version 5.5) denoni t or / 1 behaved completely asynchronoudly, i.e., the
monitor was active until the "demonitor signal” reached the monitored entity. This had one undesirable effect.
Y ou could never know when you were guaranteed not to receive a DOWN message due to the monitor.

Current behavior can be viewed as two combined operations: asynchronously send a "demonitor signal” to the
monitored entity and ignore any future results of the monitor.

Failure: Itisan error if Moni t or Ref refersto amonitoring started by another process. Not all such cases are cheap
to check. If checking is cheap, the call failswith badar g for example, if Moni t or Ref isaremote reference.

demonitor(MonitorRef, OptionList) -> boolean()

Types.
MonitorRef = reference()
OptionList = [Option]

Option = flush | info
Thereturned valueist r ue unlessi nf o ispart of Opt i onLi st.
denoni t or (Moni tor Ref, []) isequivaenttodenonit or (Monit or Ref).
The available Opt i onsareasfollows:
flush

Removes(one){ _, MonitorRef, _, _, _} message, if thereisone, from the caller message queue after
monitoring has been stopped.

Calling denoni t or (Moni t or Ref, [fl ush]) isequivalent to the following, but more efficient:

demonitor(MonitorRef),
receive
{ , MonitorRef, , , } ->
true
after 0 ->
true

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang

end

info
The returned value is one of the following:

true
The monitor was found and removed. In thiscase, no' DOAN message corresponding to this monitor has
been delivered and will not be delivered.

fal se
The monitor was not found and could not be removed. This probably because someone already has placed
a' DOAN' message corresponding to this monitor in the caller message queue.

If option i nf o iscombined with optionf | ush, f al se isreturned if aflush was needed, otherwiset r ue.

Note:

More options can be added in afuture release.

Failures:

badar g

If Opti onLi st isnot alist.
badar g

If Opti onisaninvalid option.
badar g

The same failure as for demonitor/1.

disconnect node(Node) -> boolean() | ignored
Types:
Node = node()

Forces the disconnection of anode. This appearsto the node Node asif thelocal node has crashed. ThisBIFismainly
used in the Erlang network authentication protocols.

Returnst r ue if disconnection succeeds, otherwisef al se. If thelocal nodeisnot alive, i gnor ed is returned.

erlang:display(Term) -> true
Types:
Term = term()
Prints atext representation of Ter mon the standard output. On OSE, the term is printed to the ramlog.

Warning:
This BIF isintended for debugging only.

element (N, Tuple) -> term()
Types.

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

N = integer() >=1
1..tuple_size(Tuple)
Tuple = tuple()
Returns the Nth element (numbering from 1) of Tupl e, for example:

> element(2, {a, b, c}).
b

Allowed in guard tests.

erase() -> [{Key, Val}l
Types.
Key = Val = term()

Returns the process dictionary and deletesiit, for example:

> put(keyl, {1, 2, 3}),
put(key2, [a, b, c]),

erase().
[{keyl,6{1,2,3}},{key2,[a,b,c]}]

erase(Key) -> Val | undefined
Types:
Key = Val = term()

Returns the value Val associated with Key and deletes it from the process dictionary. Returns undef i ned if no
value is associated with Key.

Example:

> put(keyl, {merry, lambs, are, playing}),
X = erase(keyl),

{X, erase(keyl)}.

{{merry, lambs,are,playing},undefined}

error(Reason) -> no_return()
Types:
Reason = term()
Stops the execution of the calling process with the reason Reason, where Reason is any term. The exit reason is

{ Reason, Wher e}, whereWer e isalist of the functions most recently called (the current function first). Since
evaluating this function causes the process to terminate, it has no return value.

Example:

> catch error(foobar).
{'EXIT',{foobar, [{erl eval,do apply,5},
{erl eval,expr,5},

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

erlang

{shell,exprs,6},
{shell,eval exprs,6},
{shell,eval loop,3}1}}

error(Reason, Args) -> no _return()
Types:
Reason = term()
Args = [term()]
Stops the execution of the calling process with the reason Reason, where Reason is any term. The exit reason is
{Reason, Wher e}, whereWher e isalist of thefunctions most recently called (the current function first). Ar gs is

expected to be thelist of argumentsfor the current function; in Beam it is used to provide the arguments for the current
function in the term Wher e. Since evaluating this function causes the process to terminate, it has no return value.

exit(Reason) -> no return()
Types.
Reason = term()

Stops the execution of the calling process with exit reason Reason, where Reason isany term. Since evaluating this
function causes the process to terminate, it has no return value.

Example:

> exit(foobar).

** exception exit: foobar
> catch exit(foobar).
{'EXIT', foobar}

exit(Pid, Reason) -> true
Types:
Pid = pid() | port()
Reason = term()
Sends an exit signal with exit reason Reason to the process or port identified by Pi d.
The following behavior appliesif Reason isany term, except nor mal orkil | :

e If Pi disnot trapping exits, Pi d itself exits with exit reason Reason.

« If Pi distrapping exits, the exit signal istransformed into amessage{' EXI T', From Reason} and
delivered to the message queue of Pi d.

e Fromisthe processidentifier of the process that sent the exit signal. See also process flag/2.

If Reason istheatom nor mal , Pi d doesnot exit. If it istrapping exits, the exit signal istransformed into a message
{"EXIT", From nornmal} and delivered to its message queue.

If Reason istheatom ki | | , that is, if exi t (Pid, Kkill) iscaled, an untrappable exit signal is sent to Pi d,
which unconditionally exits with exit reason ki | | ed.

erlang:external_size(Term) -> integer() >= 0
Types:

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Term = term()

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies aways.

> Sizel = byte size(term to binary()),
> Size2 = erlang:external size(),

> true = Sizel =< Size2.

true

Thisisequivaent to acall to:

erlang:external size(, [])

erlang:external size(Term, Options) -> integer() >= 0

Types:
Term = term()
Options = [{minor _version, Version :: integer() >= 0}]

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies aways.

> Sizel = byte size(term to binary(,)),
> Size2 erlang:external size(,),

> true = Sizel =< Size2.

true

Option {m nor _version, Version} specifies how floats are encoded. For a detailed description, see
term to_binary/2.

float (Number) -> float()
Types:
Number = number()
Returns afloat by converting Nunber to afloat, for example:

> float(55).
55.0

Allowed in guard tests.

Note:

If used on the top level in a guard, it tests whether the argument is a floating point number; for clarity, use
is float/1 instead.

When f | oat / 1 isused in an expression in aguard, such as'f | oat (A) == 4. 0/, it converts a number as
described earlier.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

erlang

float to binary(Float) -> binary()
Types:
Float = float()
Thesameasfl oat _to_binary(Float,[{scientific, 20}]).

float to binary(Float, Options) -> binary()
Types:

Float = float()

Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a binary corresponding to the text representation of Fl oat using fixed decimal point formatting. Opt i ons
behavesin the same way asfloat_to_list/2.

Examples:

> float to binary(7.12, [{decimals, 4}1).
<<"7.1200">>

> float to binary(7.12, [{decimals, 4}, compact]).
<<"7.12">>

float to list(Float) -> string()
Types:
Float = float()
Thesameasfl oat _to_list(Float,[{scientific,20}]).

float to list(Float, Options) -> string()
Types:

Float = float()

Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a string corresponding to the text representation of FI oat using fixed decimal point formatting. The options
are asfollows:

» If optiondeci nal s isspecified, the returned value contains at most Deci mal s number of digits past the
decimal point. If the number does not fit in the internal static buffer of 256 bytes, the function throws badar g.

« |f option conpact isprovided, thetrailing zeros at the end of the list are truncated. This option isonly
meaningful together with option deci nmal s.

« Ifoptionscientifi c isprovided, thefloat isformatted using scientific notation with Deci mal s digits of
precision.

« IfOptionsis[],thefunction behavesasfloat to list/1.

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Examples:

> float to list(7.12, [{decimals, 4}]).

"7.1200"

> float to list(7.12, [{decimals, 4}, compact]).
II7. 12"

erlang:fun_info(Fun) -> [{Item, Info}]
Types.
Fun = function()
Item =
arity |
env |
index |
name |
module |
new index |
new uniq |
pid |
type |
uniq
Info = term()
Returns alist with information about the fun Fun. Each list element is a tuple. The order of the tuples is undefined,
and more tuples can be added in afuture release.

Warning:

ThisBIF ismainly intended for debugging, but it can sometimes be useful in library functionsthat need to verify,
for example, the arity of afun.

Two types of funs have sightly different semantics:

e Afuncreatedby fun M F/ Aiscalled an external fun. Calling it will always call the function F with arity Ain
the latest code for module M Notice that module Mdoes not even need to be loaded whenthefunfun M F/ A
is created.

* All other funsare called local. When alocal fun is called, the same version of the code that created the fun is
called (even if anewer version of the module has been loaded).

The following elements are always present in the list for both local and external funs:
{type, Type}

Typeisl ocal orexternal.
{nodul e, Modul e}

Modul e (an atom) isthe module name.

If Fun isalocal fun, Modul e isthe module in which the fun is defined.

If Fun isan external fun, Modul e isthe module that the fun refersto.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

erlang

{nane, Nane}
Nane (an atom) is a function name.

If Fun isaloca fun, Nane isthe name of the local function that implements the fun. (This name was generated
by the compiler, and is only of informational use. Asitisalocal function, it cannot be called directly.) If no code
iscurrently loaded for the fun, [] isreturned instead of an atom.

If Fun isan externa fun, Name is the name of the exported function that the fun refersto.
{arity, Arity}
Ari ty isthe number of arguments that the funisto be called with.
{env, Env}
Env (alist) isthe environment or free variables for the fun. For external funs, the returned list is always empty.
The following elements are only present in the list if Fun islocal:
{pid, Pid}
Pi d isthe processidentifier of the process that originally created the fun.
{i ndex, I ndex}
I ndex (aninteger) is an index into the module fun table.
{new_i ndex, | ndex}
I ndex (aninteger) is anindex into the module fun table.
{new_uni g, Uni g}
Uni q (abinary) isaunique value for thisfun. It is calculated from the compiled code for the entire module.
{uni q, Uniq}

Uni g (aninteger) isaunique value for this fun. Asfrom OTP R15, thisinteger is calculated from the compiled
code for the entire module. Before OTP R15, this integer was based on only the body of the fun.

erlang:fun_info(Fun, Item) -> {Item, Info}
Types:
Fun = function()
Item = fun_info_item()
Info = term()
fun _info _item() =
arity |
env |
index |
name |
module |
new_index |
new_uniq |
pid |
type |
uniq
Returnsinformation about Fun as specified by | t em intheform {1t em I nf 0}.
For any fun, | t emcan be any of the atoms nodul e, nane, arity, env,ortype.

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

For aloca fun, I t emcan aso be any of the atoms i ndex, new_i ndex, new_uni g, uni g, and pi d. For an
external fun, the value of any of theseitemsis always the atom undef i ned.

See erlang:fun_info/1.

erlang:fun to list(Fun) -> string()
Types.
Fun = function()
Returns a string corresponding to the text representation of Fun.

erlang:function exported(Module, Function, Arity) -> boolean()
Types.

Module = module()

Function = atom()

Arity = arity()

Returnst r ue if the module Modul e isloaded and contains an exported function Funct i on/ Ari ty, or if thereis
aBIF (abuilt-in function implemented in C) with the given name, otherwise returnsf al se.

Note:
This function used to return false for built-in functions before the 18.0 rel ease.

garbage collect() -> true

Forces an immediate garbage collection of the executing process. The function is not to be used unless it has been
noticed (or there are good reasons to suspect) that the spontaneous garbage collection will occur too late or not at all.

Warning:

Improper use can seriously degrade system performance.

garbage collect(Pid) -> GCResult
Types:

Pid = pid()

GCResult = boolean()
Thesameasgar bage collect(Pid, []).

garbage collect(Pid, OptionList) -> GCResult | async
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

erlang

Pid = pid()
RequestId = term()
Option = {async, RequestId}
OptionList = [Option]
GCResult = boolean()
Garbage collects the node local process identified by Pi d.
The available Opt i onsare asfollows:

{async, RequestI d}
Thefunction gar bage_col | ect/ 2 returnsthe value async immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{garbage_col l ect, Requestld, GCResult}.

If Pi d equalssel f (), and noasync option has been passed, the garbage collection is performed at once, that is,
the same as calling garbage _collect/0. Otherwise a request for garbage collection is sent to the process identified by
Pi d, and will be handled when appropriate. If no async option has been passed, the caller blocks until GCResul t
is available and can be returned.

CCResul t informs about the result of the garbage collection request as follows:

true
The processidentified by Pi d has been garbage collected.

fal se
No garbage collection was performed, as the process identified by Pi d terminated before the request could be
satisfied.

Notice that the same caveats apply as for garbage_collect/O.

Failures:

badar g

If Pi d isnot anodelocal process identifier.
badar g

If Opti onLi st isaninvalid list of options.

get() -> [{Key, Val}]
Types:
Key = Val = term()

Returns the process dictionary asalist of { Key, Val } tuples, for example:

> put(keyl, merry),

put (key2, lambs),

put (key3, {are, playing}),

get().

[{keyl,merry}, {key2,lambs}, {key3,{are,playing}}]

get(Key) -> Val | undefined
Types:
Key = Val = term()

Returnsthe value Val associated with Key in the process dictionary, or undef i ned if Key does not exist.
Example:

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> put(keyl, merry),

put (key2, lambs),

put({any, [valid, term]}, {are, playing}),
get({any, [valid, term]}).

{are,playing}

erlang:get cookie() -> Cookie | nocookie
Types:
Cookie = atom()

Returns the magic cookie of the local node if the node is alive, otherwise the atom nocooki e.

get keys() -> [Key]
Types:
Key = term()
Returns alist of keys all keys present in the process dictionary.

> put(dog, {animal,1l}),
put(cow, {animal,2}),
put(lamb, {animal,3}),
get keys().
[dog, cow, lamb]

get keys(Val) -> [Key]
Types:
Val = Key = term()

Returns alist of keysthat are associated with the value Val in the process dictionary, for example:

> put(mary, {1, 2}),
put(had, {1, 2}),

put(a, {1, 2}),
put(little, {1, 2}),
put(dog, {1, 3}),
put(lamb, {1, 2}),

get keys({1l, 2}).
[mary,had,a,little, lamb]

erlang:get stacktrace() -> [stack_iten()]
Types.
stack item() =
{Module :: module(),

Function :: atom(),
Arity :: arity() | (Args :: [term()]),
Location

[{file, Filename :: string()} |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

erlang

{line, Line :: integer() >= 1}1}

Gets the call stack back-trace (stacktrace) of the last exception in the caling process as a list of
{Modul e, Function, Arity, Locati on} tuples. Field Ari ty inthefirst tuple can be the argument list of that
function call instead of an arity integer, depending on the exception.

If there has not been any exceptionsin aprocess, the stacktraceis|] . After acode changefor the process, the stacktrace
canasoberesetto[] .

The stacktrace is the same data as the cat ch operator returns, for example:
{'EXIT ,{badarg, Stacktrace}} = catch abs(x)

Locat i on isa(possibly empty) list of two-tuples that can indicate the location in the source code of the function.
Thefirst element is an atom describing the type of information in the second element. The following items can occur:
file
The second element of the tupleisastring (list of characters) representing the file name of the source file of the
function.
line
The second element of the tuple is the line number (an integer greater than zero) in the source file where the
exception occurred or the function was called.

See also erlang:error/1 and erlang:error/2.

group leader() -> pid()
Returns the processidentifier of the group leader for the process evaluating the function.

Every process is a member of some process group and al groups have a group leader. All 1/0O from the group is
channeled to the group leader. When anew processis spawned, it gets the same group leader as the spawning process.
Initially, at system start-up, i ni t isboth its own group leader and the group leader of all processes.

group leader(GroupLeader, Pid) -> true
Types.
GrouplLeader = Pid = pid()
Sets the group leader of Pi d to Gr oupLeader . Typicaly, thisis used when a process started from a certain shell
isto have another group leader thani ni t .

See also group_leader/0.

halt() -> no_return()
Thesameashal t (0, []).
Example:

> halt().
0s_prompt%

halt(Status) -> no_return()
Types:

Status = integer() >= 0 | abort | string()
Thesameashal t (Status, []).

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Example:

> halt(17).
os_prompt%s echo $?
17

0s_prompts%

halt(Status, Options) -> no _return()

Types:
Status = integer() >= 0 | abort | string()
Options = [Option]
Option = {flush, boolean()}

St at us must be anon-negative integer, astring, or the atom abor t . Halts the Erlang runtime system. Has no return
value. Depending on St at us, the following occurs:

integer()

The runtime system exits with integer value St at us as status code to the calling environment (OS).
string()

An Erlang crash dump is produced with St at us as slogan. Then the runtime system exits with status code 1.
abort

The runtime system aborts producing a core dump, if that is enabled in the OS.

Note:

On many platforms, the OS supports only status codes 0-255. A too large status code will be truncated by clearing
the high bits.

For integer St at us, the Erlang runtime system closes al ports and allows async threads to finish their operations
before exiting. To exit without such flushing, use Opt i on as{f | ush, f al se}.

For statuses st ri ng() andabort, optionf | ush isignored and flushing is not done.

erlang:hash(Term, Range) -> integer() >=1
Types:
Term = term()
Range = integer() >=1
Returns a hash value for Ter mwithin therange 1. . Range. The maximum range is 1..227-1.

Warning:

This BIF is deprecated, as the hash value can differ on different architectures. The hash values for integer terms
higher than 2727 and large binaries are poor. The BIF is retained for backward compatibility reasons (it can
have been used to hash records into a file), but all new code is to use one of the BIFs er | ang: phash/ 2 or
er |l ang: phash2/ 1, 2 instead.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

erlang

hd(List) -> term()
Types:
List = [term(), ...]
Returns the head of Li st , that is, the first element, for example:

> hd([1,2,3,4,5]).
1

Allowed in guard tests.
Failure: badar g if Li st istheempty list[] .

erlang:hibernate(Module, Function, Args) -> no _return()
Types:
Module = module()
Function = atom()
Args = [term()]
Puts the calling process into a wait state where its memory allocation has been reduced as much as possible. Thisis
useful if the process does not expect to receive any messages soon.

The process is awaken when amessage is sent to it, and control resumesin Modul e: Funct i on with the arguments
given by Ar gs with the call stack emptied, meaning that the process terminates when that function returns. Thus
erl ang: hi ber nat e/ 3 never returnstoitscaler.

If the process has any messagein its message queue, the processis awakened immediately in the same way as described
earlier.

Inmoretechnical terms,whater | ang: hi ber nat e/ 3 doesisthefollowing. It discardsthecall stack for the process,
and then garbage collects the process. After this, al live datais in one continuous heap. The heap is then shrunken to
the exact same size asthe live data that it holds (even if that size isless than the minimum heap size for the process).

If the size of the live datain the processis|ess than the minimum heap size, thefirst garbage collection occurring after
the process is awakened ensures that the heap size is changed to a size not smaller than the minimum heap size.

Notice that emptying the call stack means that any surrounding cat ch is removed and must be reinserted after
hibernation. One effect of this is that processes started using proc_| i b (also indirectly, such as gen_ser ver
processes), are to use proc_lib: hibernate/3 instead, to ensure that the exception handler continues to work when the
process wakes up.

erlang:insert element(Index, Tuplel, Term) -> Tuple2
Types.

Index = integer() >=1

1.tuple_size(Tuplel) + 1

Tuplel = Tuple2 = tuple()

Term = term()

Returns a new tuple with element Ter minserted at position | ndex in tuple Tupl el. All elements from position
I ndex and upwards are pushed one step higher in the new tuple Tupl e2.

Example:

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> erlang:insert _element(2, {one, two, three}, new).
{one, new, two, three}

integer to binary(Integer) -> binary()
Types:
Integer = integer()
Returns a binary corresponding to the text representation of | nt eger , for example:

> integer to binary(77).
<<||77||>>

integer to binary(Integer, Base) -> binary()

Types:
Integer = integer()
Base = 2..36

Returns a binary corresponding to the text representation of | nt eger in base Base, for example:

> integer to binary(1023, 16).
<<"3FF">>

integer to list(Integer) -> string()
Types:
Integer = integer()
Returns a string corresponding to the text representation of | nt eger , for example:

> integer to list(77).
wggn

integer to list(Integer, Base) -> string()

Types.
Integer = integer()
Base = 2..36

Returns a string corresponding to the text representation of | nt eger in base Base, for example:

> integer to list(1023, 16).
II3FFII

iolist to binary(IoListOrBinary) -> binary()
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

erlang

IoListOrBinary = iolist() | binary()
Returns a binary that is made from the integers and binariesin | oLi st Or Bi nar y, for example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> iolist to binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

iolist size(Item) -> integer() >= 0
Types:
Item = iolist() | binary()

Returns an integer that is the size in bytes of the binary that would betheresult of i ol i st _to_binary(lten),
for example:

> iolist size([1,2|<<3,4>>]).
4

is alive() -> boolean()
Returnst r ue if thelocal nodeisalive (that is, if the node can be part of a distributed system), otherwisef al se.

is atom(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan atom, otherwisef al se.

Allowed in guard tests.

is binary(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misabinary, otherwisef al se.
A binary always contains a complete number of bytes.

Allowed in guard tests.

is bitstring(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misabitstring (including abinary), otherwisef al se.

Allowed in guard tests.

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

is boolean(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mistheatomt r ue or theatom f al se (that is, aboolean). Otherwise returnsf al se.

Allowed in guard tests.

erlang:is builtin(Module, Function, Arity) -> boolean()
Types:
Module = module()
Function = atom()
Arity = arity()
This BIF isuseful for builders of cross-reference tools.
Returnst r ue if Modul e: Function/ Ari ty isaBIFimplemented in C, otherwisef al se.

is float(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misafloating point number, otherwise f al se.

Allowed in guard tests.

is function(Term) -> boolean()
Types:

Term = term()
Returnst r ue if Ter misafun, otherwisef al se.

Allowed in guard tests.

is function(Term, Arity) -> boolean()
Types:
Term = term()
Arity = arity()
Returnst r ue if Ter misafun that can be applied with Ar i t y number of arguments, otherwisef al se.
Allowed in guard tests.

is _integer(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer, otherwisef al se.

Allowed in guard tests.

is list(Term) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

erlang

Term = term()
Returnst r ue if Ter misalist with zero or more elements, otherwise f al se.
Allowed in guard tests.

is map(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misamap, otherwisef al se.

Allowed in guard tests.

is number(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer or afloating point number. Otherwise returnsf al se.

Allowed in guard tests.

is pid(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaprocessidentifier, otherwisef al se.

Allowed in guard tests.

is port(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaport identifier, otherwisef al se.

Allowed in guard tests.

is process alive(Pid) -> boolean()
Types:
Pid = pid()
Pi d must refer to a process at the local node.
Returnst r ue if the process exists and is aive, that is, is not exiting and has not exited. Otherwise returnsf al se.

is _record(Term, RecordTag) -> boolean()
Types:

Term = term()

RecordTag = atom()

Returnst r ue if Ter misatuple and itsfirst element isRecor dTag. Otherwisereturnsf al se.

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

Normally the compiler treatscallstoi s_r ecor d/ 2 specialy. It emits code to verify that Ter misatuple, that
its first element is Recor dTag, and that the size is correct. However, if Recor dTag is not aliteral atom, the
BIFi s_record/ 2 iscdledinstead and the size of the tupleis not verified.

Allowed in guard tests, if Recor dTag isaliteral atom.

is _record(Term, RecordTag, Size) -> boolean()
Types.
Term = term()
RecordTag = atom()
Size = integer() >= 0
Recor dTag must be an atom.
Returnst r ue if Ter misatuple, itsfirst elementisRecor dTag, and itssizeis Si ze. Otherwisereturnsf al se.

Allowed in guard testsif Recor dTag isaliteral atom and Si ze isalitera integer.

Note:

This BIF is documented for completeness. Usually i s_r ecor d/ 2 isto be used.

is reference(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misareference, otherwisef al se.

Allowed in guard tests.

is tuple(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misatuple, otherwisef al se.

Allowed in guard tests.

length(List) -> integer() >= 0
Types:

List = [term()]
Returns the length of Li st , for example:

> length([1,2,3,4,5,6,7,8,91).
9

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

erlang

Allowed in guard tests.

link (PidOrPort) -> true
Types.
PidOrPort = pid() | port()

Createsalink between the calling process and another process (or port) Pi dOr Por t | if thereisnot such alink already.

If aprocess attempts to create alink to itself, nothing is done. Returnst r ue.

If Pi dOr Port does not exist, the behavior of the BIF depends on if the calling process is trapping exits or not (see

process flag/2):

« |f thecalling processis not trapping exits, and checking Pi dOr Por t ischeap (that is, if Pi dOr Port islocal),

I i nk/ 1 failswith reason nopr oc.

» Otherwise, if the calling processis trapping exits, and/or Pi dOr Por t isremote, | i nk/ 1 returnst r ue, but an

exit signal with reason nopr oc is sent to the calling process.

list to atom(String) -> atom()
Types.
String = string()

Returns the atom whose text representationis St r i ng.

St ri ng canonly contain | SO-latin-1 characters (that is, numbers less than 256) as the implementation does not allow
unicode characters equal to or above 256 in atoms. For more information on Unicode support in atoms, see note on

UTF-8 encoded atoms in Section "External Term Format" in the User's Guide.
Example:

> list to atom("Erlang").
‘Erlang’

list to binary(IolList) -> binary()
Types:
IoList = iolist()
Returns a binary that is made from the integers and binariesin | oLi st , for example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> list to binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

list to bitstring(BitstringlList) -> bitstring()
Types.

BitstringlList = bitstring list()

bitstring list() =

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

maybe improper list(byte() | bitstring() | bitstring_list(),
bitstring() | [1)

Returns a bitstring that is made from the integers and bitstrings in Bi t stringlLi st. (The last tal in
Bi t stringLi st isallowed to be abitstring.)

Example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6,7:4>>.

<<6,7:4>>

> list_to_bitstring([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6,7:4>>

list to existing atom(String) -> atom()
Types:
String = string()
Returns the atom whose text representation is St r i ng, but only if there already exists such atom.
Failure: badar g if there does not aready exist an atom whose text representation isSt r i ng.

list to float(String) -> float()
Types:
String = string()
Returns the float whose text representation is St r i ng, for example:

> list to float("2.2017764e+0").
2.2017764

Failure: badar g if St ri ng contains a bad representation of afloat.
list to integer(String) -> integer()
Types:

String = string()
Returns an integer whose text representation is St r i ng, for example:

> list to integer("123").
123

Failure: badar g if St ri ng contains abad representation of an integer.

list to integer(String, Base) -> integer()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

erlang

String = string()
Base = 2..36
Returns an integer whose text representation in base Base is St r i ng, for example:

> list to integer("3FF", 16).
1023

Failure: badar g if St ri ng contains a bad representation of an integer.
list to pid(String) -> pid()
Types:

String = string()
Returns a process identifier whose text representationisa St r i ng, for example:

> list to pid("<0.4.1>").
<0.4.1>

Failure: badar g if St ri ng contains a bad representation of a process identifier.

Warning:
This BIF isintended for debugging and is not to be used in application programs.

list to tuple(List) -> tuple()
Types:

List = [term()]
Returns atuple corresponding to Li st , for example

> list to tuple([share, ['Ericsson B', 1631]).
{share, ['Ericsson B', 163]}

Li st can contain any Erlang terms.

load module(Module, Binary) -> {module, Module} | {error, Reason}

Types.
Module = module()
Binary = binary()
Reason = badfile | not purged | on_load

If Bi nary contains the object code for module Modul e, this BIF loads that object code. If the code for module
Modul e already exists, all export references are replaced so they point to the newly loaded code. The previously
loaded code is kept in the system as old code, as there can still be processes executing that code.

Returns either { nodul e, Mdul e},or{error, Reason} if loadingfails. Reason isany of the following:

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

badfil e

The object code in Bi nar y has an incorrect format or the object code contains code for another module than
Modul e.

not _purged
Bi nar y contains amodule that cannot be loaded because old code for this module already exists.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used el sewhere.

erlang:load nif(Path, LoadInfo) -> ok | Error
Types.

Path = string()

LoadInfo = term()

Error = {error, {Reason, Text :: string()}}

Reason =
load failed | bad lib | load | reload | upgrade | old code

Note:

Before OTP R14B, NIFs were an experimental feature. Versions before OTP R14B can have different and
possibly incompatible NIF semantics and interfaces. For example, in OTP R13B03 the return value on failure
was{error, Reason, Text}.

Loads and links a dynamic library containing native implemented functions (NIFs) for amodule. Pat h is afile path
to the shareable object/dynamic library file minus the OS-dependent file extension (. so for Unix and . dl | for
Windows. For information on how to implement aNIF library, see erl_nif.

Loadl nf o can be any term. It is passed on to the library as part of the initialization. A good practiceisto include a
module version number to support future code upgrade scenarios.

Thecadl tol oad_ni f/ 2 must be made directly from the Erlang code of the module that the NIF library belongs to.
It returns either ok, or { err or, { Reason, Text } } if loading fails. Reason is one of the following atoms while
Text isahuman readable string that can give more information about the failure:

| oad_failed
The OSfailed to load the NIF library.
bad_lib
The library did not fulfill the requirements as a NIF library of the calling module.
load | reload | upgrade
The corresponding library callback was unsuccessful.
ol d_code
Thecall tol oad_ni f/ 2 was made from the old code of a module that has been upgraded; thisis not allowed.

erlang:loaded() -> [Module]
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

erlang

Module = module()
Returns alist of all loaded Erlang modules (current and old code), including preloaded modules.
See also code(3).

erlang:localtime() -> DateTime
Types:
DateTime = cal endar: dateti nme()
Returnsthecurrent local dateandtime, { { Year, Mont h, Day}, {Hour, M nute, Second}},forexample

> erlang:localtime().
{{1996,11,6},{14,45,17}}

The time zone and Daylight Saving Time correction depend on the underlying OS.

erlang:localtime to universaltime(Localtime) -> Universaltime
Types:
Localtime = Universaltime = cal endar: dateti me()

Convertslocal date and timeto Universal Time Coordinated (UTC), if supported by the underlying OS. Otherwise no
conversionisdoneand Local ti e isreturned.

Example:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}).
{{1996,11,6},{13,45,17}}

Failure: badar g if Local ti nme denotesaninvalid date and time.

erlang:localtime to universaltime(Localtime, IsDst) ->
Universaltime
Types.
Localtime = Universaltime = cal endar: dateti me()
IsDst = true | false | undefined

Converts local date and time to Universal Time Coordinated (UTC) as
erlang:localtine_to_universaltine/1,butthecaler decidesif Daylight Saving Timeis active.

If |sDst == true, Localtine is during Daylight Saving Time, if | sDst == false it
is not. If |sDst == undefi ned, the underlying OS can guess, which is the same as calling
erlang:localtine_to_universaltinme(Localtine).

Examples:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, true).
{{1996,11,6},{12,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, false).
{{1996,11,6},{13,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, undefined).

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{{1996,11,6},{13,45,17}}
Failure: badar g if Local ti me denotesaninvalid date and time.

make ref() -> reference()
Returns a unique reference. The reference is unique among connected nodes.

Warning:

Known issue: When a node is restarted multiple times with the same node name, references created on a newer
node can be mistaken for areference created on an older node with the same node name.

erlang:make tuple(Arity, InitialValue) -> tuple()
Types:
Arity = arity()
InitialValue = term()
Creates anew tuple of thegiven Ari t y, where al elementsarel ni ti al Val ue, for example:

> erlang:make tuple(4, []).
{01,11,11,11%

erlang:make tuple(Arity, DefaultValue, InitList) -> tuple()
Types.
Arity = arity()
DefaultValue = term()
InitList = [{Position :: integer() >= 1, term()}]
Creates a tuple of size Ari ty, where each element has value Def aul t Val ue, and then fills in values from
I nitList.Eachlistelementinl nitLi st must be atwo-tuple, where the first element is a position in the newly

created tuple and the second element isany term. If aposition occurs more than oncein the list, the term corresponding
to the last occurrence is used.

Example:
> erlang:make tuple(5, [1, [{2,ignored},{5,zz},{2,aa}]).
{{[1,aa,[1,[1,zz}

map size(Map) -> integer() >= 0
Types:
Map = #{}
Returns an integer, which is the number of key-value pairsin Map, for example:

> map_size(#{a=>1, b=>2, c=>3}).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

erlang

Allowed in guard tests.

max(Terml, Term2) -> Maximum
Types:
Terml = Term2 = Maximum = term()

Returnsthe largest of Ter nil and Ter nR. If theterms are equal, Ter m is returned.

erlang:md5(Data) -> Digest
Types:
Data = iodata()
Digest = binary()
Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes). Dat a isabinary
or alist of small integers and binaries.

For more information about MD5, see RFC 1321 - The MD5 Message-Digest Algorithm.

Warning:
The MD5 Message-Digest Algorithm is not considered safe for code-signing or software-integrity purposes.

erlang:md5 final(Context) -> Digest
Types:
Context = Digest = binary()

Finishes the update of an MD5 Cont ext and returns the computed MD5 message digest.

erlang:md5 init() -> Context
Types:
Context = binary()
Creates an M D5 context, to be used in subsequent callsto nd5_updat e/ 2.

erlang:md5 update(Context, Data) -> NewContext
Types.

Context = binary()

Data = iodata()

NewContext = binary()

Updates an MD5 Cont ext with Dat a and returns a NewCont ext .

erlang:memory() -> [{Type, Size}]
Types:

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Type = nmenory_type()
Size = integer() >= 0
memory type() =
total |
processes |
processes used |
system |
atom |
atom used |
binary |
code |
ets |
low |
maximum

Returns a list with information about memory dynamically alocated by the Erlang emulator. Each list element is a
tuple{ Type, Size}. Thefirst element Type isan atom describing memory type. The second element Si ze is
the memory sizein bytes.

The memory types are as follows:
t ot al

Thetotal amount of memory currently allocated. Thisisthe same asthe sum of the memory sizefor pr ocesses
andsystem

processes
Thetotal amount of memory currently allocated for the Erlang processes.
processes_used

The total amount of memory currently used by the Erlang processes. This is part of the memory presented as
processes memory.

system

Thetotal amount of memory currently allocated for the emulator that is not directly related to any Erlang process.
Memory presented as pr ocesses isnot included in this memory.

atom

The total amount of memory currently alocated for atoms. This memory is part of the memory presented as
syst emmemory.

at om used

The total amount of memory currently used for atoms. This memory is part of the memory presented as at om
memory.

bi nary

The total amount of memory currently allocated for binaries. This memory is part of the memory presented as
syst emmemory.

code

The total amount of memory currently allocated for Erlang code. This memory is part of the memory presented
assyst emmemory.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

erlang

ets

The total amount of memory currently allocated for ets tables. This memory is part of the memory presented as
syst emmemory.

| ow

Only on 64-bit halfword emulator. The total amount of memory allocated in low memory areasthat are restricted
to less than 4 GB, although the system can have more memory.

Can beremoved in afuture release of the halfword emulator.
maxi mum

The maximum total amount of memory allocated since the emulator was started. Thistupleis only present when
the emulator is run with instrumentation.

For information on how to run the emulator with instrumentation, see instrument(3) and/or erl(1).

Note:

The syst emvalue is not complete. Some allocated memory that is to be part of this valueis not.

When the emulator isrun with instrumentation, thesy st emvalueismore accurate, but memory directly allocated
for mal | oc (and friends) is till not part of the syst emvalue. Direct cals to mal | oc are only done from
OS-specific runtime libraries and perhaps from user-implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Asthet ot al valueisthe sum of pr ocesses and syst em the error in syst empropagates to the t ot al
value.

The different amounts of memory that are summed are not gathered atomically, which introduces an error in
the result.

The different values have the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

total = processes + system

processes = processes used + ProcessesNotUsed
system = atom + binary + code + ets + OtherSystem
atom = atom used + AtomNotUsed

RealTotal = processes + RealSystem

RealSystem = system + MissedSystem

More tuplesin the returned list can be added in afuture release.

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

Thet ot al valueis supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emulator stacks are not supposed to be included. That is, the
t ot al valueisnot supposed to be equal to the total size of all pages mapped to the emulator.

Furthermore, because of fragmentation and prereservation of memory areas, the size of the memory segments
containing the dynamically allocated memory blocks can be much larger than the total size of the dynamically
allocated memory blocks.

Note:

As from ERTS 5.6.4, er | ang: menory/ 0 requires that all erts alloc(3) allocators are enabled (default
behavior).

Failure: not sup if an erts_alloc(3) allocator has been disabled.

erlang:memory(Type :: nmenory_type()) -> integer() >= 0
erlang:memory(TypeList :: [nenory_type()]) ->
[{menory_type(), integer() >= 0}]
Types:
memory type() =

total |

processes |

processes used |

system |

atom |

atom used |

binary |

code |

ets |

low |

maximum

Returns the memory size in bytes allocated for memory of type Type. The argument can also be given as alist of
menory_type() atoms, in which case a corresponding list of { menory _type(), Size :: integer >=
0} tuplesisreturned.

Note:

Asfrom ERTS version 5.6.4, er | ang: nenor y/ 1 requiresthat all erts alloc(3) allocators are enabled (default
behavior).

Failures:

badar g
If Type isnot one of the memory types listed in the description of erlang: memory/O.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

erlang

badar g

If maxi mumis passed as Type and the emulator is not run in instrumented mode.
not sup

If an erts_alloc(3) alocator has been disabled.

See also erlang: memory/0

min(Terml, Term2) -> Minimum
Types.
Terml = Term2 = Minimum = term()

Returnsthe smallest of Ter ml and Ter n2. If theterms are equal, Ter ml is returned.

module loaded(Module) -> boolean()
Types:
Module = module()
Returnst r ue if the module Modul e isloaded, otherwisef al se. It does not attempt to load the module.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used el sewhere.

monitor(Type :: process, Item :: nonitor_process_identifier()) ->
MonitorRef

monitor(Type :: time offset, Item :: clock service) -> MonitorRef

Types:

MonitorRef = reference()
registered name() = atom()

registered process identifier() =
regi stered_nanme() | {registered_nanme(), node()}

monitor process identifier() =
pid() | registered_process_identifier()

Send amonitor request of type Ty pe to the entity identified by | t em Thecaller of noni t or / 2 will later be notified
by a monitor message on the following format if the monitored state is changed:

{Tag, , , Object, Info}

Note:
The monitor request is an asynchronous signal. That is, it takes time before the signal reaches its destination.

Valid Types:

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

process

Monitor the existence of the processidentifiedby | t em Valid | t ensin combinationwiththepr ocess Type
can be any of the following:

pi d()
The process identifier of the process to monitor.
{Regi st er edNane, Node}

A tuple consisting of a registered name of a process and a node name. The process residing on the node
Node with the registered name{ Regi st er edNarme, Node} will be monitored.

Regi st er edNane

The processlocally registered as Regi st er edNane will become monitored.

Note:

When aregistered name is used, the process that has the registered name when the monitor request reach
its destination will be monitored. The monitor is not effected if the registered name is unregistered, or
unregistered and later registered on another process.

The monitor is triggered either when the monitored process terminates, is non existing, or if the connection to it
islost. In the case the connection to it is lost, we do not know if it still exist or not. After this type of monitor
has been triggered, the monitor is automatically removed.

When the monitor istriggered a' DOWN' message is sent to the monitoring process. A ' DOAN' message has
the following pattern:

{'DOWN', MonitorRef, Type, Object, Info}

Here Moni t or Ref and Type are the same as described earlier, and:
hj ect
equals:

Item
If | t emis specified by aprocessidentifier.
{ Regi st eredNane, Node}

If | t emis specified asRegi st er edNane, or { Regi st er edNane, Node} where Node
corresponds to the node that the monitored process resides on.

Info

Either the exit reason of the process, nopr oc (non-existing process), or noconnect i on (no connection
to the node where the monitored process resides).

The monitoring is turned off when the' DOAN' message is sent or when demonitor/1 is called.

If an attempt is made to monitor aprocess on an older node (where remote process monitoring is not implemented
or where remote process monitoring by registered name is not implemented), the call failswith badar g.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

erlang

Note:

Theformat of the' DOAN message changed in ERTS version 5.2 (OTP R9B) for monitoring by registered
name. Element Cbj ect of the ' DOAN message could in earlier versions sometimes be the process
identifier of the monitored process and sometimes be the registered name. Now element Cbj ect isaways
atuple consisting of the registered name and the node name. Processes on new nodes (ERTS version 5.2
or higher) always get ' DOAN' messages on the new format even if they are monitoring processes on old
nodes. Processes on old nodes always get ' DOAN' messages on the old format.

time_of fset

Monitor changes in time offset between Erlang monotonic time and Erlang systemtime. There is only one valid
| t emin combination withthet i me_of f set Type, namely theatomcl ock_ser vi ce. Note that the atom
cl ock_servi ce isnot the registered name of a process. In this specific case it serves as an identifier of the
runtime system internal clock service at current runtime system instance.

The monitor is triggered when the time offset is changed. This either if the time offset value is changed, or if
the offset is changed from preliminary to final during finalization of the time offset when the single time warp
mode is used. When a change from preliminary to final time offset is made, the monitor will be triggered once
regardless of whether the time offset value was actually changed or not.

If the runtime systemisin multi time warp mode, the time offset will be changed when the runtime system detects
that the OS system time has changed. The runtime system will, however, not detect this immediately when it
happens. A task checking thetime offset is scheduled to execute at least once aminute, so under normal operation
this should be detected within a minute, but during heavy load it might take longer time.

The monitor will not be automatically removed after it has been triggered. That is, repeated changes of the time
offset will trigger the monitor repeatedly.

When the monitor is triggered a' CHANGE' message will be sent to the monitoring process. A ' CHANGE'
message has the following pattern:

{'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

where Moni t or Ref , Type, and | t emare the same as described above, and NewTi mef f set is the new
time offset.

When the ' CHANGE' message has been received you are guaranteed not to retrieve the old time offset when
calling erl ang: ti nme_of f set (). Note that you can observe the change of the time offset when calling
erlang:tine_of fset () beforeyou getthe' CHANGE' message.

Making severa callstononi t or/ 2 for thesamel t emand/or Ty pe isnot an error; it resultsin as many independent
monitoring instances.

The monitor functionality is expected to be extended. That is, other Typesand | t ens are expected to be supported
in afuture release.

Note:

If or when noni t or / 2 isextended, other possible valuesfor Tag, Cbj ect and | nf o in the monitor message
will be introduced.

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

monitor node(Node, Flag) -> true

Types:
Node = node()
Flag = boolean()

Monitors the status of the node Node. If Fl ag ist rue, monitoring is turned on. If Fl ag isf al se, monitoring
isturned off.

Making several calstononi t or _node(Node, true) for the same Node isnot an error; it results in as many
independent monitoring instances.

If Node fails or does not exist, the message { nodedown, Node} isdelivered to the process. If aprocess has made
two callstononi t or _node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, an attempt is made to create one. If this fails, anodedown message is
delivered.

Nodes connected through hidden connections can be monitored as any other nodes.

Failure: badar g if the local nodeis not alive.

erlang:monitor node(Node, Flag, Options) -> true

Types:
Node = node()
Flag = boolean()

Options = [Option]
Option = allow passive connect

Behaves as monitor_node/2 except that it allows an extra option to be given, namely al | ow_passi ve_connect .
This option alows the BIF to wait the normal network connection time-out for the monitored node to connect itself,
even if it cannot be actively connected from this node (that is, it is blocked). The state where this can be useful can
only be achieved by using the Ker nel option di st _aut o_connect once. If that option is not used, option
al | ow_passi ve_connect hasno effect.

Note:

Optional | ow_passi ve_connect isusedinternaly and isseldom needed in applications where the network
topology and the Ker nel optionsin effect are known in advance.

Failure: badar g if thelocal nodeis not aive or the option list is malformed.
erlang:monotonic time() -> integer()

Returns the current Erlang monotonic timein nat i ve time unit. Thisisamonotonically increasing time since some
unspecified point in time.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

erlang

Note:

This is a monotonically increasing time, but not a strictly monotonically increasing time. That is, consecutive
calstoer| ang: nonot oni c_t i me/ 0 can produce the same result.

Different runtime system instances will use different unspecified pointsin time as basefor their Erlang monotonic
clocks. That is, it is pointless comparing monotonic times from different runtime system instances. Different
runtime system instances may also place this unspecified point in time different relative runtime system start. It
may be placed in the future (time at start is a negative value), the past (time at start is a positive value), or the
runtime system start (time at start is zero). The monotonic time at runtime system start can be retrieved by calling
erl ang: systeminfo(start _tine).

erlang:monotonic time(Unit) -> integer()
Types:
Unit = tinme_unit()
Returns the current Erlang monotonic time converted into the Uni t passed as argument.

Same as caling erl ang: convert _tinme_unit(erlang: nonotonic_tinme(), native, Unit)
however optimized for commonly used Uni t s.

erlang:nif error(Reason) -> no return()
Types:
Reason = term()
Works exactly like erlang:error/1, but Di al yzer thinksthat this BIF will return an arbitrary term. When used in a

stub function for a NIF to generate an exception when the NIF library is not loaded, Di al yzer does not generate
false warnings.

erlang:nif error(Reason, Args) -> no return()
Types:
Reason = term()
Args = [term()]
Works exactly like erlang:error/2, but Di al yzer thinksthat this BIF will return an arbitrary term. When used in a

stub function for a NIF to generate an exception when the NIF library is not loaded, Di al yzer does not generate
false warnings.

node() -> Node
Types.
Node = node()
Returns the name of the local node. If the node is not alive, nonode@ohost isreturned instead.

Allowed in guard tests.

node(Arg) -> Node
Types.

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Arg = pid() | port() | reference()
Node = node()

Returns the node where Ar g originates. Ar g can be a process identifier, a reference, or a port. If the local node is
not alive, nonode@ohost isreturned.

Allowed in guard tests.

nodes() -> Nodes
Types:
Nodes = [node()]
Returns alist of all visible nodesin the system, except the local node. Same asnodes(vi si bl e) .

nodes(Arg) -> Nodes

Types.
Arg = NodeType | [NodeType]
NodeType = visible | hidden | connected | this | known
Nodes = [node()]

Returns alist of nodes according to the argument given. The returned result when the argument isalist, isthe list of
nodes satisfying the disunction(s) of thelist elements.

NodeType can be any of the following:
visible

Nodes connected to this node through normal connections.
hi dden

Nodes connected to this node through hidden connections.
connect ed

All nodes connected to this node.
this

This node.
known

Nodes that are known to this node. That is, connected nodes and nodes referred to by process identifiers, port
identifiers and references located on this node. The set of known nodes is garbage collected. Notice that this
garbage collection can be delayed. For more information, see delayed_node_table gc.

Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible, hidden]),
andnodes() = nodes(visible).

now() -> Timestamp
Types:
Timestamp = ti nestanp()

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

erlang

MicroSecs :: integer() >= 0}

Warning:

This function is deprecated! Do not use it! See the users guide chapter Time and Time Correction for more
information. Specifically the Dos and Dont's section for information on what to useinstead of er | ang: now/ 0.

Returnsthetuple{ MegaSecs, Secs, M croSecs} whichistheelapsedtimesince00:00 GMT, January 1, 1970
(zero hour), on the assumption that the underlying OS supports this. Otherwise some other point in time is chosen.
It is also guaranteed that subsequent calls to this BIF return continuously increasing values. Hence, the return value
from now() can be used to generate unique time-stamps. If it is called in a tight loop on a fast machine, the time
of the node can become skewed.

Can only be used to check the local time of day if the time-zone information of the underlying OS is properly
configured.

open_port(PortName, PortSettings) -> port()

Types:
PortName =
{spawn, Command :: string() | binary()} |
{spawn_driver, Command :: string() | binary()} |
{spawn_executable, FileName :: file:nanme()} |

{fd, In :: integer() >= 0, Out :: integer() >= 0}
PortSettings = [Opt]
Opt =
{packet, N :: 1 | 2 | 4} |
stream |
{line, L :: integer() >= 0} |
{cd, Dir :: string() | binary()} |
{env, Env :: [{Name :: string(), Val :: string() | false}l} |
{args, [string() | binary()1} |
{arg0, string() | binary()} |
exit status |
use stdio |
nouse stdio |
stderr_to stdout |
in |
out |
binary |
eof |
{parallelism, Boolean :: boolean()} |
hide
Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an externa Erlang process.

The name of the executable as well as the arguments givenin cd, env, ar gs, and ar g0 are subject to Unicode file
name trandation if the system is running in Unicode file name mode. To avoid trandlation or to force, for example
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. For details, see the module file,
the function file:native_name_encoding/0, and the STDLIB User's Guide.

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

The characters in the name (if given as a list) can only be higher than 255 if the Erlang Virtual Machine is
started in Unicode file name transl ation mode. Otherwise the name of the executable is limited to the |SO-latin-1
character set.

Por t Name can be any of the following:
{spawn, Comand}

Starts an external program. Comand is the name of the external program to be run. Cormand runs outside the
Erlang work space unless an Erlang driver with the name Conmmand is found. If found, that driver is started. A
driver runsin the Erlang work space, which means that it is linked with the Erlang runtime system.

When starting external programson Solaris, thesystemcall vf or k isusedin preferencetof or k for performance
reasons, athough it has a history of being less robust. If there are problems using vf or k, setting environment
variable ERL_NO_VFORK to any value causesf or k to be used instead.

For external programs, PATH is searched (or an equivalent method is used to find programs, depending on OS).
This is done by invoking the shell on certain platforms. The first space-separated token of the command is
considered as the name of the executable (or driver). This (among other things) makes this option unsuitable for
running programs having spaces in file names or directory names. If spaces in executable file names are desired,
use{ spawn_execut abl e, Conmand} instead.

{spawn_dri ver, Comrand}

Workslike{ spawn, Comuand}, but demandsthefirst (space-separated) token of the command to be the name
of aloaded driver. If no driver with that name isloaded, abadar g error israised.

{spawn_execut abl e, Fil eNane}

Workslike{ spawn, Fi | eName}, but only runs external executables. Fi | eNare initswholeis used as the
name of the executable, including any spaces. If arguments are to be passed, the Port Set t i ngs ar gs and
ar g0 can be used.

The shell isusually not invoked to start the program, it is executed directly. PATH (or equivalent) is not searched.
To find aprogram in PATH to execute, use os.find_executable/1.

Only if ashell script or . bat file is executed, the appropriate command interpreter is invoked implicitly, but
thereis still no command argument expansion or implicit PATH search.

If Fi | eNanme cannot be run, an error exception is raised, with the POSIX error code as the reason. The error
reason can differ between OSs. Typicaly the error enoent israised when an attempt is made to run a program
that is not found and eacces israised when the given file is not executable.

{fd, In, Qut}

Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor | n
can be used for standard input, and the file descriptor Qut for standard output. It isonly used for various servers
inthe Erlang OS (shel | and user). Hence, itsuseis limited.

Port Set ti ngs isalist of settings for the port. The valid settings are as follows:

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. The valid values for
Narel, 2, and 4.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

erlang

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{l'ine, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent new line sequence) is
delivered in a single message. The message data format is{ Fl ag, Li ne}, where Fl ag iseol or noeol ,
and Li ne isthe data delivered (without the new line sequence).

L specifiesthe maximum linelength in bytes. Lineslonger than this are delivered in more than one message, with
Fl ag set to noeol for al but the last message. If end of file is encountered anywhere else than immediately
following a new line sequence, the last line is also delivered with Fl ag set to noeol . Otherwise lines are
delivered with Fl ag setto eol .

The{packet, N} and{line, L} settingsare mutualy exclusive.
{cd, Dir}

Only valid for { spawn, Conmand} and { spawn_execut abl e, Fil eNane}. The external program
startsusing Di r asitsworking directory. Di r must be a string.

{env, Env}

Only valid for { spawn, Command} and { spawn_execut abl e, Fi | eName}. The environment of the
started process is extended using the environment specificationsin Env.

Env isto be alist of tuples{ Nane, Val }, where Nane isthe name of an environment variable, and Val is
the value it is to have in the spawned port process. Both Nane and Val must be strings. The one exception is
Val beingtheatomf al se (in analogy with os: get env/ 1), which removes the environment variable.

{args, [string() | binary()]}

Only valid for { spawn_execut abl e, Fil eNane} and specifies arguments to the executable. Each
argument is given as a separate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, asimilar behavior is mimicked.

The arguments are not expanded by the shell before being supplied to the executable. Most notably this means
that file wild card expansion does not happen. To expand wild cards for the arguments, use filelib:wildcard/1.
Notice that even if the program is a Unix shell script, meaning that the shell ultimately is invoked, wild card
expansion does not happen, and the script is provided with the untouched arguments. On Windows, wild card
expansion is always up to the program itself, therefore thisis not an issue issue.

The executable name (also known as ar gv[0]) is not to be given in this list. The proper executable name is
automatically used as argv[0], where applicable.

If you explicitly want to set the program name in the argument vector, option ar g0 can be used.

{arg0, string() | binary()}

Only vaid for { spawn_execut abl e, Fil eNane} and explicitly specifies the program name argument
when running an executable. This can in some circumstances, on some OSs, be desirable. How the program
responds to thisis highly system-dependent and no specific effect is guaranteed.

exit_status

Only vaid for {spawn, Conmand}, where Conmand refers to an external program, and for
{spawn_execut abl e, Fil eNane}.

When the externa process connected to the port exits, a message of the form {Port,
{exit_status, Status}} issenttothe connected process, where St at us isthe exit status of the external
process. If the program aborts on Unix, the same convention is used as the shellsdo (that is, 128+signal).

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If option eof isalso given, the messageseof andexit st at us appear in an unspecified order.
If the port program closesits st dout without exiting, option exi t _st at us does not work.
use_stdio

Only vaidfor { spawn, Comand} and{ spawn_execut abl e, Fi | eNane}.Italowsthestandardinput
and output (file descriptors 0 and 1) of the spawned (Unix) process for communication with Erlang.

nouse_stdio
The opposite of use_st di 0. It usesfile descriptors 3 and 4 for communication with Erlang.
stderr_to_stdout

Affects ports to external programs. The executed program gets its standard error file redirected to its standard
output file. st derr _t o_st dout and nouse_st di o are mutually exclusive.

over |l apped_io

Affects ports to external programs on Windows only. The standard input and standard output handles of the port
program are, if this option is supplied, opened with flag FI LE_FLAG_OVERLAPPED, so that the port program
can (and must) do overlapped I/O on its standard handles. Thisis not normally the case for simple port programs,
but an option of value for the experienced Windows programmer. On all other platforms, this option is silently
discarded.

The port can only be used for input.
out

The port can only be used for output.
bi nary

All 1/O from the port is binary data objects as opposed to lists of bytes.
eof

The port is not closed at the end of the file and does not produce an exit signal. Instead, it remains open and a
{Port, eof} messageis sent to the process holding the port.

hi de

When running on Windows, suppresses creation of a new console window when spawning the port program.
(This option has no effect on other platforms.)

{paral |l elism Bool ean}

Sets scheduler hint for port parallelism. If settot r ue, the Virtual Machine schedul es port tasks; when doing so, it
improves parallelismin the system. If settof al se, the Virtual Machinetriesto perform port tasksimmediately,
improving latency at the expense of parallelism. The default can be set at system startup by passing command-
line argument +spptoerl (1).

Default isst r eamfor all port typesand use_st di o for spawned ports.

Failure: If the port cannot be opened, the exit reasonisbadar g, system | i m t , or the POSIX error code that most
closely describesthe error, or ei nval if no POSIX codeis appropriate:

badar g

Bad input argumentsto open_port.
systemlimt

All available portsin the Erlang emulator arein use.
enonmem

Not enough memory to create the port.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

erlang

eagain
No more available OS processes.
enanet ool ong
Too long external command.
enfile
No more available file descriptors (for the OS process that the Erlang emulator runsin).
enfile
Full file table (for the entire OS).
eacces
Conmand givenin{ spawn_execut abl e, Conmand} does not point out an executablefile.
enoent
Fi | eName givenin{spawn_execut abl e, Fi | eNanme} does not point out an existing file.

During use of aport opened using { spawn, Nane}, {spawn_driver, Nane},or{spawn_execut abl e,
Nane}, errors arising when sending messages to it are reported to the owning process using signals of the form
{"EXIT, Port, PosixCode}.Forthepossiblevauesof Posi xCode, seethefile(3) manual pageinKer nel .

The maximum number of ports that can be open at the same time can be configured by passing command-line flag
+Qtoerl (1).

erlang:phash(Term, Range) -> Hash
Types:
Term = term()
Range = Hash = integer() >=1
Range = 1..2"32, Hash = 1..Range
Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and

ERTS version (the BIF was introduced in ERTS 4.9.1.1). The function returns a hash value for Ter mwithin therange
1. . Range. The maximum value for Range is 2"32.

This BIF can be used instead of the old deprecated BIF er | ang: hash/ 2, asit calculates better hashes for all data
types, but consider using phash2/ 1, 2 instead.

erlang:phash2(Term) -> Hash
erlang:phash2(Term, Range) -> Hash
Types:

Term = term()

Range = integer() >=1

1.2732
Hash = integer() >= 0
0..Range-1

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). The function returns a hash value for Ter mwithin the range
0. . Range- 1. The maximum value for Range is 2*32. When without argument Range, a value in the range
0..2727-1 is returned.

This BIF is always to be used for hashing terms. It distributes small integers better than phash/ 2, and it is faster
for bignums and binaries.

Noticethat therange 0. . Range- 1 isdifferent from the range of phash/ 2, whichis1. . Range.

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

pid to list(Pid) -> string()
Types:
Pid = pid()

Returns a string corresponding to the text representation of Pi d.

Warning:
This BIF isintended for debugging and is not to be used in application programs.

port close(Port) -> true
Types:
Port = port() | atom()

Closes an open port. Roughly the sameasPort | {self (), close} exceptfor the error behavior (see the
following), being synchronous, and that the port does not reply with { Port, cl osed}. Any process can close a
port with port _cl ose/ 1, not only the port owner (the connected process). If the calling process is linked to the
port identified by Por t , the exit signal from the port is guaranteed to be delivered before por t _cl ose/ 1 returns.

For comparison: Port ! {sel f(), cl ose} onlyfailswithbadar gif Port doesnot refer to aport or aprocess.
If Port isaclosed port, nothing happens. If Por t isan open port and the calling processis the port owner, the port
replieswith{ Port, cl osed} when all buffers have been flushed and the port really closes. If the calling process
is not the port owner, the port owner failswith badsi g.

Notice that any process can close aport usingPort ! {Port Owner, close} asifititself wasthe port owner,
but the reply always goes to the port owner.

As from OTP R16, Port ! {PortOmner, cl ose} is truly asynchronous. Notice that this operation has
always been documented as an asynchronous operation, while the underlying implementation has been synchronous.
port cl ose/ 1 ishowever still fully synchronous. This because of its error behavior.

Failure: badar g if Port isnot an identifier of an open port, or the registered name of an open port. If the calling
process was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

port command(Port, Data) -> true

Types.
Port = port() | atom()
Data = iodata()

Sends datato aport. SameasPort ! {Port Owmer, {comrand, Data}} exceptfor the error behavior and
being synchronous (see the following). Any process can send data to a port with port _conmmand/ 2, not only the
port owner (the connected process).

For comparison: Port ! {Port Owmer, {conmand, Data}} onlyfailswithbadar g if Port doesnot refer
to aport or aprocess. If Port isaclosed port, the data message disappears without a sound. If Por t is open and
the calling process is not the port owner, the port owner failswith badsi g. The port owner fails with badsi g aso
if Dat aisaninvalid /O list.

Notice that any process can send to aport using Port ! {Port Ower, {conmand, Data}} asifititself
was the port owner.

If the port is busy, the calling process is suspended until the port is not busy any more.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erlang

As from OTP-R16, Port ! {PortOmner, {command, Data}} istruly asynchronous. Notice that this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _command/ 2 ishowever still fully synchronous. This because of its error behavior.

Failures:

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g
If Dat aisaninvaid /O list.

port _command(Port, Data, OptionList) -> boolean()

Types:
Port = port() | atom()
Data = iodata()

Option = force | nosuspend
OptionList = [Option]
Sendsdatato aport. port _command(Port, Data, []) equalsport comand(Port, Data).
If the port command is aborted, f al se isreturned, otherwiset r ue.
If the port is busy, the calling process is suspended until the port is not busy any more.
Thefollowing Opt i onsarevalid:

force
The calling processis not suspended if the port is busy, instead the port command is forced through. The call
failswith anot sup exception if the driver of the port does not support this. For more information, see driver
flag ERL_DRV_FLAG_SOFT_BUSY.

nosuspend
The calling processis not suspended if the port is busy, instead the port command is aborted and f al se is
returned.

Note:

More options can be added in a future release.

Failures:

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Dat a isaninvalid I/O list.
badar g

If Opti onLi st isaninvalid option list.
not sup

If option f or ce has been passed, but the driver of the port does not allow forcing through a busy port.

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

port connect(Port, Pid) -> true

Types:
Port = port() | atom()
Pid = pid()

Sets the port owner (the connected port) to Pi d. Roughly thesameasPort ! {Oaner, {connect, Pid}}
except for the following:

e Theerror behavior differs, see the following.

e The port does not reply with { Por t , connect ed} .

e port_connect/ 1 issynchronous, seethe following.

¢ Thenew port owner gets linked to the port.

The old port owner stays linked to the port and must call unl i nk(Port) if thisisnot desired. Any process can set
the port owner to be any processwithport _connect/ 2.

For comparison: Port ! {self(), {connect, Pid}} onlyfalswithbadar g if Port doesnot refertoa
port or a process. If Port isaclosed port, nothing happens. If Port isan open port and the calling process is the
port owner, the port replieswith{ Port, connect ed} totheold port owner. Notice that the old port owner is till
linked to the port, while the new is not. If Por t isan open port and the calling process is not the port owner, the port
owner failswith badsi g. The port owner failswith badsi g alsoif Pi d isnot an existing local process identifier.

Notice that any process can set the port owner using Port | {Port Omer, {connect, Pid}} asifititself
was the port owner, but the reply always goes to the port owner.

As from OTP-R16, Port ! {PortOaner, {connect, Pid}} istruly asynchronous. Notice that this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _connect / 2 ishowever still fully synchronous. This because of its error behavior.

Failures:

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g
If process identified by Pi d is not an existing local process.

port control(Port, Operation, Data) -> iodata() | binary()
Types:

Port = port() | atom()

Operation = integer()

Data = iodata()

Performs a synchronous control operation on a port. The meaning of Oper at i on and Dat a depends on the port,
that is, on the port driver. Not all port drivers support this control feature.

Returns alist of integersin the range 0..255, or a binary, depending on the port driver. The meaning of the returned
data also depends on the port driver.

Failures:

badar g

If Por t isnot an open port or the registered name of an open port.
badar g

If Oper at i on cannot fit in a 32-bit integer.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

erlang

badar g
If the port driver does not support synchronous control operations.
badar g
If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

erlang:port call(Port, Operation, Data) -> term()
Types.

Port = port() | atom()

Operation = integer()

Data = term()

Performs a synchronous call to a port. The meaning of Oper at i on and Dat a depends on the port, that is, on the
port driver. Not all port drivers support this feature.

Port isaport identifier, referring to adriver.

Oper at i on isaninteger, which is passed on to the driver.

Dat a isany Erlang term. This data is converted to binary term format and sent to the port.
Returns aterm from the driver. The meaning of the returned data also depends on the port driver.
Failures:

badar g
If Por t isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Oper at i on does not fit in a 32-bit integer.
badar g

If the port driver does not support synchronous control operations.
badar g

If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

erlang:port info(Port) -> Result

Types.
Port = port() | atom()
ResultItem =

{registered name, RegisteredName :: atom()} |

{id, Index :: integer() >= 0} |

{connected, Pid :: pid()} |

{links, Pids :: [pid()1} |

{name, String :: strlng)} |

{input, Bytes :: integer() > 0} |

{output, Bytes :: integer() >= 0}

{os pid, OsPid :: integer() >= 0 | undefined}
Result = [ResultItem] | undefined

Returns a list containing tuples with information about Por t , or undef i ned if the port is not open. The order
of the tuples is undefined, and all the tuples are not mandatory. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 1 returns
undefi ned.

The result contains information about the following | t ens:

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

e registered_nane (if the port has aregistered name)

e id

e connected
e links

* nane

e input

e out put

For more information about the different | t ens, see port_info/2.
Failure: badar g if Port isnot aloca port identifier, or an atom.

erlang:port info(Port, Item :: connected) ->
{connected, Pid} | undefined
Types.
Port = port() | atom()
Pid = pid()

Pi d isthe processidentifier of the process connected to the port.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: id) -> {id, Index} | undefined
Types:
Port = port() | atom()
Index = integer() >= 0
| ndex istheinternal index of the port. Thisindex can be used to separate ports.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: input) ->
{input, Bytes} | undefined
Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es isthetotal number of bytes read from the port.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

erlang

erlang:port info(Port, Item :: links) -> {links, Pids} | undefined

Types:
Port = port() | atom()
Pids = [pid()]

Pi ds isalist of the process identifiers of the processes that the port is linked to.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: locking) ->
{locking, Locking} | undefined
Types:
Port = port() | atom()
Locking = false | port level | driver level

Locki ng isone of the following:

« fal se (emulator without SMP support)

e port_Ievel (port-specific locking)

e driver_|evel (driver-specificlocking)

Notice that these results are highly implementation-specific and can change in afuture release.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot aloca port identifier, or an atom.

erlang:port info(Port, Item :: memory) ->
{memory, Bytes} | undefined

Types:

Port = port() | atom()

Bytes = integer() >= 0
Byt es isthe total number of bytes allocated for this port by the runtime system. The port itself can have allocated
memory that is not included in Byt es.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: monitors) ->
{monitors, Monitors} | undefined

Types:
Port = port() | atom()
Monitors = [{process, pid()}]

Moni t or s represent processes that this port monitors.

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: name) -> {name, Name} | undefined
Types.
Port = port() | atom()

Name string()

Narre isthe command name set by open_port/2.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: os pid) ->
{os pid, OsPid} | undefined
Types:
Port = port() | atom()
OsPid = integer() >= 0 | undefined
GsPi d isthe processidentifier (or equivalent) of an OS process created with open_port({spawn | spawn_executable,
Command}, Options). If the port is not the result of spawning an OS process, the valueisundef i ned.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port _info(Port, Item :: output) ->
{output, Bytes} | undefined

Types:

Port = port() | atom()

Bytes = integer() >= 0
Byt es isthetotal number of byteswrittento the port from Erlang processes using port_command/2, port_command/3,
orPort ! {Omer, {conmmand, Data}.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.
erlang:port info(Port, Item :: parallelism) ->

{parallelism, Boolean} | undefined
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

erlang

Port = port() | atom()
Boolean = boolean()

Bool ean correspondsto the port parallelism hint being used by this port. For moreinformation, see option parallelism
of open_port/2.

erlang:port_info(Port, Item :: queue size) ->
{queue size, Bytes} | undefined

Types.
Port = port() | atom()
Bytes = integer() >= 0
Byt es isthetotal number of bytes queued by the port using the ERTS driver queue implementation.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot aloca port identifier, or an atom.

erlang:port info(Port, Item :: registered name) ->
{registered name, RegisteredName} |

(1

undefined
Types:
Port = port() | atom()
RegisteredName = atom()

Regi st er edNane isthe registered name of the port. If the port has no registered name, [] is returned.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port to list(Port) -> string()
Types:
Port = port()
Returns a string corresponding to the text representation of the port identifier Port .

Warning:
This BIF isintended for debugging. It is not to be used in application programs.

erlang:ports() -> [port()]
Returns alist of port identifiers corresponding to all the ports existing on the local node.
Notice that an exiting port exists, but is not open.

156 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

pre loaded() -> [module()]

Returnsalist of Erlang modulesthat are preloaded in the system. Asall loading of codeis donethrough the file system,
the file system must have been loaded previously. Hence, at least the modulei ni t must be prel oaded.

erlang:process display(Pid, Type) -> true
Types:

Pid = pid()

Type = backtrace

Writes information about the local process Pi d on standard error. The only allowed value for the atom Type is
backt r ace, which shows the contents of the call stack, including information about the call chain, with the current
function printed first. The format of the output is not further defined.

process flag(Flag :: trap exit, Boolean) -> OldBoolean
Types:
Boolean = OldBoolean = boolean()
Whentrap_exit issettot r ue, exit signalsarrivingto aprocessareconvertedto{' EXI T', From Reason}
messages, which can bereceived as ordinary messages. If t rap_exi t issettof al se, theprocessexitsif it receives

an exit signal other than nor nal and the exit signal is propagated to its linked processes. Application processes are
normally not to trap exits.

Returns the old value of the flag.
See also exit/2.

process flag(Flag :: error _handler, Module) -> OldModule
Types:
Module = OldModule = atom()

Used by a process to redefine the error handler for undefined function calls and undefined registered processes.
Inexperienced users are not to use thisflag, as code auto-loading depends on the correct operation of the error handling
module.

Returns the old value of the flag.

process flag(Flag :: min heap size, MinHeapSize) -> OldMinHeapSize
Types.
MinHeapSize = 0ldMinHeapSize = integer() >= 0
Changes the minimum heap size for the calling process.
Returns the old value of the flag.

process flag(Flag :: min bin vheap size, MinBinVHeapSize) ->
0ldMinBinVHeapSize
Types:
MinBinVHeapSize = 0ldMinBinVHeapSize = integer() >= 0
Changes the minimum binary virtual heap size for the calling process.
Returns the old value of the flag.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 157

erlang

process flag(Flag :: priority, Level) -> OldLevel
Types:

Level = OldLevel = priority_level ()

priority level() low | normal | high | max

Sets the process priority. Level isan atom. There are four priority levels: | ow, nor mal , hi gh, and max. Default
isnor nal .

Note:

Priority level max isreserved for internal use in the Erlang runtime system, and is not to be used by others.

Internally in each priority level, processes are scheduled in around robin fashion.

Execution of processes on priority nor mal and | ow are interleaved. Processes on priority | ow are selected for
execution less frequently than processes on priority nor nal .

When there are runnable processes on priority hi gh, no processes on priority | ow or nor nal are selected for
execution. Notice however, that this does not mean that no processes on priority | owor nor mal can run when there
are processes running on priority hi gh. On the runtime system with SMP support, more processes can be running in
parallel than processes on priority hi gh, that is, al owand ahi gh priority process can execute at the same time.

When there are runnable processes on priority max, no processes on priority | ow, nor mal , or hi gh are selected for
execution. Aswith priority hi gh, processes on lower priorities can executein parallel with processes on priority max.

Scheduling is preemptive. Regardless of priority, a process is preempted when it has consumed more than a certain
number of reductions since the last time it was selected for execution.

Note:

Do not depend on the scheduling to remain exactly asit istoday. Scheduling, at least on the runtime system with
SMP support, islikely to be changed in afuture release to use available processor cores better.

Thereisno automatic mechanism for avoiding priority inversion, such as priority inheritance or priority ceilings. When
using priorities, take thisinto account and handle such scenarios by yourself.

Making callsfrom ahi gh priority processinto code that you have no control over can causethehi gh priority process
towait for aprocesswith lower priority. That is, effectively decreasing the priority of the hi gh priority process during
the call. Even if thisis not the case with one version of the code that you have no control over, it can be the case
in a future version of it. This can, for example, occur if a hi gh priority process triggers code loading, as the code
server runson priority nor mal .

Other prioritiesthan nor mal are normally not needed. When other priorities are used, use them with care, especially
priority hi gh. A process on priority hi gh isonly to perform work for short periods. Busy looping for long periods
inahi gh priority process does most likely cause problems, asimportant OTP servers run on priority nor mal .

Returns the old value of the flag.

process flag(Flag :: save calls, N) -> OldN
Types.

158 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

N = OldN = 0..10000

Nmust beaninteger intheinterval 0..10000. If Nisgreater than O, call saving ismade activefor the process. Thismeans

that information about the N most recent global function calls, BIF calls, sends, and receives made by the process are

saved in alist, which can be retrieved with pr ocess_i nfo(Pi d, | ast_cal |l s).A globa function call is one

in which the module of the function is explicitly mentioned. Only afixed amount of information is saved, asfollows:

e Atuple{Mdul e, Function, Arity} forfunctioncals

e Theaomssend,'receive',andti meout for sendsand receives(' r ecei ve' whenamessageis
received and t i meout when areceive times out)

If N=0, call saving is disabled for the process, which is the default. Whenever the size of the call saving list is set,
its contents are reset.

Returns the old value of the flag.

process flag(Flag :: sensitive, Boolean) -> 0ldBoolean
Types:
Boolean = 0ldBoolean = boolean()
Sets or clears flag sensi ti ve for the current process. When a process has been marked as sensitive by calling

process_flag(sensitive, true),featuresintheruntime system that can be used for examining the data or
inner working of the process are silently disabled.

Features that are disabled include (but are not limited to) the following:

« Tracing: Trace flags can till be set for the process, but no trace messages of any kind are generated. (If flag
sensi ti ve isturned off, trace messages are again generated if any trace flags are set.)

e Sequential tracing: The sequentia trace token is propagated as usual, but no sequential trace messages are
generated.

process_i nfo/ 1, 2 cannot be used to read out the message queue or the process dictionary (both are returned
as empty lists).

Stack back-traces cannot be displayed for the process.
In crash dumps, the stack, messages, and the process dictionary are omitted.

If {save_cal | s, N} hasbeen set for the process, no function calls are saved to the call saving list. (The call saving
list is not cleared. Furthermore, send, receive, and timeout events are still added to the list.)

Returns the old value of the flag.

process flag(Pid, Flag, Value) -> OldValue
Types.

Pid = pid()

Flag = save calls

Value = OldValue = integer() >= 0

Sets certain flags for the process Pi d, in the same manner as process flag/2. Returns the old value of the flag. The
valid valuesfor Fl ag are only a subset of those allowed in pr ocess_f | ag/ 2, namely save_cal | s.

Failure: badar g if Pi d isnot alocal process.

process info(Pid) -> Info
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 159

erlang

Pid = pid()
Info = [InfoTuple] | undefined
InfoTuple = process_info_result_item)

process info result item() =
{backtrace, Bin :: binary()} |
{binary,
BinInfo ::
[{integer() >= 0,

integer() >= 0,

integer() >= 0}1} |
{catchlevel, CatchLevel :: integer() >= 0} |
{current_function,
{Module :: module(), Function :: atom(), Arity :: arity()}} |
{current_location,

{Module :: module(),
Function :: atom(),
Arity :: arity(),
Location ::

[{file, Filename :: string()} |

{line, Line :: integer() >= 1}]}} |
{current_stacktrace, Stack :: [stack_iten() 1} |
{dictionary, Dictionary :: [{Key :: term(), Value :: term()}]} |
{error_handler, Module :: module()} |
{garbage collection, GCInfo :: [{atom(), integer() >= 0}]} |
{group leader, GroupLeader :: pid()} |
{heap size, Size :: integer() >= 0} |
{initial call, mfa()} |
{links, PidsAndPorts :: [pid() | port()1} |
{last _calls, false | (Calls :: [mfa()])} |

{memory, Size :: integer() >= 0} |
{message queue len, MessageQueuelLen :: integer() >= 0} |
{messages, MessageQueue :: [term()]} |
{min _heap size, MinHeapSize :: integer() >= 0} |
{min _bin vheap size, MinBinVHeapSize :: integer() >= 0} |
{monitored by, Pids :: [pid()]1} |
{monitors,
Monitors ::
[{process,

Pid :: pid() | {RegName :: atom(), Node :: node()}}I1} |
{priority, Level :: priority_level()} |
{reductions, Number :: integer() >= 0} |
{registered name, Atom :: atom()} |
{sequential trace token,

[1 | (SequentialTraceToken :: term())} |
{stack size, Size :: integer() >= 0} |
{status,

Status ::

exiting |
garbage collecting |
waiting |
running |

160 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

runnable |
suspended} |
{suspending,
SuspendeelList ::
[{Suspendee :: pid(),
ActiveSuspendCount :: integer() >= 0,
OutstandingSuspendCount :: integer() >= 0}]} |
{total heap size, Size :: integer() >= 0} |
{trace, InternalTraceFlags :: integer() >= 0} |
{trap_exit, Boolean :: boolean()}

priority level() = low | normal | high | max
stack item() =

{Module :: module(),
Function :: atom(),
Arity :: arity() | (Args :: [term()]),

Location ::
[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}

Returns a list containing | nf oTupl es with miscellaneous information about the process identified by Pi d, or
undef i ned if the processis not alive.

The order of the |l nf oTupl esisundefined and al | nf oTupl esare not mandatory. The | nf oTupl es part of the
result can be changed without prior notice.

Thel nf oTupl eswith the following items are part of the result:

current _function
initial _cal

stat us
nessage_queue_| en
nessages

I'inks

di ctionary
trap_exit
error_handl er
priority

group_| eader
total heap_si ze
heap_si ze
stack_si ze
reductions

gar bage_col | ection

If the processidentified by Pi d hasaregistered name, alsoan| nf oTupl e withitemr egi st er ed_narme appears.

For information about specific | nf oTupl es, see process_info/2.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 161

erlang

Warning:
This BIF isintended for debugging only. For all other purposes, use process info/2.

Failure: badar g if Pi d isnot alocal process.

process _info(Pid, Item) -> InfoTuple | [] | undefined
process info(Pid, ItemList) -> InfoTupleList | [] | undefined
Types:
Pid = pid()
ItemList = [Item]
Item = process_info_item)
InfoTupleList = [InfoTuple]
InfoTuple = process_info_result_item()
process info item() =
backtrace |
binary |
catchlevel |
current function |
current location |
current stacktrace |
dictionary |
error_handler |
garbage collection |
group leader |
heap size |
initial call |
links |
last calls |
memory |
message queue len |
messages |
min heap size |
min bin vheap size |
monitored by |
monitors |
priority |
reductions |
registered name |
sequential trace token |
stack size |
status |
suspending |
total heap size |
trace |
trap exit

process info result item() =
{backtrace, Bin :: binary()} |
{binary,

162 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

BinInfo ::
[{integer() >= 0,
integer() >= 0,
integer() >= 0}1} |
{catchlevel, CatchLevel :: integer() >= 0} |
{current_function,

{Module :: module(), Function :: atom(), Arity :: arity()}} |

{current_location,

{Module :: module(),
Function :: atom(),
Arity :: arity(),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}]}} |
{current_stacktrace, Stack :: [stack_iten() 1} |

{dictionary, Dictionary :: [{Key :: term(), Value :: term()}]} |

{error_handler, Module :: module()} |

{garbage collection, GCInfo :: [{atom(), integer() >= 0}]} |

{group leader, GrouplLeader :: pid()} |
{heap size, Size :: integer() >= 0} |
{initial call, mfa()} |

{links, PidsAndPorts :: [pid() | port()1} |
{last_calls, false | (Calls :: [mfa()])} |

{memory, Size :: integer() >= 0} |
{message queue_ len, MessageQueuelLen :: integer() >= 0} |
{messages, MessageQueue :: [term()]} |
{min_heap size, MinHeapSize :: integer() >= 0} |
{min _bin vheap size, MinBinVHeapSize :: integer() >= 0} |
{monitored by, Pids :: [pid()]1} |
{monitors,
Monitors ::
[{process,

Pid :: pid() | {RegName :: atom(), Node :: node()}}]} |

{priority, Level :: priority_level()} |
{reductions, Number :: integer() >= 0} |
{registered name, Atom :: atom()} |
{sequential trace token,

[1 | (SequentialTraceToken :: term())} |
{stack size, Size :: integer() >= 0} |
{status,

Status ::

exiting |
garbage collecting |
waiting |
running |
runnable |
suspended} |
{suspending,
SuspendeelList ::
[{Suspendee :: pid(),
ActiveSuspendCount :: integer() >= 0,
OutstandingSuspendCount :: integer() >= 0}]} |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 163

erlang

{total heap size, Size :: integer() >= 0} |
{trace, InternalTraceFlags :: integer() >= 0} |
{trap_exit, Boolean :: boolean()}

stack item() =
{Module :: module(),
Function :: atom(),
Arity :: arity() |
Location
[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}
priority level() = low | normal | high | max

Returnsinformation about the processidentified by Pi d, asspecifiedby | t emor | t enLi st . Returnsundef i ned
if the processis not aive.

(Args :: [term()]),

If the processisalive and asingle| t emis given, the returned value is the corresponding | nf oTupl e, unless| t em
=: = regi st er ed_nane and the process has ho registered name. Inthiscase, [] isreturned. Thisstrange behavior
is because of historical reasons, and is kept for backward compatibility.

If I tenLi st isgiven, theresult is| nf oTupl eLi st. Thel nf oTupl esin | nf oTupl eLi st appear with the
corresponding | t ens in the same order asthe | t ens appeared in | t enLi st . Valid | t ens can appear multiple
timesinl t enli st .

Note:

Ifregi stered_naneispartof |t enli st andtheprocesshasno nameregistereda{ r egi st er ed_nane,
[1},1nfoTupl ewill appearintheresultingl nf oTupl eLi st . Thisbehavior isdifferent whenasinglel t em
=: = registered_nane isgiven, and when pr ocess_i nf o/ 1 isused.

Thefollowing | nf oTupl eswith corresponding | t ens are valid:
{backtrace, Bin}

Binary Bi n contains the same information as the output from erl ang: process_di spl ay(Pi d,
backtrace).Usebinary_to_list/1toobtanthestring of characters from the binary.

{bi nary, Binlnfo}

Bi nl nf o isalist containing miscellaneousinformation about binaries currently being referred to by this process.
This| nf oTupl e can be changed or removed without prior notice.

{catchl evel, CatchLevel}

Cat chLevel isthe number of currently active catches in this process. This | nf oTupl e can be changed or
removed without prior notice.

{current _function, {Mdule, Function, Arity}}
Modul e, Functi on, Ari ty isthe current function call of the process.
{current | ocation, {Mdule, Function, Arity, Location}}

Modul e, Functi on, Ari ty isthe current function call of the process. Locat i on is alist of two-tuples
describing the location in the source code.

{current _stacktrace, Stack}

Returns the current call stack back-trace (stacktrace) of the process. The stack has the same format as returned
by erlang:get_stacktrace/O.

164 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{dictionary, Dictionary}

Di cti onary isthe processdictionary.
{error_handl er, Mbodul e}

Modul e isthe error handler module used by the process (for undefined function calls, for example).
{garbage_col |l ecti on, GCl nfo}

CCl nf o isalist containing miscellaneous information about garbage collection for this process. The content of
CCl nf 0 can be changed without prior notice.

{group_| eader, G ouplLeader}
GroupLeader isgroup leader for the I/O of the process.
{heap_si ze, Size}

Si ze isthe size in words of the youngest heap generation of the process. This generation includes the process
stack. Thisinformation is highly implementation-dependent, and can change if the implementation changes.

{initial_call, {Mdule, Function, Arity}}
Modul e, Functi on, Ari ty istheinitia function call with which the process was spawned.
{l'i nks, PidsAndPort s}

Pi dsAndPor t s isalist of processidentifiers and port identifiers, with processes or ports to which the process
has alink.

{last_calls, false|Calls}

Thevaueisf al se if cal saving isnot active for the process (see process flag/3). If call saving isactive, alist
isreturned, in which the last element is the most recent called.

{menory, Size}
Si ze isthe sizein bytes of the process. Thisincludes call stack, heap, and internal structures.
{message_queue_l en, MessageQueuelen}

MessageQueuelen isthe number of messages currently in the message queue of the process. Thisisthelength
of thelist MessageQueue returned as the information item nessages (see the following).

{messages, MessageQueue}
MessageQueue isalist of the messages to the process, which have not yet been processed.
{m n_heap_si ze, M nHeapSi ze}
M nHeapSi ze isthe minimum heap size for the process.
{m n_bin_vheap_si ze, M nBi nVHeapSi ze}
M nBi nVHeapSi ze isthe minimum binary virtual heap size for the process.
{noni tored_by, Pids}
A list of process identifiers monitoring the process (with moni t or / 2).
{noni tors, Mbnitors}

A list of monitors (started by noni t or / 2) that are activefor the process. For alocal process monitor or aremote
process monitor by a process identifier, the list item is{ pr ocess, Pi d}. For aremote process monitor by
name, thelistitemis{ pr ocess, {RegNanme, Node}}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 165

erlang

{priority, Level}

Level isthecurrent priority level for the process. For more information on priorities, see process flag(priority,
Level).

{reductions, Number}
Nunber isthe number of reductions executed by the process.
{regi stered_nane, Aton}

At omis the registered name of the process. If the process has no registered name, this tuple is not present in
thelist.

{sequential _trace_token, [] | Sequential TraceToken}

Sequent i al Tr aceToken isthe sequential trace token for the process. This| nf oTupl e can be changed or
removed without prior notice.

{stack_size, Size}
Si ze isthe stack size, in words, of the process.
{status, Status}
St at us isthe status of the process and is one of the following:
e exiting
e« garbage_coll ecting
e wai ting (for amessage)
e running
e runnabl e (ready to run, but another process is running)
« suspended (suspended on a"busy" port or by the BIF er | ang: suspend_process/[1, 2])
{suspendi ng, Suspendeeli st}

Suspendeeli st is a list of { Suspendee, Act i veSuspendCount ,
CQut st andi ngSuspendCount } tuples. Suspendee isthe process identifier of a process that has been, or
isto be, suspended by the processidentified by Pi d through one of the following BIFs:

e erlang:suspend_process/2
e erlang:suspend procesy/1

Acti veSuspendCount is the number of times Suspendee has been suspended by Pid.
Qut st andi ngSuspendCount isthe number of not yet completed suspend requests sent by Pi d, that is:

« If ActiveSuspendCount =/= 0, Suspendee iscurrently in the suspended state.

e |If Qut st andi ngSuspendCount =/= 0, optionasynchr onous of
erl ang: suspend_pr ocess/ 2 has been used and the suspendee has not yet been suspended by Pi d.

Noticethat Act i veSuspendCount and Qut st andi ngSuspendCount are not the total suspend count on
Suspendee, only the parts contributed by Pi d.

{total _heap_size, Size}
Si ze isthetota size, in words, of all heap fragments of the process. This includes the process stack.
{trace, Internal TraceFl ags}

I nt ernal Tr aceFl ags isan integer representing the internal trace flag for this process. This | nf oTupl e
can be changed or removed without prior notice.

{trap_exit, Bool ean}
Bool ean istr ue if the process istrapping exits, otherwisef al se.

166 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Notice that not all implementations support all these | t ens.
Failures:

badar g

If Pi disnot aloca process.
badar g

If I t emisaninvaliditem.

processes() -> [pid()]
Returns alist of processidentifiers corresponding to all the processes currently existing on the local node.

Noticethat an exiting process exists, but isnot alive. That is,i s_process_al i ve/ 1 returnsf al se for an exiting
process, but its process identifier is part of the result returned from pr ocesses/ 0.

Example:

> processes().
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]

purge module(Module) -> true
Types:
Module = atom()

Removes old code for Modul e. Before this BIF is used, er | ang: check _process_code/ 2 isto be called to
check that no processes execute old code in the module.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used el sewhere.

Failure: badar g if thereisno old code for Modul e.

put(Key, Val) -> term()
Types.
Key = Val = term()

Adds a new Key to the process dictionary, associated with the value Val , and returns undef i ned. If Key exists,
the old value is deleted and replaced by Val , and the function returns the old value.

Example:

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),

{X, Y, Z}.

{undefined,walrus,carpenter}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 167

erlang

Note:

The values stored when put is evaluated within the scope of acat ch are not retracted if at hr owis evaluated,
or if an error occurs.

erlang:raise(Class, Reason, Stacktrace) -> no return()
Types:

Class = error | exit | throw

Reason = term()

Stacktrace = raise_stacktrace()

raise stacktrace() =
[{module(), atom(), arity() | [term()]1} |
{function(), [term()]}] |
[{module(), atom(), arity() | [term()], [{atom(), term()}]} |
{function(), [term()], [{atom(), term()}]1}]

Stopsthe execution of the calling process with an exception of given class, reason, and call stack backtrace (stacktrace).

Warning:
This BIF isintended for debugging. Avoid to useit in applications, unless you really know what you are doing.

Cl assiserror,exit,orthrow So, if it were not for the stacktrace, er | ang: rai se(d ass, Reason,
St acktrace) isequivaenttoer| ang: C ass(Reason).

Reason isany term. St ackt race isalist as returned from get _st ackt race(), that is, alist of four-tuples
{Modul e, Function, Arity | Args, Location},where Modul e and Functi on are atoms, and the
third element is an integer arity or an argument list. The stacktrace can also contain { Fun, Args, Locati on}
tuples, where Fun isaloca fun and Ar gs isan argument list.

Element Locat i on at theend is optional. Omitting it is equivalent to specifying an empty list.

The stacktrace is used as the exception stacktrace for the calling process; it is truncated to the current maximum
stacktrace depth.

Since evaluating this function causes the process to terminate, it has no return value unless the arguments are invalid,
in which case the function returns the error reason badar g. If you want to be sure not to return, you can call
error(erlang:rai se(d ass, Reason, Stacktrace)) andhopeto distinguish exceptionslater.

erlang:read timer(TimerRef, Options) -> Result | ok
Types:

168 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

TimerRef = reference()
Async = boolean()
Option = {async, Async}
Options = [Option]

Time = integer() >= 0
Result = Time | false

Read the state of atimer that hasbeen created by eitherer | ang: start _timer(),orerl ang: send_after ().
Ti mer Ref identifiesthe timer, and was returned by the BIF that created the timer.

Available Opt i ons:
{async, Async}

Asynchronous request for state information. Async defaults to f al se which will cause the operation to be
performed synchronously. Inthiscase, theResul t isreturnedby er | ang: read_t i mer () .WhenAsync is
true,erlang: read_ti ner () sendsan asynchronous request for the state information to the timer service
that managesthetimer, and then returnsok. A messageontheformat{r ead_t i mer, Ti mer Ref, Result}
issenttothecaller of er | ang: read_ti mer () when the operation has been processed.

More Opt i ons may be added in the future.
If Resul t isaninteger, it represents the time in milli-seconds left until the timer expires.

If Resul t isfal se, atimer corresponding to Ti nmer Ref could not be found. This can be because the timer had
expired, it had been canceled, or because Ti mer Ref never has corresponded to atimer. Even if the timer has expired,
it does not tell you whether or not the timeout message has arrived at its destination yet.

Note:

The timer service that manages the timer may be co-located with another scheduler than the scheduler that the
calling process is executing on. If thisis the case, communication with the timer service takes much longer time
thaniif it is located locally. If the calling processisin critical path, and can do other things while waiting for the
result of this operation, you want to use option { async, true}. If using option { async, fal se}, the
calling process will be blocked until the operation has been performed.

Seeasoerl ang: send_after/4,erlang: start_timer/4,anderl ang: cancel _tinmer/ 2.

erlang:read timer(TimerRef) -> Result
Types.
TimerRef = reference()
Time = integer() >= 0
Result = Time | false
Read the state of atimer. Thesameascallinger | ang: read_timer (Ti merRef, []).

erlang:ref to list(Ref) -> string()
Types:
Ref = reference()
Returns a string corresponding to the text representation of Ref .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 169

erlang

Warning:
This BIF isintended for debugging and is not to be used in application programs.

register(RegName, PidOrPort) -> true
Types:

RegName = atom()

PidOrPort = port() | pid()

Associates the name RegNane with a process identifier (pid) or a port identifier. RegNane, which must be an atom,
can be used instead of the pid or port identifier in send operator (RegNanme ! Message).

Example:

> register(db, Pid).
true

Failures:

badar g
If Pi dOr Port isnot an existing local process or port.
badar g
If RegNane isaready in use.
badar g
If the process or port is aready registered (already has a name).
badar g
If RegNane isthe atom undef i ned.

registered() -> [RegName]
Types:
RegName = atom()
Returns alist of names that have been registered using register/2, for example:

> registered().
[code server, file server, init, user, my db]

erlang:resume process(Suspendee) -> true
Types:
Suspendee = pid()
Decreases the suspend count on the process identified by Suspendee. Suspendee is previoudy to
have been suspended through erlang:suspend process/2 or erlang:suspend_process/1l by the process calling

erl ang: resunme_process(Suspendee). When the suspend count on Suspendee reaches zero,
Suspendee isresumed, that is, its state is changed from suspended into the state it had before it was suspended.

170 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Warning:
This BIF isintended for debugging only.

Failures:

badar g
If Suspendee isnot aprocessidentifier.
badar g

If the process calling er | ang: r esune_pr ocess/ 1 had not previously increased the suspend count on the

processidentified by Suspendee.
badar g
If the processidentified by Suspendee isnot alive.

round (Number) -> integer()
Types.
Number = number()
Returns an integer by rounding Nunber , for example;

round(5.5) .
6

Allowed in guard tests.

self() -> pid()

Returns the process identifier of the calling process, for example:

> self().
<0.26.0>

Allowed in guard tests.

erlang:send(Dest, Msg) -> Msg
Types:
Dest = dst ()
Msg = term()
dst() =
pid() |
port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

Sends a message and returns Msg. Thisisthe sameas Dest !

Dest can be a remote or loca process identifier, a (local) port, a locally registered name, or a tuple { RegNane,

Node} for aregistered name at another node.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 171

erlang

erlang:send(Dest, Msg, Options) -> Res

Types:
Dest = dst ()
Msg = term()

Options = [nosuspend | noconnect]
Res = ok | nosuspend | noconnect
dst() =
pid() |

port() |

(RegName :: atom()) |

{RegName :: atom(), Node :: node()}

Either sends a message and returns ok, or does not send the message but returns something else (see the following).
Otherwise the same as erlang: send/2. For more detailed explanation and warnings, see erlang: send_nosuspend/2,3.

The options are as follows:
nosuspend

If the sender would have to be suspended to do the send, nosuspend isreturned instead.
noconnect

If the destination node would have to be auto-connected to do the send, noconnect isreturned instead.

Warning:

Aswither| ang: send_nosuspend/ 2, 3: use with extreme care.

erlang:send after(Time, Dest, Msg, Options) -> TimerRef

Types.
Time = integer()
Dest = pid() | atom()
Msg = term()

Options = [Option]

Abs = boolean()

Option = {abs, Abs}
TimerRef = reference()

Starts a timer. When the timer expires, the message Msg is sent to the process identified by Dest . Apart from the
format of the timeout message, er | ang: send_aft er/ 4 worksexactly aser | ang: start _ti mer/ 4.

erlang:send after(Time, Dest, Msg) -> TimerRef
Types:

Time = integer() >= 0

Dest = pid() | atom()

Msg = term()

TimerRef = reference()

Startsatimer. Thesameascallinger | ang: send_after (Ti ne, Dest, Mg, []).

172 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:send nosuspend(Dest, Msg) -> boolean()
Types:
Dest = dst ()
Msg = term()
dst() =
pid() |
port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

Thesameaserlang: send(Dest, Msg, [nosuspend]), but returnst r ue if themessagewassent andf al se if themessage
was not sent because the sender would have had to be suspended.

Thisfunction isintended for send operations to an unreliable remote node without ever blocking the sending (Erlang)
process. If the connection to the remote node (usualy not a real Erlang node, but a node written in C or Java) is
overloaded, this function does not send the message and returnsf al se.

The same occurs if Dest refersto alocal port that is busy. For all other destinations (allowed for the ordinary send
operator ' ! '), thisfunction sends the message and returnst r ue.

This function is only to be used in rare circumstances where a process communicates with Erlang nodes that can
disappear without any trace, causing the TCP buffers and the drivers queue to be over-full before the node is shut
down (because of tick time-outs) by net _ker nel . The normal reaction to take when this occurs is some kind of
premature shutdown of the other node.

Notice that ignoring the return value from this function would result in an unreliable message passing, which is
contradictory to the Erlang programming model. The message is not sent if this function returnsf al se.

In many systems, transient states of overloaded queues are normal. The fact that this function returns f al se does
not mean that the other node is guaranteed to be non-responsive, it could be a temporary overload. Also, a return
value of t r ue does only mean that the message can be sent on the (TCP) channel without blocking, the message
is not guaranteed to arrive at the remote node. For a disconnected non-responsive node, the return value ist r ue
(mimics the behavior of operator !). The expected behavior and the actions to take when the function returnsf al se
are application- and hardware-specific.

Warning:

Use with extreme care.

erlang:send nosuspend(Dest, Msg, Options) -> boolean()
Types:
Dest = dst ()
Msg = term()
Options = [noconnect]
dst() =
pid() |
port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

The same as erlang: send(Dest, Msg, [nosuspend | Options]), but with a Boolean return value.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 173

erlang

This function behaves like erlang: send_nosuspend/2, but takes a third parameter, a list of options. The only option
isnoconnect , which makes the function return f al se if the remote node is not currently reachable by the local
node. The normal behavior isto try to connect to the node, which can stall the process during a short period. The use
of option noconnect makes it possible to be sure not to get the dightest delay when sending to a remote process.
Thisis especialy useful when communicating with nodes that expect to always be the connecting part (that is, nodes
writtenin C or Java).

Whenever the function returnsf al se (either when a suspend would occur or when noconnect was specified and
the node was not aready connected), the message is guaranteed not to have been sent.

Warning:

Use with extreme care.

erlang:set cookie(Node, Cookie) -> true
Types:
Node = node()
Cookie = atom()
Sets the magic cookie of Node to the atom Cooki e. If Node is the local node, the function also sets the cookie

of all other unknown nodes to Cooki e (see Section Distributed Erlang in the Erlang Reference Manual in System
Documentation).

Failure: f unct i on_cl ause if theloca nodeisnot aive.

setelement(Index, Tuplel, Value) -> Tuple2
Types.

Index = integer() >=1

1..tuple_size(Tuplel

Tuplel = Tuple2 = tuple()

Value = term()

Returns a tuple that is a copy of argument Tupl el with the element given by integer argument | ndex (the first
element is the element with index 1) replaced by argument Val ue, for example:

> setelement (2, {10, green, bottles}, red).
{10, red,bottles}

size(Item) -> integer() >= 0
Types:
Item = tuple() | binary()
Returns the number of elementsin atuple or the number of bytesin abinary or bitstring, for example:

> size({morni, mulle, bwange}).
3

> size(<<l1l, 22, 33>>).

3

174 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

For bitstrings the number of whole bytesisreturned. That is, if the number of bits in the bitstring is not divisible by
8, the resulting number of bytesis rounded down.

Allowed in guard tests.
Seeasotupl e_size/1,byte size/landbit_size/1.

spawn(Fun) -> pid()
Types:
Fun = function()

Returnsthe processidentifier of anew process started by the application of Fun totheempty list[] . Otherwise works
like spawn/3.

spawn(Node, Fun) -> pid()
Types.

Node = node()

Fun = function()

Returns the process identifier of a new process started by the application of Fun to the empty list[] on Node. If
Node does not exist, auseless pid is returned. Otherwise works like spawn/3.

spawn (Module, Function, Args) -> pid()
Types:
Module = module()
Function = atom()
Args = [term()]
Returns the process identifier of a new process started by the application of Modul e: Funct i on to Ar gs.
error _handl er: undefi ned_function(Mdul e, Function, Args) isevauated by the new process
if Modul e: Function/ Arity does not exist (where Arity is the length of Args). The error handler can

be redefined (see process flag/2). If error_handl er is undefined, or the user has redefined the default
error _handl er and itsreplacement isundefined, afailure with reason undef occurs.

Example:

> spawn(speed, regulator, [high speed, thin cut]).
<0.13.1>

spawn (Node, Module, Function, Args) -> pid()
Types.

Node = node()

Module = module()

Function = atom()

Args = [term()]

Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. If Node does not exist, a useless pid is returned. Otherwise works like spawn/3.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 175

erlang

spawn_link(Fun) -> pid()
Types:
Fun = function()

Returnsthe processidentifier of a new process started by the application of Fun totheempty list[] . A link is created
between the calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_link(Node, Fun) -> pid()
Types:
Node = node()
Fun = function()
Returns the process identifier (pid) of anew process started by the application of Fun to the empty list[] on Node.

A link is created between the calling process and the new process, atomically. If Node does not exist, auselesspidis
returned and an exit signal with reasonnoconnect i on issent to the calling process. Otherwise works like spawn/3.

spawn_link(Module, Function, Args) -> pid()
Types.

Module = module()

Function = atom()

Args = [term()]

Returns the process identifier of a new process started by the application of Modul e: Functi ontoArgs. Alinkis
created between the calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_link(Node, Module, Function, Args) -> pid()
Types.
Node = node()
Module = module()
Function = atom()
Args = [term()]
Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. A link is created between the calling process and the new process, atomically. If Node does not exist, auseless

pid is returned and an exit signal with reason noconnect i on is sent to the calling process. Otherwise works like
spawn/3

spawn_monitor(Fun) -> {pid(), reference()}
Types:
Fun = function()

Returnsthe processidentifier of anew process, started by the application of Fun to theempty list[] , and areference
for amonitor created to the new process. Otherwise works like spawn/3.

spawn_monitor(Module, Function, Args) -> {pid(), reference()}
Types:

176 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Module = module()
Function = atom()
Args = [term()]

A new processis started by the application of Modul e: Funct i on to Ar gs. The process is monitored at the same
time. Returns the process identifier and areference for the monitor. Otherwise works like spawn/3.

spawn_opt(Fun, Options) -> pid() | {pid(), reference()}
Types:
Fun = function()
Options = [Option]
Option =
link |
monitor |
{priority, Level :: priority_level ()} |
{fullsweep after, Number :: integer() >= 0} |
{min heap size, Size :: integer() >= 0} |
{min bin vheap size, VSize :: integer() >= 0}
priority level() = low | normal | high | max
Returnsthe processidentifier (pid) of anew process started by the application of Fun to the empty list[] . Otherwise
works like spawn_opt/4.

If option noni t or isgiven, the newly created process is monitored, and both the pid and reference for the monitor
is returned.

spawn_opt(Node, Fun, Options) -> pid() | {pid(), reference()}
Types:
Node = node()
Fun = function()
Options = [Option]
Option =
link |
monitor |
{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |
{min heap size, Size :: integer() >= 0} |
{min _bin vheap size, VSize :: integer() >= 0}
priority level() = low | normal | high | max
Returns the process identifier (pid) of anew process started by the application of Fun to the empty list[] on Node.
If Node does not exist, auseless pid is returned. Otherwise works like spawn_opt/4.

spawn_opt(Module, Function, Args, Options) ->

pid() | {pid(), reference()}
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 177

erlang

Module = module()

Function = atom()

Args = [term()]

Options = [Option]

Option =
link |
monitor |
{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |
{min heap size, Size :: integer() >= 0} |
{min bin vheap size, VSize :: integer() >= 0}

priority level() = low | normal | high | max

Works as spawn/3, except that an extra option list is given when creating the process.

If option noni t or isgiven, the newly created process is monitored, and both the pid and reference for the monitor
isreturned.

The options are as follows:
link

Sets alink to the parent process (like spawn_I i nk/ 3 does).
noni t or

Monitors the new process (like monitor/2 does).
{priority, Level

Setsthe priority of the new process. Equivalent to executing process flag(priority, Level) in the start function of
the new process, except that the priority is set before the process is selected for execution for the first time. For
more information on priorities, see process flag(priority, Level).

{full sweep_after, Number}

Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

The Erlang runtime system uses a generational garbage collection scheme, using an "old heap" for data that
has survived at least one garbage collection. When there is no more room on the old heap, a fullsweep garbage
collection is done.

Option f ul | sweep_aft er makes it possible to specify the maximum number of generational collections
before forcing a fullsweep, even if thereis room on the old heap. Setting the number to zero disables the general
collection algorithm, that is, all live datais copied at every garbage collection.

A few cases when it can be useful to changef ul | sweep_after:

e If binariesthat are no longer used are to be thrown away as soon as possible. (Set Nunber to zero.)

e A process that mostly have short-lived datais full sweeped seldom or never, that is, the old heap contains
mostly garbage. To ensure a fullsweep occasionally, set Nunber to asuitable value, such as 10 or 20.

¢ In embedded systems with alimited amount of RAM and no virtual memory, you might want to preserve
memory by setting Nurrber to zero. (The value can be set globally, see erlang: system flag/2.)

{m n_heap_size, Size}

Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

178 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Gives a minimum heap size, in words. Setting this value higher than the system default can speed up some
processes because less garbage collection is done. However, setting atoo high value can waste memory and slow
down the system because of worse data locality. Therefore, use this option only for fine-tuning an application
and to measure the execution time with various Si ze values.

{m n_bin_vheap_size, VSize}
Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

Gives aminimum binary virtual heap size, in words. Setting this value higher than the system default can speed
up some processes because less garbage collection is done. However, setting atoo high value can waste memory.
Therefore, use this option only for fine-tuning an application and to measure the execution time with various
VSi ze values.

spawn_opt(Node, Module, Function, Args, Options) ->
pid() | {pid(), reference()}
Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Options = [Option]
Option =
link |
monitor |
{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |
{min _heap size, Size :: integer() >= 0} |
{min_bin vheap size, VSize :: integer() >= 0}
priority level() = low | normal | high | max
Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. If Node does not exist, a useless pid is returned. Otherwise works like spawn_opt/4.

Note:
Option noni t or isnot supported by spawn_opt / 5.

split binary(Bin, Pos) -> {binary(), binary()}

Types.
Bin = binary()
Pos = integer() >= 0

0..byte size(Bin)

Returns a tuple containing the binaries that are the result of splitting Bi n into two parts at position Pos. Thisis not
adestructive operation. After the operation, there are three binaries altogether.

Example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 179

erlang

> B = list to binary("0123456789").
<<"0123456789">>

> byte size(B).

10

> {B1, B2} = split binary(B,3).
{<<"012">>,<<"3456789">>}

> byte size(Bl).

3

> byte size(B2).
7

erlang:start timer(Time, Dest, Msg, Options) -> TimerRef
Types:

Time = integer()

Dest = pid() | atom()

Msg = term()

Options = [Option]

Abs = boolean()

Option = {abs, Abs}

TimerRef = reference()

Startsatimer. When thetimer expires, themessage{t i neout, Ti ner Ref, Msg} issenttotheprocessidentified
by Dest .

Available Opt i ons:
{abs, false}

This is the default. It means the Ti ne value is interpreted as a time in milli-seconds relative current Erlang
monotonic time.

{abs, true}
Absolute Ti me value. The Ti e valueisinterpreted as an absolute Erlang monotonic time in milli-seconds.
More Opt i onsmay be added in the future.

The absolute point in time, the timer is set to expire on, has to be in the interva
[erlang: systeminfo(start _tine), erlang:systeminfo(end_tine)]. Further, if areative
timeis specified, the Ti me valueis not allowed to be negative.

If Dest isapid(), it must beapi d() of aprocess created on the current runtime system instance. This process
may or may not have terminated. If Dest isanat on() , it isinterpreted as the name of alocally registered process.
The process referred to by the name is looked up at the time of timer expiration. No error is given if the name does
not refer to a process.

If Dest isapi d(), thetimer isautomatically canceled if the process referred to by the pi d() isnot alive, or if the
process exits. This feature was introduced in ERTS version 5.4.11. Notice that timers are not automatically canceled
when Dest isanat on() .

Seeasoerl ang: send_after/4,erl ang: cancel _tiner/2,anderl ang: read_ti mer/ 2.
Failure: badar g if the arguments do not satisfy the requirements specified here.

erlang:start timer(Time, Dest, Msg) -> TimerRef
Types.

180 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Time = integer() >= 0
Dest = pid() | atom()
Msg = term()

TimerRef = reference()

Startsatimer. Thesameascallinger | ang: start _tinmer(Tinme, Dest, Mg, []).

statistics(Item :: active tasks) -> [ActiveTasks]
Types:

ActiveTasks = integer() >= 0
Returns a list where each element represents the amount of active processes and ports on each run queue and its
associated scheduler. That is, the number of processes and ports that are ready to run, or are currently running. The
element location in the list corresponds to the scheduler and its run queue. The first element corresponds to scheduler
number 1 and so on. The information is not gathered atomically. That is, the result is not necessarily a consistent

snapshot of the state, but instead quite efficiently gathered. See also, st ati stics(total _active_t asks),
statistics(run_queue_lengths),andstatistics(total _run_queue_| engths).

statistics(Item :: context switches) -> {ContextSwitches, 0}
Types.
ContextSwitches = integer() >= 0

Returns the total number of context switches since the system started.

statistics(Item :: exact reductions) ->
{Total Exact Reductions,
Exact Reductions Since Last Call}

Types:
Total Exact Reductions = Exact Reductions Since Last Call = integer() >= 0

Returns the number of exact reductions.

Note:

statistics(exact_reductions) isamore expensive operation than statistics(reductions), especialy
on an Erlang machine with SMP support.

statistics(Item :: garbage collection) ->
{Number of GCs, Words Reclaimed, 0}

Types:
Number of GCs = Words Reclaimed = integer() >= 0

Returns information about garbage collection, for example:
> statistics(garbage collection).

{85,23961,0}

Thisinformation can be invalid for some implementations.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 181

erlang

statistics(Item :: io) -> {{input, Input}, {output, Output}}
Types:
Input = OQutput = integer() >= 0

Returns | nput , which is the total number of bytes received through ports, and Qut put , which is the total number
of bytes output to ports.

statistics(Item :: reductions) ->
{Total Reductions, Reductions Since Last Call}

Types.
Total Reductions = Reductions Since Last Call = integer() >= 0

Returns information about reductions, for example:

> statistics(reductions).
{2046,11}

Note:

As from ERTS 5.5 (OTP R11B), this value does not include reductions performed in current time slices of
currently scheduled processes. If an exact value is wanted, use statistics(exact_reductions).

statistics(Item :: run queue) -> integer() >= 0

Returns the total length of the run-queues. That is, the number of processes and ports that are ready to run on all
available run-queues. The information is gathered atomically. That is, the result is a consistent snapshot of the state,
but this operation is much more expensive compared to st ati sti cs(total _run_queue_| engt hs). This
especially when alarge amount of schedulersis used.

statistics(Item :: run queue lengths) -> [RunQueuelLenght]
Types:

RunQueuelLenght = integer() >= 0
Returns a list where each element represents the amount of processes and ports ready to run for each
run queue. The eement location in the list corresponds to the run queue of a scheduler. The first
element corresponds to the run queue of scheduler number 1 and so on. The information is not gathered
atomically. That is, the result is not necessarily a consistent snapshot of the state, but instead quite efficiently
gathered. See also, statistics(total _run_queue_ |l engths), statistics(active_tasks), and
statistics(total active_tasks).

statistics(Item :: runtime) ->
{Total Run_Time, Time Since Last Call}

Types.
Total Run_Time = Time Since Last Call = integer() >= 0
Returns information about runtime, in milliseconds.

This is the sum of the runtime for all threads in the Erlang runtime system and can therefore be greater than the wall
clock time.

182 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Example:

> statistics(runtime).
{1690,1620}

statistics(Item :: scheduler wall time) ->
[{SchedulerId, ActiveTime, TotalTime}] | undefined
Types:
SchedulerId = integer() >=1
ActiveTime = TotalTime = integer() >= 0

Returns a list of tuples with { Schedul er1d, ActiveTine, Total Ti ne}, where Schedul erld isan
integer ID of the scheduler, Act i veTi ne isthe duration the scheduler has been busy, and Tot al Ti ne isthe total
time duration since scheduler_wall_time activation. The time unit is undefined and can be subject to change between
releases, OSs, and system restarts. schedul er _wal | _ti nme is only to be used to calculate relative values for
scheduler-utilization. Act i veTi me can never exceed Tot al Ti ne.

The definition of abusy scheduler iswhen it isnot idle and is not scheduling (selecting) a process or port, that is:

* Executing process code

e Executing linked-in-driver or NIF code

» Executing built-in-functions, or any other runtime handling
e Garbage collecting

e Handling any other memory management

Notice that a scheduler can also be busy even if the OS has scheduled out the scheduler thread.
Returnsundef i ned if system flag scheduler_wall_time isturned off.

Thelist of scheduler information is unsorted and can appear in different order between calls.
Using schedul er _wal | _t i me to calculate scheduler-utilization:

> erlang:system flag(scheduler wall time, true).

false

> TsO = lists:sort(erlang:statistics(scheduler wall time)), ok.
ok

Some time later the user takes another snapshot and cal culates schedul er-utilization per scheduler, for example:

> Tsl = lists:sort(erlang:statistics(scheduler wall time)), ok.
ok
> lists:map(fun({{I, A0, TO}, {I, Al, T1}}) ->

{I, (A1 - AQ)/(T1 - TO)} end, lists:zip(Ts0,Tsl)).
[{1,0.9743474730177548},

{2,0.9744843782751444},

{3,0.9995902361669045},

{4,0.9738012596572161},

{5,0.9717956667018103},

{6,0.9739235846420741},

{7,0.973237033077876},

{8,0.9741297293248656}]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 183

erlang

Using the same snapshots to calculate atotal scheduler-utilization:

> {A, T} = lists:foldl(fun({{ , AG, TO}, { , Al, T1}}, {Ai,Ti}) ->
{Ai + (Al - AQ), Ti + (T1 - TO)} end, {0, 0}, lists:zip(Ts0O,Tsl)), A/T.
0.9769136803764825

Note:

schedul er _wal | _time is by default disabled. To enable it, use
erl ang: system fl ag(schedul er_wall tine, true).

statistics(Item :: total active tasks) -> ActiveTasks
Types:
ActiveTasks = integer() >= 0
Returnsthetotal amount of active processes and portsin the system. That is, the number of processes and portsthat are
ready to run, or are currently running. The information is not gathered atomically. That is, the result is not necessarily

aconsistent snapshot of the state, but instead quite efficiently gathered. Seeaso, st ati sti cs(active_t asks),
statistics(run_queue_lengths),andstatistics(total _run_queue_| engths).

statistics(Item :: total run_queue lengths) ->
TotalRunQueuelenghts

Types.

TotalRunQueuelLenghts = integer() >= 0
Returns the total length of the run-queues. That is, the number of processes and ports that
are ready to run on al avalable run-queues. The information is not gathered atomicaly. That
is, the result is not necessarily a consistent snapshot of the state, but much more efficiently

gathered compared to statistics(run_queue). See aso, statistics(run_queue_| engths),
statistics(total active_tasks),andstatistics(active_tasks).

statistics(Item :: wall clock) ->
{Total Wallclock Time,
Wallclock Time Since Last Call}

Types:
Total Wallclock Time = Wallclock Time Since Last Call = integer() >= 0

Returns information about wall clock. wal | _cl ock can be used in the same manner asr unt i e, except that real
time is measured as opposed to runtime or CPU time.

erlang:suspend process(Suspendee, OptList) -> boolean()
Types:

Suspendee = pid()

OptList = [Opt]

Opt = unless suspending | asynchronous

Increases the suspend count on the process identified by Suspendee and puts it in the suspended state if it is not
already in that state. A suspended process will not be scheduled for execution until the process has been resumed.

184 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

A process can be suspended by multiple processes and can be suspended multiple times by a single process. A
suspended process does not leave the suspended state until its suspend count reaches zero. The suspend count
of Suspendee is decreased when erlang:resume_process(Suspendee) is called by the same process that called
erl ang: suspend_process(Suspendee) . All increased suspend counts on other processes acquired by a
process are automatically decreased when the process terminates.

The options (Opt s) are asfollows:

asynchronous
A suspend request is sent to the process identified by Suspendee. Suspendee eventually suspends unless
itisresumed before it could suspend. The caller of er | ang: suspend_pr ocess/ 2 returnsimmediately,
regardless of whether Suspendee has suspended yet or not. The point in time when Suspendee
suspends cannot be deduced from other events in the system. It is only guaranteed that Suspendee
eventually suspends (unlessit is resumed). If option asynchr onous has not been passed, the caller of
erl ang: suspend_pr ocess/ 2 isblocked until Suspendee has suspended.

unl ess_suspendi ng
The process identified by Suspendee is suspended unless the calling process aready is suspending
Suspendee. If unl ess_suspendi ng is combined with option asynchr onous, a suspend request
is sent unlessthe calling process aready is suspending Suspendee or if asuspend request aready has
been sent and isin transit. If the calling process aready is suspending Suspendee, or if combined with
option asynchr onous and asend request already isin transit, f al se is returned and the suspend count on
Suspendee remains unchanged.

If the suspend count on the processidentified by Suspendee isincreased, t r ue isreturned, otherwisef al se.

Warning:
This BIF isintended for debugging only.

Failures:

badar g
If Suspendee isnot aprocessidentifier.
badar g
If the processidentified by Suspendee isthe same process as the process calling
erl ang: suspend_process/ 2.
badar g
If the processidentified by Suspendee isnot alive.
badar g
If the process identified by Suspendee resides on another node.
badar g
If Opt Li st isnot aproper list of valid Opt s.
systemlimt
If the process identified by Suspendee has been suspended more times by the calling process than can
be represented by the currently used internal data structures. The system limit is higher than 2,000,000,000
suspends and will never be lower.

erlang:suspend process(Suspendee) -> true
Types:
Suspendee = pid()
Suspends the process identified by Suspendee. The same as calling erlang: suspend _process(Suspendes, []).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 185

erlang

Warning:
This BIF isintended for debugging only.

erlang:system flag(Flag :: backtrace depth, Depth) -> OldDepth
Types:

Depth = 0ldDepth = integer() >= 0
Sets the maximum depth of call stack back-tracesin the exit reason element of ' EXI T' tuples.
Returns the old value of the flag.

erlang:system flag(Flag :: cpu_topology, CpuTopology) ->

0ldCpuTopology
Types:

CpuTopology = 0ldCpuTopology = cpu_t opol ogy()
cpu_topology() = [LevelEntry :: level _entry()] | undefined
level entry() =

{LevelTag :: level _tag(), SubLevel :: sub_level ()} |

{LevelTag :: level tag(),

InfolList :: info_list(),

SubLevel :: sub_level ()}
level tag() = core | node | processor | thread
sub_level()
[LevelEntry :: level _entry()] |
(LogicalCpuld :: {logical, integer() >= 0})
info list() = []

Warning:
Thisargument is deprecated and scheduled for removal in ERTS 5.10/0OTP R16. Instead of using this argument,
use command-line argument +sctiner| (1) .

When this argument is removed, afinal CPU topology to use is determined at emulator boot time.

Sets the user-defined CpuTopol ogy. The user-defined CPU topology overrides any automatically detected CPU
topology. By passingundef i ned asCpuTopol ogy, thesystemrevertsto the CPU topol ogy automatically detected.

Thereturned value equals the value returned fromer | ang: syst em i nf o(cpu_t opol ogy) before the change
was made.

Returns the old value of the flag.

The CPU topology is used when binding schedulers to logical processors. If schedulers are already bound when the
CPU topology is changed, the schedulers are sent a request to rebind according to the new CPU topology.

The user-defined CPU topology can aso be set by passing command-line argument +scttoer | (1) .

For information on type CpuTopol ogy and more, see erlang: system _info(cpu_topology) as well as the command-
lineflags+sctand +sbtiner| (1) .

186 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:system flag(Flag :: dirty cpu schedulers online,
DirtyCPUSchedulersOnline) ->
0ldDirtyCPUSchedulersOnline

Types:
DirtyCPUSchedulersOnline = 0ldDirtyCPUSchedulersOnline = integer() >= 1
Sets the number of dirty CPU schedulers online. Range is 1 <= DirtyCPUSchedulersOnline <= N, where

N is the smallest of the return values of erlang:systeminfo(dirty cpu schedul ers) and
erl ang: system.i nfo(schedul ers_online).

Returns the old value of the flag.

The number of dirty CPU schedulers online can changeif the number of schedulers online changes. For example, if 12
schedulersand 6 dirty CPU schedulersareonline, andsyst em f | ag/ 2 isusedto set the number of schedulersonline
to 6, then the number of dirty CPU schedulers online is automatically decreased by half aswell, down to 3. Similarly,
the number of dirty CPU schedulers online increases proportionally to increases in the number of schedulers online.

Note:

The dirty schedulers functionality is experimental. Enable support for dirty schedulers when building OTP to try
out the functionality.

For more information, see erlang:system info(dirty_cpu_schedulers) and
erlang:system info(dirty_cpu_schedulers online).

erlang:system flag(Flag :: fullsweep after, Number) -> OldNumber
Types.
Number = OldNumber = integer() >= 0
Sets system flag f ul | sweep_af t er. Nunber isanon-negative integer indicating how many times generational

garbage collections can be done without forcing a fullsweep collection. The value applies to new processes, while
processes aready running are not affected.

Returns the old value of the flag.
In low-memory systems (especially without virtual memory), setting the value to O can help to conserve memory.
This value can aso be set through (OS) environment variable ERL_ FULLSWEEP_AFTER.

erlang:system flag(Flag :: min heap size, MinHeapSize) ->
0ldMinHeapSize
Types:
MinHeapSize = 0ldMinHeapSize = integer() >= 0
Sets the default minimum heap size for processes. The size is given in words. The new mi n_heap_si ze effects

only processes spawned after the change of mi n_heap_si ze has been made. m n_heap_si ze can be set for
individual processes by using spawn_opt/N or process flag/2.

Returns the old value of the flag.
erlang:system flag(Flag :: min bin vheap size, MinBinVHeapSize) ->

01dMinBinVHeapSize
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 187

erlang

MinBinVHeapSize = 0ldMinBinVHeapSize = integer() >= 0

Sets the default minimum binary virtual heap size for processes. The size is given in words. The new
m n_bi n_vhheap_si ze effectsonly processes spawned after the change of m n_bi n_vhheap_si ze hasbeen
made. m n_bi n_vheap_si ze can be set for individual processes by using spawn_opt/N or process_flag/2.

Returns the old value of the flag.

erlang:system flag(Flag :: multi scheduling, BlockState) ->
O0ldBlockState
Types:
BlockState = block | unblock
OldBlockState = block | unblock | enabled

If multi-scheduling is enabled, more than one scheduler thread is used by the emulator. Multi-scheduling can be
blocked. When multi-scheduling is blocked, only one scheduler thread schedules Erlang processes.

If Bl ockStat e =: = bl ock, multi-scheduling is blocked. If Bl ockSt at e =: = unbl ock and no one else
blocks multi-scheduling, and this process has blocked only once, multi-scheduling is unblocked.

One process can block multi-scheduling multipletimes. If aprocess has blocked multipletimes, it must unblock exactly
as many times as it has blocked before it has released its multi-scheduling block. If a process that has blocked multi-
scheduling exits, it releases its blocking of multi-scheduling.

Thereturn values aredi sabl ed, bl ocked, or enabl ed. The returned value describes the state just after the call
toerl ang: system fl ag(nul ti _schedul i ng, Bl ockSt at e) hasbeen made. For information about the
return values, see erlang: system _info(multi_scheduling).

Note:

Blocking of multi-scheduling isnormally not needed. If you feel that you need to block multi-scheduling, consider
it afew more times again. Blocking multi-scheduling is only to be used as alast resort, asit is most likely avery
inefficient way to solve the problem.

See aso erlang:system info(multi_scheduling), erlang:system info(multi_scheduling_blockers), and
erlang: system_info(schedulers).

erlang:system flag(Flag :: scheduler bind type, How) ->
01ldBindType
Types:
How = schedul er _bi nd_type() | default bind
0ldBindType = schedul er _bi nd_t ype()

scheduler bind type() =
no node processor spread |
no_node thread spread |
no spread |
processor _spread |
spread |
thread spread |
thread no node processor spread |

188 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

unbound

Warning:

Thisargument is deprecated and scheduled for removal in ERTS 5.10/0OTP R16. Instead of using this argument,
use command-line argument +sbt in er | (1) . When this argument is removed, a final scheduler bind type to
use is determined at emulator boot time.

Controlsif and how schedulers are bound to logical processors.

When er | ang: syst em fl ag(schedul er _bi nd_type, How) iscaled, an asynchronous signal is sent to
al schedulers online, causing them to try to bind or unbind as requested.

Note:

If ascheduler failsto bind, thisisoften silently ignored, asit isnot always possibleto verify valid logical processor
identifiers. If an error is reported, it isreported to er r or _| ogger . To verify that the schedulers have bound
as requested, call erlang: system_info(scheduler_bindings).

Schedulers can be bound on newer Linux, Solaris, FreeBSD, and Windows systems, but more systems will be
supported in future rel eases.

In order for the runtime system to be able to bind schedul ers, the CPU topology must be known. If the runtime system
fails to detect the CPU topology automatically, it can be defined. For more information on how to define the CPU
topology, see command-lineflag +sctiner| (1) .

The runtime system does by default not bind schedulersto logical processors.

Note:

If the Erlang runtime system is the only OS process binding threads to logical processors, this improves the
performance of the runtime system. However, if other OS processes (for exampl e, another Erlang runtime system)
also bind threadsto logical processors, there can be a performance penalty instead. Sometimes this performance
penalty can be severe. If so, it is recommended to not bind the schedulers.

Schedulers can be bound in different ways. Argument How determines how schedulers are bound and can be any of
the following:

unbound

Same as command-line argument +sbtuiner! (1) .
no_spread

Same as command-line argument +sbt nsiner | (1) .
t hread_spread

Same as command-line argument +sbt tsiner | (1) .
processor _spread

Same as command-line argument +sbt psiner| (1) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 189

erlang

spread
Same as command-line argument +sbt siner| (1) .
no_node_t hread_spread
Same as command-line argument +sbt nntsiner | (1) .
no_node_processor_spread
Same as command-line argument +sbt nnpsiner| (1) .
t hread_no_node_processor_spread
Same as command-line argument +sbt tnnpsiner| (1) .
def aul t _bi nd
Same as command-line argument +sbt dbiner | (1) .
The returned value equals How before flag schedul er _bi nd_t ype was changed.
Failures:
not sup
If binding of schedulersis not supported.
badar g
If Howis not one of the documented alternatives.
badar g
If CPU topology information is unavailable.
The scheduler bind type can also be set by passing command-line argument +sbttoer | (1) .

For moreinformation, seeerlang: system info(scheduler_bind_type), erlang: system info(scheduler_bindings), aswell
as command-line flags+sbt and +sctiner | (1) .

erlang:system flag(Flag :: scheduler wall time, Boolean) ->
0ldBoolean

Types:
Boolean = 0ldBoolean = boolean()
Turns on or off scheduler wall time measurements.

For more information, see erlang: statistics(scheduler_wall_time).

erlang:system flag(Flag :: schedulers online, SchedulersOnline) ->
0ldSchedulersOnline

Types:
SchedulersOnline = 0ldSchedulersOnline = integer() >=1

Sets the number of schedulers online. Range is 1 <= SchedulersOnline <= erlang:system_info(schedulers).
Returns the old value of the flag.

If the emulator was built with support for dirty schedulers, changing the number of schedulers online can also change
the number of dirty CPU schedulers online. For example, if 12 schedulers and 6 dirty CPU schedulers are online, and
system fl ag/ 2 isusedto set the number of schedulers onlineto 6, then the number of dirty CPU schedulersonline
is automatically decreased by half aswell, down to 3. Similarly, the number of dirty CPU schedulers online increases
proportionally to increases in the number of schedulers online.

190 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

For more information, see erlang: system info(schedulers) and erlang: system info(schedulers_online).

erlang:system flag(Flag :: trace control word, TCW) -> 0ldTCW
Types:
TCW = 01dTCW = integer() >= 0

Sets the value of the node trace control word to TCW which is to be an unsigned integer. For more information, see
the function set_tcw in Section "Match Specificationsin Erlang" in the User's Guide.

Returns the old value of the flag.

erlang:system flag(Flag :: time offset, Value :: finalize) ->
OldState

Types:
OldState = preliminary | final | volatile

Finalizes the time offset when single time warp mode is used. If another time warp mode is used, the time offset state
isleft unchanged.

Returnsthe old state identifier. That is:

e Ifprelim nary isreturned, finalization was performed and the time offset is now final.

« If final is returned, the time offset was aready in the final state. This either because another
erl ang: system flag(time_of fset, finalize) cal,orbecause notimewarp modeis used.

e Ifvol ati | e isreturned, the time offset cannot be finalized because multi time warp mode is used.

erlang:system info(Item :: allocated areas) -> [tuple()]
erlang:system info(Item :: allocator) ->
{Allocator, Version, Features, Settings}

erlang:system info(Item :: alloc util allocators) -> [Alloc]
erlang:system info(Item :: {allocator, Alloc}) -> [term()]
erlang:system info(Item :: {allocator sizes, Alloc}) -> [term()]
Types:

Allocator = undefined | glibc

Version = [integer() >= 0]
Features = [atom()]
Settings =
[{Subsystem :: atom(),
[{Parameter :: atom(), Value :: term()}]}]

Alloc = atom()
Returns various information about the allocators of the current system (emulator) as specified by | t em
al | ocat ed_ar eas

Returns alist of tuples with information about miscellaneous allocated memory areas.

Each tuple contains an atom describing the type of memory asfirst element and the amount of allocated memory
in bytes as second element. When information about all ocated and used memory is present, also athird element
is present, containing the amount of used memory in bytes.

erl ang: system.info(allocated areas) is intended for debugging, and the content is highly
implementation-dependent. The content of the results therefore changes when needed without prior notice.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 191

erlang

Notice that the sum of these valuesis not the total amount of memory allocated by the emulator. Some values are
part of other values, and some memory areas are not part of the result. For information about the total amount of
memory allocated by the emulator, see erlang: memory/0,1.

al | ocat or

Returns{ Al | ocat or, Version, Features, Settings,where

Al ocator corresponds to the mal | oc() implementation used. If Al | ocat or equalsundefi ned,
themal | oc() implementation used cannot be identified. gl i bc can be identified.

e Versionisalist of integers (but not a string) representing the version of themal | oc () implementation
used.

* Feat ures isalist of atoms representing the allocation features used.

e Settings isalist of subsystems, their configurable parameters, and used values. Settings can differ
between different combinations of platforms, allocators, and allocation features. Memory sizes are given in
bytes.

See also "System Flags Effecting erts alloc” in erts_alloc(3).

alloc util _allocators

Returns a list of the names of all allocators using the ERTS internal al | oc_uti | framework as atoms. For
more information, see Section "The alloc_util framework™ in erts_alloc(3).

{allocator, Alloc}

Returns information about the specified alocator. As from ERTS 5.6.1, the return value is a list of
{instance, InstanceNo, Instancelnfo} tuples, where | nst ancel nf o contains information
about a specific instance of the alocator. As from ERTS 5.10.4, the returned list when calling
erl ang: system.info({allocator, nseg alloc}) asoincludesan{erts_mmap, _} tupleas
one element in the list. If Al | oc is not arecognized allocator, undef i ned isreturned. If Al | oc is disabled,
f al se isreturned.

Notice that the information returned is highly implementation-dependent and can be changed or removed at any
time without prior notice. It was initially intended as a tool when developing new alocators, but as it can be of
interest for othersit has been briefly documented.

The recognized alocators are listed in erts_alloc(3). After reading theert s_al | oc(3) documentation, the
returned information more or less speaks for itself, but it can be worth explaining some things. Call counts are
presented by two values, thefirst valueis gigacalls, and the second valueiscalls. mbcs and shcs denote multi-
block carriers, and single-block carriers, respectively. Sizes are presented in bytes. When asize is not presented,
it isthe amount of something. Sizes and amounts are often presented by three values:

e Thefirst isthe current value.

e Thesecond isthe maximum value since thelast call toer | ang: system i nfo({al | ocat or,
Al l oc}).

¢ Thethird is the maximum value since the emulator was started.

If only onevalueispresent, itisthecurrent value. f i x_al | oc memory block types are presented by two val ues.
Thefirst value is the memory pool size and the second value is the used memory size.

{al l ocator_sizes, Alloc}

Returnsvarioussizeinformation for the specified allocator. Theinformation returnedisasubset of theinformation
returned by er | ang: system i nfo({all ocator, Alloc}).

erlang:system info(Item :: cpu topology) -> CpuTopology

erlang:system info(Item ::
{cpu_topology, defined | detected | used}) ->

192 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

CpuTopology
Types:
CpuTopology = cpu_t opol ogy()
cpu_topology() = [LevelEntry :: level _entry()] | undefined

All Level Ent r ysof alist must contain the same Level Tag, except on the top level where both node and
processor Level Tagscan coexist.

level entry() =

{LevelTag :: level _tag(), SubLevel :: sub_level ()} |
{LevelTag :: level _tag(),
InfolList :: info_list(),

SubLevel :: sub _level ()}
{Level Tag, SublLevel} == {Level Tag, [], SubLevel}
level tag() = core | node | processor | thread
More Level Tags can beintroduced in afuture release.
sub level() =
[LevelEntry :: level _entry()] |
(LogicalCpuld :: {logical, integer() >= 0})
info list() = []
Thei nfo_list() canbeextendedinafuturerelease.
Returns various information about the CPU topology of the current system (emulator) as specified by | t em
cpu_t opol ogy

Returnsthe CpuTopol ogy currently used by the emulator. The CPU topology is used when binding schedulers
to logical processors. The CPU topology used is the user-defined CPU topology, if such exists, otherwise the
automatically detected CPU topology, if such exists. If no CPU topology exists, undef i ned isreturned.

node refersto Non-Uniform Memory Access (NUMA) nodes. t hr ead refersto hardware threads (for example,
Intel hyper-threads).

A level interm CpuTopol ogy can be omitted if only one entry existsand | nf oLi st isempty.

t hr ead canonly beasub level tocor e. cor e canbeasub level to pr ocessor or node. processor can
be on the top level or asub level to node. node can be on the top level or asub level to pr ocessor . That is,
NUMA nodes can be processor internal or processor external. A CPU topology can consist of amix of processor
internal and external NUMA nodes, as long as each logical CPU belongs to one NUMA node. Cache hierarchy
isnot part of the CouTopol ogy type, but will bein afuture release. Other things can also make it into the CPU
topology in afuture release. In other words, expect the CouTopol ogy typeto change.

{cpu_t opol ogy, defi ned}

Returns the user-defined CpuTopol ogy. For more information, see command-line flag +sctiner| (1) and
argument cpu_topol ogy.

{cpu_t opol ogy, detect ed}

Returns the automatically detected CpuTopol ogyy. The emulator detects the CPU topology on some newer
Linux, Solaris, FreeBSD, and Windows systems. On Windows system with more than 32 logical processors, the
CPU topology is not detected.

For more information, see argument cpu_topology.
{cpu_t opol ogy, used}

Returns CpuTopol ogy used by the emulator. For more information, see argument cpu_topol ogy.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 193

erlang

erlang:

erlang:
erlang:

erlang

erlang:
erlang:
erlang:

erlang:
erlang:
erlang:

erlang:
erlang:

erlang:

erlang:
erlang:

erlang:
erlang:
erlang:
erlang:
erlang:

erlang:

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

system info(Item ::
opt |

build type) ->

debug |
purify |
quantify |
purecov |
gcov |
valgrind |
gprof |
lent |
frmptr

system info(Item ::
system info(Item ::
:system info(Item ::
system info(Item ::
system info(Item ::
system_info(Item ::

c_compiler used) -> {atom(), term()}
check io) -> [term()]

compat rel) -> integer()

creation) -> integer()

debug compiled) -> boolean()
delayed node table gc) ->

1nf1n1ty | integer() >= 0

system info(Item ::

dirty cpu schedulers) ->

integer() >= 0

system info(Item ::

dirty cpu schedulers online) ->

integer() >= 0

system info(Item ::

dirty io schedulers) ->

integer() >= 0

system_info(Item ::
system info(Item ::

dist) -> binary()
dist buf busy limit) ->

integer() >= 0

system info(Item ::
{Node ::
ControllingEntity ::

system info(Item ::

system info(Item ::
none

system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::

dist ctrl) ->

node(),

port() | pid()}
driver version) -> string()
dynamic trace) ->

| dtrace | systemtap

dynamic trace probes) -> boolean()
elib malloc) -> false

eager check io) -> boolean()

ets limit) -> integer() >=1
fullsweep after) ->

{fullsweep after, integer() >= 0}

system info(Item ::

garbage collection) ->

[{atom(), integer()}]

system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::

: heap sizes) -> [integer() >= 0]
heap type) -> private

info) -> binary()

kernel poll) -> boolean()
loaded) -> binary()

194 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:
erlang:

erlang:

erlang:
erlang:
erlang:

erlang:
erlang:
erlang:

erlang:

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

erlang:
erlang:

erlang:

system info(Item ::

logical processors |

logical processors available |
logical processors online) ->
unknown | integer() >= 1

system info(Item :: machine) -> string()
system info(Item :: min heap size) ->

{min heap size,
MinHeapSize :: integer() >= 1}

system info(Item :: min bin vheap size) ->

{min_bin_vheap size,
MinBinVHeapSize :: integer() >= 1}

system _info(Item :: modified timing level) ->
integer() | undefined

system info(Item :: multi scheduling) ->
disabled | blocked | enabled

system_info(Item :: multi_scheduling blockers) ->
[Pid :: pid()]

system info(Item :: nif version) -> string()

system info(Item :: otp release) -> string()

system info(Item :: os monotonic time source) ->
[{atom(), term()}]

system info(Item :: os system time source) ->
[{atom(), term()}]

system info(Item :: port count) -> integer() >= 0

system info(Item :: port limit) -> integer() >=1

system info(Item :: process count) -> integer() >=1

system info(Item :: process limit) -> integer() >=1

system info(Item :: procs) -> binary()

: scheduler bind type) ->
spread |
processor _spread |

thread spread |

thread no node processor spread |
no node processor spread |
no_node thread spread |

no spread |

unbound
system info(Item :: scheduler bindings) -> tuple()
system info(Item :: scheduler id) ->

SchedulerlId :: integer() >=1

system info(Item :: schedulers | schedulers online) ->

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 195

erlang

integer() >=1

erlang:system info(Item :: smp support) -> boolean()
erlang:system info(Item :: start time) -> integer()
erlang:system info(Item :: system version) -> string()
erlang:system info(Item :: system architecture) -> string()
erlang:system info(Item :: threads) -> boolean()

erlang:system info(Item :: thread pool size) -> integer() >= 0
erlang:system info(Item :: time correction) -> true | false

erlang:system info(Item :: time offset) ->
preliminary | final | volatile
erlang:system info(Item :: time warp mode) ->
no time warp |
single time warp |
multi time warp

erlang:system info(Item :: tolerant timeofday) ->
enabled | disabled
erlang:system info(Item :: trace control word) ->
integer() >= 0
erlang:system info(Item :: update cpu info) -> changed | unchanged
erlang:system info(Item :: version) -> string()
erlang:system info(Item ::
wordsize |

{wordsize, internal} |
{wordsize, external}) ->
4] 8

Returns various information about the current system (emulator) as specified by | t em

all ocated areas,allocator,alloc_util _allocators,all ocator_sizes
See above.

bui l d_type

Returns an atom describing the build type of the runtime system. Thisis normally the atom opt for optimized.
Other possible return values are debug, puri fy, quanti fy, purecov, gcov, val gri nd, gpr of , and
| cnt . Possible return values can be added or removed at any time without prior notice.

c_conpil er _used

Returns a two-tuple describing the C compiler used when compiling the runtime system. The first element is an
atom describing the name of the compiler, or undef i ned if unknown. The second element is aterm describing
the version of the compiler, or undef i ned if unknown.

check io

Returns a list containing miscellaneous information about the emulators internal 1/0 checking. Notice that the
content of the returned list can vary between platforms and over time. It is only guaranteed that alist is returned.

conpat _re

Returns the compatibility mode of the local node as an integer. The integer returned represents the Erlang/OTP
release that the current emulator has been set to be backward compatible with. The compatibility mode can be
configured at startup by using command-lineflag +Riner| (1) .

196 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

cpu_t opol ogy
See above.
creation

Returnsthe creation of thelocal node asan integer. The creation is changed when anodeisrestarted. The creation
of anodeis stored in processidentifiers, port identifiers, and references. This makesit (to some extent) possible
to distinguish between identifiers from different incarnations of a node. The valid creations are integers in the
range 1..3, but this will probably changein afuture release. If the nodeis not alive, O is returned.

debug_conpi | ed
Returnst r ue if the emulator has been debug compiled, otherwisef al se.
del ayed node_table gc

Returns the amount of time in seconds garbage collection of an entry in a node table is delayed. This limit can
be set on startup by passing the command line flag +zdntgc to er | . For more information see the documentation
of the command line flag.

dirty _cpu_schedul ers

Returns the number of dirty CPU scheduler threads used by the emulator. Dirty CPU schedulers execute CPU-
bound native functions, such as NIFs, linked-in driver code, and BIFs that cannot be managed cleanly by the
normal emulator schedulers.

The number of dirty CPU scheduler threads is determined at emulator boot time and cannot be changed after that.
However, the number of dirty CPU scheduler threads online can be changed at any time. The number of dirty
CPU schedulers can be set at startup by passing command-line flag + SDcpu or + SDPcpuiner| (1) .

Notice that the dirty schedulers functionality is experimental. Enable support for dirty schedulers when building
OTPto try out the functionality.

See aso erlang: system flag(dirty_cpu_schedulers online, DirtyCPUSchedulersOnline),
erlang:system info(dirty_cpu_schedulers online), erlang:system info(dirty_io_schedulers),
erlang: system info(schedulers), erlang: system info(schedulers_onlinge), and
erlang:system flag(schedulers_online, SchedulersOnling).

dirty cpu_schedul ers_online

Returns the number of dirty CPU schedulers online. The return value satisfies
1 <= Di rt yCPUSchedul er sOnl i ne <= N, whee N is the
smalest of the return vaues of erlang:systeminfo(dirty cpu_schedulers) and
erl ang: system i nfo(schedul ers_online).

The number of dirty CPU schedulers online can be set at startup by passing command-line flag +SDcpu in
erl(1).

Notice that the dirty schedulers functionality is experimental. Enable support for dirty schedulers when building
OTPto try out the functionality.

For more information, see erlang: system info(dirty_cpu_schedulers), erlang: system info(dirty_io_schedulers),
erlang: system info(schedulers_online), and erlang: system flag(dirty_cpu_schedulers online,
DirtyCPUSchedulersOnlinge).

dirty io_schedul ers

Returnsthe number of dirty I/O schedulersasan integer. Dirty 1/0O schedul ers execute |/O-bound native functions,
such as NIFs and linked-in driver code, which cannot be managed cleanly by the normal emulator schedulers.

This value can be set at startup by passing command-line argument + Dioiner | (1) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 197

erlang

Notice that the dirty schedulers functionality is experimental. Enable support for dirty schedulers when building
OTPto try out the functionality.

For more information, see erlang:system info(dirty_cpu_schedulers),
erlang:system info(dirty_cpu_schedulers online), and erlang:system flag(dirty cpu_schedulers online,
DirtyCPU<chedulersOnlineg).

di st
Returns a binary containing a string of distribution information formatted as in Erlang crash dumps. For more
information, see Section "How to interpret the Erlang crash dumps" in the User's Guide.

di st _buf _busy limt

Returnsthevalueof thedistribution buffer busy limitin bytes. Thislimit can be set at startup by passing command-
lineflag +zdbbl toer | .

dist_ctrl

Returnsalist of tuples{ Node, Control | i ngEntity},oneentry for each connected remote node. Node is
the node name and Cont r ol | i ngEnt i t y isthe port or process identifier responsible for the communication
to that node. More specifically, Cont r ol | i ngEnt i t y for nodes connected through TCP/IP (the normal case)
is the socket used in communication with the specific node.

driver_version

Returns a string containing the Erlang driver version used by the runtime system. It has the form "<major
ver>.<minor ver>".

dynam c_trace

Returns an atom describing the dynamic trace framework compiled into the virtua machine. It can
be dtrace, systentap, or none. For a commercia or standard build, it is aways none. The
other return values indicate a custom configuration (for example, . / configure --with-dynam c-
trace=dtrace). For more information about dynamic tracing, see the dyntrace manual page and the
README. dt r ace/README. syst ent ap filesin the Erlang source code top directory.

dynani c_trace_probes

Returns a bool ean() indicating if dynamic trace probes (dtrace or systentap) are built into
the emulator. This can only be true if the Virtual Machine was built for dynamic tracing (that is,
system i nfo(dynam c_trace) returnsdt r ace or syst ent ap).

end_time

The last Erlang monotonic time in nat i ve time unit that can be represented internally in the current Erlang
runtime system instance. The time between the start time and the end time is at least a quarter of a millennium.

elib _malloc

This option will be removed in afuture release. The return value will dwaysbef al se, astheel i b_mal | oc
alocator has been removed.

eager _check_io

Returnsthe value of theer | command line flag +secio whichiseithert r ue or f al se. Seethe documentation
of the command line flag for information about the different values.

ets limt

Returns the maximum number of ETStablesallowed. Thislimit can beincreased at startup by passing command-
lineflag+etoer| (1) or by setting environment variable ERL_MAX_ETS_TABLES before starting the Erlang
runtime system.

198 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

full sweep_after

Returns{ful | sweep_after, integer() >= 0},whichisthef ul | sweep_aft er garbagecollection
setting used by default. For more information, see gar bage_col | ect i on described in the following.

gar bage_col | ection

Returns a list describing the default garbage collection settings. A process spawned on the local node by a
spawn or spawn_I i nk uses these garbage collection settings. The default settings can be changed by using
system flag/2. spawn_opt/4 can spawn a process that does not use the default settings.

heap_si zes

Returns alist of integers representing valid heap sizesin words. All Erlang heaps are sized from sizesin thislist.
heap_t ype

Returns the heap type used by the current emulator. One heap type exists:

private

Each process has a heap reserved for its use and no references between heaps of different processes are
allowed. Messages passed between processes are copied between heaps.

info

Returns a binary containing a string of miscellaneous system information formatted as in Erlang crash dumps.
For more information, see Section "How to interpret the Erlang crash dumps’ in the User's Guide.

ker nel _pol |
Returnst r ue if the emulator uses some kind of kernel-poll implementation, otherwisef al se.
| oaded

Returns a binary containing a string of loaded module information formatted as in Erlang crash dumps. For more
information, see Section "How to interpret the Erlang crash dumps' in the User's Guide.

| ogi cal _processors

Returns the detected number of logical processors configured in the system. The return value is either an integer,
or the atom unknown if the emulator cannot detect the configured logical processors.

| ogi cal _processors_avail abl e

Returns the detected number of logical processors available to the Erlang runtime system. The return value is
either aninteger, or theatom unknown if the emulator cannot detect the availablelogical processors. The number
of available logical processorsislessthan or equal to the number of logical processors online.

| ogi cal _processors_online

Returns the detected number of logical processors online on the system. The return value is either an integer, or
the atom unknown if the emulator cannot detect logical processors online. The number of logical processors
onlineislessthan or equal to the number of logical processors configured.

machi ne
Returns a string containing the Erlang machine name.
m n_heap_si ze

Returns{ni n_heap_si ze, M nHeapSi ze}, whereM nHeapSi ze isthe current system-wide minimum
heap size for spawned processes.

nm n_bi n_vheap_si ze

Returns { mi n_bi n_vheap_si ze, M nBi nVHeapSi ze}, where M nBi nVHeapSi ze is the current
system-wide minimum binary virtual heap size for spawned processes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 199

erlang

nodi fied timng_| evel

Returns the modified timing-level (an integer) if modified timing is enabled, otherwise, undef i ned. For more
information about modified timing, see command-lineflag+Tiner| (1)

nmul ti _schedul i ng
Returnsdi sabl ed, bl ocked, or enabl ed:
di sabl ed

The emulator has only one scheduler thread. The emulator does not have SMP support, or have been started
with only one scheduler thread.

bl ocked

The emulator has more than one scheduler thread, but all scheduler threads except one are blocked, that is,
only one scheduler thread schedules Erlang processes and executes Erlang code.

enabl ed

The emulator has more than one schedul er thread, and no scheduler threads are blocked, that is, all available
scheduler threads schedule Erlang processes and execute Erlang code.

Seealso erlang: system flag(multi_scheduling, BlockState), erlang: system_info(multi_scheduling_blockers), and
erlang:system info(schedulers).

mul ti _schedul i ng_bl ockers

Returns alist of Pi ds when multi-scheduling is blocked, otherwise the empty list is returned. The Pi dsin the
list represent all the processes currently blocking multi-scheduling. A Pi d occurs only once in the list, even if
the corresponding process has blocked multiple times.

See dso erlang:system flag(multi_scheduling, BlockSate), erlang:system info(multi_scheduling), and
erlang:system info(schedulers).

ni f _version

Returns a string containing the version of the Erlang NIF interface used by the runtime system. It is on the form
"<magjor ver>.<minor ver>",

otp_rel ease

Returns a string containing the OTP release number of the OTP release that the currently executing ERTS
application is part of.

As from OTP 17, the OTP release number corresponds to the major OTP version number. No
erl ang: system i nf o() argument givestheexact OTPversion. Thisisbecausetheexact OTPversioninthe
general caseisdifficult to determine. For more information, see the description of versionsin System principles
in System Documentation.

0S_nonot oni c_ti me_source
Returns alist containing information about the source of OS monatonic time that is used by the runtime system.

If [] isreturned, no OS monotonic timeisavailable. Thelist contains two-tupleswith Key s asfirst element, and
Val ues as second element. The order of these tuples is undefined. The following tuples can be part of the list,
but more tuples can be introduced in the future:

{function, Function}

Funct i on isthe name of the function used. This tuple always exist if OS monotonic time is available to
the runtime system.

200 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{clock_id, d ockld}

Thistuple only exist if Funct i on can be used with different clocks. Cl ockl d corresponds to the clock
identifier used when calling Funct i on.

{resol uti on, OsMonot oni cTi neResol uti on}

Highest possible resolution of current OS monotonic time source as parts per second. If no resolution
information can be retrieved from the OS, GsMbnot oni cTi neResol uti on is set to the resolution
of the time unit of Functi ons return value. That is, the actual resolution can be lower than
OsMonot oni cTi meResol uti on. Also note that the resolution does not say anything about the
accuracy, and whether the precision do align with the resolution. Y ou do, however, know that the precision
is not better than Gs Mbnot oni cTi neResol ut i on.

{ext ended, Extended}

Ext ended equals yes if the range of time values has been extended; otherwise, Ext ended equals no.
The range needs to be extended if Funct i on returns values that wrap fast. Thistypically isthe case when
thereturn value is a 32-bit value.

{parallel, Parallel}

Par al | el equalsyes if Functi oniscalledinparallel frommultiplethreads. If itisnot calledin parallel,
because calls needs to be serialized, Par al | el equalsno.

{tinme, OsMonotonicTi ne}
GsMonot oni cTi me equals current OS monotonic timeinnat i ve time unit.
0s_systemtine_source
Returns alist containing information about the source of OS systemtime that is used by the runtime system.

Thelist contains two-tuples with Key s asfirst element, and Val uesas second element. The order if these tuples
is undefined. The following tuples can be part of the list, but more tuples can be introduced in the future:

{function, Function}
Funct i on isthe name of the funcion used.
{clock_id, d ockld}

Thistuple only exist if Funct i on can be used with different clocks. Cl ockl d corresponds to the clock
identifier used when calling Funct i on.

{resol ution, OsSystenii neResol ution}

Highest possible resolution of current OS system time source as parts per second. If no resolution
information can be retrieved from the OS, GsSyst entli neResol uti on is set to the resolution
of the time unit of Functi ons return value. That is, the actua resolution may be lower than
GsSyst enili meResol uti on. Also note that the resolution does not say anything about the accuracy,
and whether the precision do align with the resolution. You do, however, know that the precision is not
better than Gs Sy st enili neResol uti on.

{parallel, Parallel}

Par al | el equalsyes if Functi oniscalledinparallel frommultiplethreads. If itisnot calledin parallel,
because calls needs to be serialized, Par al | el equalsno.

{tinme, OsSysteniine}
OGsSyst endli e equals current OS system timein nat i ve time unit.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 201

erlang

port _parallelism

Returns the default port parallelism scheduling hint used. For more information, see command-line argument
+sppinerl (1).
port_count

Returns the number of ports currently existing at the local node. The valueisgiven asan integer. Thisisthe same
value asreturned by | engt h(er| ang: port s()), but more efficient.

port limt

Returns the maximum number of simultaneously existing ports at the local node as an integer. Thislimit can be
configured at startup by using command-lineflag+Qinerl (1).

process_count

Returns the number of processes currently existing at the local node. The valueis given as an integer. Thisisthe
same value asreturned by | engt h(processes()), but more efficient.

process_limt

Returns the maximum number of simultaneously existing processes at the local node. The value is given as an
integer. Thislimit can be configured at startup by using command-lineflag +Pinerl (1) .

procs

Returns a binary containing a string of process and port information formatted as in Erlang crash dumps. For
more information, see Section "How to interpret the Erlang crash dumps® in the User's Guide.

schedul er _bi nd_type
Returns information about how the user has requested schedul ers to be bound or not bound.

Notice that even though a user has requested schedulers to be bound, they can silently have failed to bind. To
inspect the scheduler bindings, call erlang: system info(scheduler_bindings).

For more information, See command-line argument +sbt in erl (1) and
erlang:system info(scheduler _bindings).

schedul er _bi ndi ngs
Returns information about the currently used scheduler bindings.

A tuple of a size equal to erlang:system info(schedulers) is returned. The tuple elements are integers
or the atom unbound. Logical processor identifiers are represented as integers. The Nth element
of the tuple equals the current binding for the scheduler with the scheduler identifier equal to N.
For example, if the schedulers are bound, el ement (erl ang: system i nfo(schedul er _id),
erl ang: system i nf o(schedul er _bi ndi ngs)) returnsthe identifier of the logical processor that the
calling processis executing on.

Notice that only schedulers online can be bound to logical processors.
For moreinformation, see command-lineargument +sbtiner | (1) and erlang:system info(schedulers_online).
schedul er _id

Returns the scheduler ID (Schedul erld) of the scheduler thread that the calling process is
executing on. Schedul erld is a postive integer, where 1 <= Schedul erld <=
erl ang: syst em i nf o(schedul er s) . See also erlang: system_info(schedulers).

schedul ers

Returns the number of scheduler threads used by the emulator. Scheduler threads online schedules Erlang
processes and Erlang ports, and execute Erlang code and Erlang linked-in driver code.

202 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The number of scheduler threadsis determined at emulator boot time and cannot be changed later. However, the
number of schedulers online can be changed at any time.

See dso erlang:system flag(schedulers online, SchedulersOnline), erlang:system info(schedulers online),
erlang:system info(scheduler_id), erlang: system flag(multi_scheduling, BlockSate),
erlang: system_info(multi_scheduling), and erlang: system info(multi_scheduling_blockers).

schedul ers_onli ne

Returns the number of schedulers online. The scheduler identifiers of schedulers online satisfy the relationship 1
<= Schedul erld <= erl ang: system_i nfo(schedul ers_online).

For more information, see erlang:system info(schedulers) and erlang:system flag(schedulers online,
SchedulersOnline).

snp_support
Returnst r ue if the emulator has been compiled with SMP support, otherwise f al se isreturned.
start _tine

The Erlang monotonictimeinnat i ve timeunit at the time when current Erlang runtime system instance started.
Seeasoer| ang: system.info(end_tine).

system versi on
Returns a string containing version number and some important properties, such as the number of schedulers.
system architecture
Returns a string containing the processor and OS architecture the emulator is built for.
t hr eads
Returnst r ue if the emulator has been compiled with thread support, otherwise f al se isreturned.
t hr ead_pool _si ze

Returns the number of async threadsin the async thread pool used for asynchronousdriver calls (driver_async()).
The valueis given as an integer.

time_correction

Returns a boolean value indicating whether time correction is enabled or not.
time_of f set

Returns the state of the time offset:

prelimnary

The time offset is preliminary, and will be changed at a later time when being finalized. The preliminary
time offset is used during the preliminary phase of the single time warp mode.

final

Thetime offset isfinal. This either because no time warp mode is used, or because the time offset have been
finalized when single time warp mode is used.

vol atile
Thetime offset isvolatile. That is, it can change at any time. Thisis because multi time warp modeis used.
ti me_war p_node
Returns a value identifying the time warp mode being used:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 203

erlang

no_time_warp
The no time warp mode is used.
single_time_warp
The single time warp mode is used.
multi _time_warp
The multi time warp mode is used.
tol erant _ti neof day

Returns whether a pre erts-7.0 backwards compatible compensation for sudden changes of system time is
enabl ed or di sabl ed. Such compensation isenabl ed when thetime offset isf i nal , and time correction
is enabled.

trace_control _word

Returns the value of the node trace control word. For more information, see function get _t cwin Section Match
Secificationsin Erlang in the User's Guide.

update_cpu_info

The runtime system rereads the CPU information available and updates its internally stored information about
the detected CPU topology and the number of logical processors configured, online, and available.

If the CPU information has changed since the last time it was read, the atom changed isreturned, otherwise the
atom unchanged. If the CPU information has changed, you probably want to adjust the number of schedulers
online. Y ou typically want to have as many schedulers online as logical processors available.

version

Returns a string containing the version number of the emulator.
wor dsi ze

Sameas{wor dsi ze, internal}.
{wordsi ze, internal}

Returns the size of Erlang term words in bytes as an integer, that is, 4 is returned on a 32-hit architecture, and
8 isreturned on a pure 64-bit architecture. On a halfword 64-bit emulator, 4 is returned, as the Erlang terms are
stored using a virtual word size of half the system word size.

{wordsi ze, external}

Returns the true word size of the emulator, that is, the size of apointer. The value is given in bytes as an integer.
On apure 32-bit architecture, 4 is returned. On both a half word and on a pure 64-bit architecture, 8 is returned.

Note:

Argument schedul er haschanged nameto schedul er i d to avoid mix up with argument schedul er s.
Argument schedul er wasintroduced in ERTS 5.5 and renamed in ERTS 5.5.1.

erlang:system monitor() -> MonSettings
Types:

204 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

MonSettings = undefined | {MonitorPid, Options}
MonitorPid = pid()
Options = [system nonitor_option()]
system monitor option() =
busy port |
busy dist port |
{long gc, integer() >= 0} |
{long_schedule, integer() >= 0} |
{large _heap, integer() >= 0}

Returns the current system monitoring settings set by erlang: system monitor/2 as{ Moni t or Pi d, Opti ons},or
undef i ned if there are no settings. The order of the options can be different from the one that was set.

erlang:system monitor(Arg) -> MonSettings
Types.
Arg = MonSettings = undefined | {MonitorPid, Options}
MonitorPid = pid()
Options = [system nonitor_option()]
system monitor option() =
busy port |
busy dist port |
{long gc, integer() >= 0} |
{long_schedule, integer() >= 0} |
{large _heap, integer() >= 0}
When called with argument undef i ned, all system performance monitoring settings are cleared.

Cdling the function with {MonitorPid, Options} as argument is the same as calling
erl ang: system nonitor(MnitorPid, Options).

Returns the previous system monitor settings just like erlang: system _monitor/O.

erlang:system monitor(MonitorPid, Options) -> MonSettings
Types:
MonitorPid = pid()
Options = [system nonitor_option()]
MonSettings = undefined | {OldMonitorPid, 0ldOptions}
O0ldMonitorPid = pid()
0ldOptions = [system nonitor_option()]
system monitor option() =
busy port |
busy dist port |
{long gc, integer() >= 0} |
{long_schedule, integer() >= 0} |
{large _heap, integer() >= 0}

Sets the system performance monitoring options. Moni t or Pi d is alocal process identifier (pid) receiving system
monitor messages. The second argument isalist of monitoring options;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 205

erlang

{long_gc, Tine}

If a garbage collection in the system takes at least Ti me wall clock milliseconds, a message { noni t or,
GcPid, long _gc, |nfo} issenttoMonitorPid.GePidisthe pidthat was garbage collected. | nf o is
alist of two-element tuples describing the result of the garbage collection.

One of the tuples is {tineout, GCcTine}, where GecTi ne is the time for the garbage collection
in milliseconds. The other tuples are tagged with heap_si ze, heap_bl ock_si ze stack_si ze,
nmbuf _size, ol d_heap_si ze, and ol d_heap_bl ock_si ze. These tuples are explained in the
description of trace message gc_start (see erlang:trace/3). New tuples can be added, and the order of the tuples
inthel nf o list can be changed at any time without prior notice.

{long_schedul e, Ti ne}

If a process or port in the system runs uninterrupted for at least Ti me wall clock milliseconds, a message
{monitor, PidOPort, |ong_schedule, |nfo} issentto MnitorPid.PidOPort isthe
process or port that was running. | nf o isalist of two-element tuples describing the event.

If api d(),thetuples{timeout, MIIlis},{in, Location},and{out, Location} arepresent,
where Locat i on iseither an MFA ({ Modul e, Function, Arity}) describing the function where the
process was scheduled in/out, or the atom undef i ned.

Ifaport(),thetuples{ti meout, MIIlis} and{port_op, Op} arepresent. Op isoneof proc_si g,
ti meout,i nput,out put,event,ordi st_cnd, depending on which driver callback was executing.

proc_si g isaninternal operation and is never to appear, while the others represent the corresponding driver
callbacks t i meout, ready_i nput, ready_out put, event, and out put v (when the port is used by
distribution). ValueM | | i s inthet i meout tupleinformsabout the uninterrupted execution time of the process
or port, which always is equal to or higher than the Ti ne value supplied when starting the trace. New tuples
can be added to the | nf o list in afuture release. The order of the tuplesin the list can be changed at any time
without prior notice.

This can be used to detect problemswith NIFs or drivers that take too long to execute. 1 msis considered agood
maximum time for adriver callback or a NIF. However, atime-sharing system is usualy to consider everything
below 100 ms as "possible" and fairly "normal". However, longer schedule times can indicate swapping or a
misbehaving NIF/driver. Misbehaving NIFsand drivers can cause bad resource utilization and bad overall system
performance.

{large_heap, Size}

If agarbage collection in the system resultsin the allocated size of aheap being at least Si ze words, a message
{moni tor, CcPid, |arge_heap, |nfo} issenttoMnitorPid.GcPidandlnfo arethesameas
for | ong_gc earlier, except that the tuple tagged with t i meout isnot present.

As of ERTS 5.6, the monitor message is sent if the sum of the sizes of all memory blocks alocated for all heap
generations is equa to or higher than Si ze. Previously the monitor message was sent if the memory block
alocated for the youngest generation was equal to or higher than Si ze.

busy_ port

If a process in the system gets suspended because it sends to a busy port, a message { noni t or, SusPi d,
busy port, Port} issenttoMonitorPi d.SusPi d isthe pid that got suspended when sendingto Por t .

busy di st_port

If a process in the system gets suspended because it sends to a process on a remote node whose inter-node
communication was handled by a busy port, a message { noni tor, SusPid, busy_dist_port,
Port} issent to Moni t or Pi d. SusPi d isthe pid that got suspended when sending through the inter-node
communication port Por t .

Returns the previous system monitor settings just like erlang: system _monitor/O.

206 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

If amonitoring process gets so largethat it itself startsto cause system monitor messages when garbage collecting,
the messages enlarge the process message queue and probably make the problem worse.

K eep the monitoring process neat and do not set the system monitor limits too tight.

Failures:

badar g

If Moni t or Pi d does not exist.
badar g

If Moni t or Pi d isnot alocal process.

erlang:system profile() -> ProfilerSettings
Types:
ProfilerSettings = undefined | {ProfilerPid, Options}
ProfilerPid = pid() | port()
Options = [system profile_option()]
system profile option() =
exclusive |
runnable ports |
runnable procs |
scheduler |
timestamp |
monotonic_timestamp |
strict monotonic timestamp

Returns the current system profiling settings set by erlang:system profile/2 as{ Profi | er Pi d, Opti ons}, or
undef i ned if there are no settings. The order of the options can be different from the one that was set.

erlang:system profile(ProfilerPid, Options) -> ProfilerSettings
Types:
ProfilerPid = pid() | port() | undefined
Options = [system profile_option()]
ProfilerSettings =
undefined | {pid() | port(), [systemprofile_option()]}
system profile option() =
exclusive |
runnable ports |
runnable procs |
scheduler |
timestamp |
monotonic_timestamp |
strict monotonic timestamp

Sets system profiler options. Prof i | er Pi d isalocal process identifier (pid) or port receiving profiling messages.
The receiver is excluded from all profiling. The second argument isalist of profiling options:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 207

erlang

excl usi ve

If a synchronous call to a port from a process is done, the calling process is considered not runnable during the
call runtimeto the port. The calling processisnotified asi nact i ve, and later act i ve when the port callback
returns.

nonot oni c_ti mestanp

Timestamps in profile messages will use Erlang monotonic time. The time-stamp (Ts) has the same format and
value as produced by er | ang: nonot oni ¢_t i ne(nano_seconds) .

runnabl e_procs

If aprocessis put into or removed from the run queue, amessage, { profile, Pid, State, Ma, Ts},
issentto Pr of i | er Pi d. Running processes that are reinserted into the run queue after having been preempted
do not trigger this message.

runnabl e_ports

If aport is put into or removed from the run queue, amessage, { profil e, Port, State, 0, Ts},is
sentto Prof i | er Pi d.

schedul er

If ascheduler isput to sleep or awoken, amessage, { prof i | e, schedul er, 1d, State, NoScheds,
Ts},issenttoProfil erPid.

strict_nonotonic_timestanp

Timestamps in profile messages will consisting of Erlang monotonic time and a monotonically
increasing integer. The time-stamp (Ts) has the same format and value as produced by
{erl ang: nonot oni c_ti me(nano_seconds), erlang: uni que_i nteger([nonotonic])}.

ti mestanp

Timestamps in profile messages will include a time-stamp (Ts) that has the same form as returned by
erl ang: now() . Thisisalso the default if no timestamp flag isgiven. If cpu_t i nest anp has been enabled
viaer | ang: t race/ 3, thiswill also effect the timestamp produced in profiling messageswhent i nest anp
flag is enabled.

Note:

erl ang: syst em profi | e isconsidered experimental and its behavior can changein afuture release.

erlang:system time() -> integer()
Returns current Erlang systemtimein nat i ve time unit.

Cdling erlang:systemtinme() is equivalent to: erlang: nonotonic_tine() +
erlang:time_of fset().

Note:

Thistimeisnot amonotonically increasing timein the general case. For moreinformation, see the documentation
of time warp modes in the ERTS User's Guide.

208 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:system time(Unit) -> integer()
Types:
Unit = time_unit()
Returns current Erlang system time converted into the Uni t passed as argument.

Cdlling erl ang: systemtime(Unit) is equivalent to:
erl ang: convert _time_unit(erlang: systemtinme(), native, Unit).

Note:

Thistimeisnot amonotonically increasing timein the general case. For moreinformation, see the documentation
of time warp modes in the ERTS User's Guide.

term to binary(Term) -> ext_binary()
Types:
Term = term()
Returns a binary data object that is the result of encoding Ter maccording to the Erlang external term format.

This can be used for various purposes, for example, writing aterm to afile in an efficient way, or sending an Erlang
term to some type of communications channel not supported by distributed Erlang.

See also binary to ternv1i.

term _to binary(Term, Options) -> ext_binary()

Types.
Term = term()
Options =
[compressed |
{compressed, Level :: 0..9} |
{minor version, Version :: 0..1}]

Returns a binary data object that is the result of encoding Ter maccording to the Erlang external term format.

If option conpr essed isprovided, the external term format is compressed. The compressed format is automatically
recognized by bi nary_t o_t er m 1 asfrom Erlang R7B.

A compression level can be specified by giving option { conpr essed, Level }.Level isaninteger with range

0..9, where:

e 0 -Nocompressionisdone (it isthe same as giving no conpr essed option).

o 1 -Takesleast time but may not compress aswell asthe higher levels.

e 6 - Default level when option conpr essed is provided.

e 9 - Takesmost time and tries to produce a smaller result. Notice "tries" in the preceding sentence; depending on
the input term, level 9 compression either does or does not produce a smaller result than level 1 compression.

Option{ m nor _versi on, Ver si on} can be used to control some encoding details. This option was introduced
in OTP R11B-4. Thevalid valuesfor Ver si on are0 and 1.

Asfrom OTP 17.0,{ m nor _versi on, 1} isthedefault. It forces any floatsin the term to be encoded in amore
space-efficient and exact way (namely in the 64-bit |EEE format, rather than converted to atextual representation).

Asfrom OTP R11B-4, bi nary_t o_t er i 1 can decode this representation.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 209

erlang

{m nor _version, 0} meansthatfloatsareencoded using atextual representation. Thisoptionisuseful to ensure
that releases before OTP R11B-4 can decode resulting binary.

See also binary to ternvi.

throw(Any) -> no _return()
Types.
Any = term()
A non-local return from afunction. If evaluated within acat ch, cat ch returnsvalue Any.
Example:

> catch throw({hello, there}).
{hello, there}

Failure: nocat ch if not evaluated within a catch.

time() -> Time
Types:
Time = cal endar:tine()
Returnsthe current timeas{ Hour, M nute, Second}.
The time zone and Daylight Saving Time correction depend on the underlying OS.
Example:

> time().
{9,42,44}

erlang:time offset() -> integer()

Returnsthe current time offset between Erlang monotonic time and Erlang systemtimeinnat i ve time unit. Current
time offset added to an Erlang monotonic time gives corresponding Erlang system time.

The time offset may or may not change during operation depending on the time warp mode used.

Note:

A changein time offset may be observed at slightly different pointsin time by different processes.

If the runtime system isin multi time warp mode, the time offset will be changed when the runtime system detects
that the OS system time has changed. The runtime system will, however, not detect this immediately when it
happens. A task checking the time offset is schedul ed to execute at |east once a minute, so under normal operation
this should be detected within a minute, but during heavy load it might take longer time.

erlang:time offset(Unit) -> integer()
Types:

210 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Unit = time_unit()
Returnsthe current time offset between Erlang monotonic timeand Erlang systemtime converted intothe Uni t passed
as argument.

Same ascalling er | ang: convert time_unit(erlang:tinme_offset(), native, Unit) however
optimized for commonly used Uni t s.

erlang:timestamp() -> Timestamp

Types:
Timestamp = tinestanp()
timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

Returns current Erlang system time on the format { MegaSecs, Secs, M croSecs}. This format is
the same as os:tinmestanp/ 0 and the deprecated er| ang: now O uses. The reason for the existence
of erlang:tinestanp() is purely to simplify usage for existing code that assumes this timestamp
format. Current Erlang system time can more efficiently be retrieved in the time unit of your choice using
erl ang: systemtinme/ 1.

Theerl ang: ti nest anp() BIFisequivaent to:

timestamp() ->
ErlangSystemTime = erlang:system time(micro _seconds),
MegaSecs = ErlangSystemTime div 1000000000000,
Secs = ErlangSystemTime div 1000000 - MegaSecs*1000000,
MicroSecs = ErlangSystemTime rem 1000000,
{MegaSecs, Secs, MicroSecs}.

It, however, uses a native implementation which does not build garbage on the heap and with dlightly better
performance.

Note:

Thistimeisnot amonotonically increasing timein the general case. For moreinformation, see the documentation
of time warp modes in the ERTS User's Guide.

tl(List) -> term()
Types:
List = [term(), ...]
Returnsthetail of Li st , that is, the list minus the first element, for example:

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.
Failure: badar g if Li st istheempty list[] .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 211

erlang

erlang:trace(PidSpec, How, FlaglList) -> integer()
Types:
PidSpec = pid() | existing | new | all
How = boolean()
FlagList = [trace_flag()]
trace flag() =
all |
send |
'receive’ |
procs |
call |
silent |
return to |
running |
exiting |
garbage collection |
timestamp |
cpu_timestamp |
monotonic timestamp |
strict monotonic timestamp |
arity |
set on _spawn |
set on first spawn |
set on link |
set on first link |
{tracer, pid() | port()}
Turnson (if How == true) or off (if How == f al se) thetraceflagsin Fl agLi st for the process or processes
represented by Pi dSpec.

Pi dSpec iseither aprocessidentifier (pid) for alocal process, or one of the following atoms:
exi sting
All currently existing processes.
new
All processes that are created in the future.
al |
All currently existing processes and all processes that are created in the future.
FI agLi st can contain any number of the following flags (the "message tags' refersto the list of trace messages):
al |

Sets all trace flags except {t racer, Tracer} and cpu_ti nest anp, which are in their nature different
than the others.

send

Traces sending of messages.

Messagetags. send andsend_t o_non_exi sti ng_process.
'receive'

Traces receiving of messages.

212 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Messagetags. ' r ecei ve' .
procs
Traces process-related events.

Message tags: spawn, exit, regi ster, unregister, Iink, unlink, getting_|inked, and
getting_unlinked.

call
Traces certain function calls. Specify which function calls to trace by calling erlang:trace pattern/3.
Messagetags. cal | andreturn_from

sil ent

Used with the cal | traceflag. Thecal | ,return_fromandr et urn_t o trace messages are inhibited if
thisflag is set, but they are executed as normal if there are match specifications.

Silent mode is inhibited by executing erl ang:trace(_, false, [silent]|_]), or by a match
specification executing the function { si | ent, fal se}.

Thesi | ent trace flag facilitates setting up a trace on many or even all processes in the system. The trace can
then be activated and deactivated using the match specification function{ si | ent , Bool }, giving ahigh degree
of control of which functions with which arguments that trigger the trace.

Messagetags:. cal | ,return_fromandr et ur n_t o. Or rather, the absence of.
return_to

Usedwiththecal | traceflag. Tracesthereturn from atraced function back toitscaller. Only worksfor functions
traced with option | ocal to erlang:trace pattern/3.

The semantics is that a trace message is sent when a call traced function returns, that is, when a chain of tail
recursive calls ends. Only one trace message is sent per chain of tail recursive cals, so the properties of tail
recursivenessfor function callsare kept while tracing with thisflag. Usingcal | andr et ur n_t o tracetogether
makes it possible to know exactly in which function a process executes at any time.

To get trace messages containing return values from functions, usethe{r et ur n_t r ace} match specification
action instead.

Messagetags. ret urn_t o.
runni ng
Traces scheduling of processes.
Messagetags. i n and out .
exiting
Traces scheduling of exiting processes.
Messagetags. i n_exi ti ng, out _exiting,andout _exited.
gar bage_col | ection
Traces garbage collections of processes.
Messagetags. gc_start andgc_end.
ti mestanp

Includes a time-stamp in all trace messages. The time-stamp (Ts) has the same form as returned by
erl ang: now().

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 213

erlang

cpu_ti mestanp

A global trace flag for the Erlang node that makes all trace time-stamps using the t i mest anp flag to be in
CPU time, not wall clock time. That is, cpu_t i mest anp will not be used if monot oni ¢c_ti mest anp, or
strict_nonotoni c_tinestanp isenabled. Only allowed with Pi dSpec==al | . If the host machine OS
does not support high-resolution CPU time measurements, t r ace/ 3 exits with badar g. Notice that most OS
do not synchronize this value across cores, so be prepared that time might seem to go backwards when using
this option.

nonot oni c_ti mestanp

Includes an Erlang monotonic time time-stamp in all trace messages. The time-stamp (Ts) has the same
format and value as produced by er | ang: nonot oni c_t i ne(nano_seconds) . This flag overrides the
cpu_ti nmest anp flag.

strict_nonotonic_timestanp

Includes an timestamp consisting of Erlang monotonic time and a monotonicaly increasing integer
in al trace messages. The time-stamp (Ts) has the same format and value as produced by
{erl ang: nonot oni c_ti me(nano_seconds), erlang: unique_integer([nmonotonic])}.
Thisflag overridesthecpu_t i nest anp flag.

arity

Usedwiththecal | traceflag.{M F, Arity} isspecifiedinsteadof {M F, Args} incall trace messages.
set _on_spawn

Makes any process created by atraced processinherit itstrace flags, including flag set _on_spawn.
set_on_first_spawn

Makes the first process created by a traced process inherit its trace flags, excluding flag
set_on_first_spawn.

set_on_link
Makes any process linked by atraced processinherit its trace flags, including flag set _on_|I i nk.
set_on_first_link
Makes the first process linked to by a traced process inherit its trace flags, excluding flag
set _on _first _link.
{tracer, Tracer}
Specifies where to send the trace messages. Tr acer must be the process identifier of a local process or

the port identifier of a loca port. If this flag is not given, trace messages are sent to the process that called
erlang:trace/ 3.

The effect of combining set _on first link with set _on |ink is the same as having
set_on_first_|inkaone Likewiseforset _on_spawnandset _on_first_spawn.

The tracing process receives the trace messages described in the following list. Pi d is the process identifier of the
traced process in which the traced event has occurred. The third tuple element is the message tag.

If flagti mestanp, strict_nonotonic_tinestanp, or nonot oni c_ti nest anp isgiven, the first tuple
elementistrace_t s instead, and the time-stamp is added as an extra element last in the message tuple. If multiple
timestamp flags are passed, t i mest anp has precedence over st ri ct _nonot oni ¢_ti mest anp whichinturn
has precedence over nonot oni ¢c_t i mest anp. All timestamp flags are remembered, so if two are passed and the
one with highest precedence later is disabled the other one will become active.

{trace, Pid, 'receive', Mg}
When Pi d receives message Msg.

214 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{trace, Pid, send, Mg, To}
When Pi d sends message Ms g to process To.
{trace, Pid, send_to_non_existing process, Mg, To}
When Pi d sends message Ms g to the non-existing process To.
{trace, Pid, call, {M F, Args}}
When Pi d callsatraced function. The return values of calls are never supplied, only the call and its arguments.
Traceflagar i t y can beused to changethe contents of thismessage, sothat Ar i t y isspecifiedinstead of Ar gs.
{trace, Pid, return_to, {M F, Arity}}

When Pi d returnsto the specified function. This trace message is sent if both theflagscal | andreturn_to
are st, and the function is set to be traced on local function calls. The message is only sent when returning from a
chain of tail recursivefunction calls, where at least onecall generated acal | trace message (that is, the functions
match specification matched, and { nessage, fal se} wasnot an action).

{trace, Pid, return_from {M F, Arity}, ReturnVal ue}

When Pi d returns from the specified function. This trace message is sent if flag cal | is set, and the function
has a match specification withar et urn_t race or excepti on_t race action.

{trace, Pid, exception_ from {M F, Arity}, {Cass, Value}}

When Pi d exits from the specified function because of an exception. Thistrace messageissent if flag cal | is
set, and the function has a match specification with an except i on_t r ace action.

{trace, Pid, spawn, Pid2, {M F, Args}}
When Pi d spawns a new process Pi d2 with the specified function call as entry point.
Ar gs issupposed to be the argument list, but can be any term if the spawn is erroneous.
{trace, Pid, exit, Reason}
When Pi d exits with reason Reason.
{trace, Pid, link, Pid2}
When Pi d linksto aprocess Pi d2.
{trace, Pid, unlink, Pid2}
When Pi d removes the link from a process Pi d2.
{trace, Pid, getting_linked, Pid2}
When Pi d getslinked to aprocess Pi d2.
{trace, Pid, getting unlinked, Pid2}
When Pi d gets unlinked from a process Pi d2.
{trace, Pid, register, RegNane}
When Pi d gets the name RegNane registered.
{trace, Pid, unregister, RegNane}
When Pi d gets the name RegNan®e unregistered. Thisis done automatically when a registered process exits.
{trace, Pid, in, {M F, Arity} | 0}

When Pi d is scheduled to run. The process runsin function{M F, Arity}.On some rare occasions, the
current function cannot be determined, then the last element is 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 215

erlang

{trace, Pid, out, {M F, Arity} | 0}

When Pi d is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions, the
current function cannot be determined, then the last element is 0.

{trace, Pid, gc_start, |nfo}

Sent when garbage collection is about to be started. | nf o isalist of two-element tuples, where the first element
isakey, and the second is the value. Do not depend on any order of the tuples. The following keys are defined:

heap_si ze
The size of the used part of the heap.
heap_bl ock_si ze
The size of the memory block used for storing the heap and the stack.
ol d_heap_si ze
The size of the used part of the old heap.
ol d_heap_bl ock_si ze
The size of the memory block used for storing the old heap.
stack_si ze
The size of the stack.
recent _size
The size of the data that survived the previous garbage collection.
mbuf _si ze
The combined size of message buffers associated with the process.
bi n_vheap_si ze
Thetotal size of unique off-heap binaries referenced from the process heap.
bi n_vheap_bl ock_si ze
Thetotal size of binaries allowed in the virtual heap in the process before doing a garbage collection.
bi n_ol d_vheap_si ze
Thetotal size of unique off-heap binaries referenced from the process old heap.
bi n_ol d_vheap_bl ock_si ze
Thetotal size of binaries allowed in the virtual old heap in the process before doing a garbage collection.

All sizesarein words.

{trace, Pid, gc_end, Info}
Sent when garbage collectionisfinished. | nf 0 containsthe same kind of list asin messagegc_st ar t , but the
sizes reflect the new sizes after garbage collection.

If the tracing process dies, the flags are silently removed.

Only one process can trace a particular process. Therefore, attempts to trace an already traced process fail.

Returns: A number indicating the number of processesthat matched Pi dSpec. If Pi dSpec isaprocessidentifier, the
return valueis 1. If Pi dSpec isal | or exi sti ng, thereturn value is the number of processes running, excluding
tracer processes. If Pi dSpec isnew, the return valueisO.

Failure: badar g if the specified arguments are not supported. For example, cpu_t i nest anp is not supported on
al platforms.

erlang:trace delivered(Tracee) -> Ref
Types.

Tracee = pid() | all

Ref = reference()

The delivery of trace messages is didocated on the timeline compared to other events in the system.
If you know that Tracee has passed some specific point in its execution, and you want to know

216 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

when at least al trace messages corresponding to events up to this point have reached the tracer, use
erlang:trace_delivered(Tracee).A{trace_delivered, Tracee, Ref} messageissenttothe
caler of erl ang: trace_del i vered(Tracee) when it is guaranteed that all trace messages are delivered to
the tracer up to the point that Tr acee reached at thetime of thecall toer | ang: trace_del i ver ed(Tr acee).

Noticethat messaget r ace_del i ver ed does not imply that trace messages have been delivered. Instead it implies
that all trace messages that are to be delivered have been delivered. It is not an error if Tr acee is not, and has not
been traced by someone, but if thisisthe case, no trace messages have been delivered whenthet race_del i ver ed
message arrives.

Notice that that Tr acee must refer to a process currently, or previously existing on the same node as the caller of
erlang:trace_del i vered(Tracee) resides on. The specia Tr acee atom al | denotes al processes that
currently are traced in the node.

Example: ProcessAisTr acee, port Bistracer, and process Cisthe port owner of B. Cwantsto close B when A exits.
To ensure that the trace is not truncated, Ccan call er | ang: trace_del i ver ed(A) , when A exits, and wait for
message{trace_del i vered, A, Ref} beforeclosingB.

Failure: badar g if Tracee does not refer to a process (dead or alive) on the same node as the caller of
erl ang:trace_del i vered(Tracee) resideson.

erlang:trace info(PidOrFunc, Item) -> Res
Types:
PidOrFunc = pid() | new | {Module, Function, Arity} | on load
Module = module()
Function = atom()
Arity = arity()
Item =
flags |
tracer |
traced |
match_spec |
meta |
meta match spec |
call count |
call _time |
all
Res = trace_info_return()

trace_info_return() =
undefined |
{flags, [trace_info_flag()]} |
{tracer, pid() | port() | [1} |
trace_info_itemresult() |
{all, [trace_info_itemresult()] | false | undefined}

trace _info_item result() =
{traced, global | local | false | undefined} |
{match spec, trace_match_spec() | false | undefined} |
{meta, pid() | port() | false | undefined | []} |
{meta match spec, trace_match_spec() | false | undefined} |
{call count, integer() >= 0 | boolean() | undefined} |
{call time,

[{pid(),

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 217

erlang

integer() >
integer() >= 0,
)
I

1l
(o]

integer() >= 0}] |
boolean()
undefined}
trace info flag() =
send |
'receive’ |
set on _spawn |
call |
return to |
procs |
set on first spawn |
set _on _link |
running |
garbage collection |
timestamp |
monotonic_timestamp |
strict monotonic_timestamp |
arity
trace match spec() = [{[term()] | ' ', [term()], [term()]}]
Returns trace information about a process or function.

To get information about a process, Pi dOr Func is to be a process identifier (pid) or the atom new. The atom new
means that the default trace state for processes to be created is returned.

Thefollowing | t ensarevalid:
flags

Returns a list of atoms indicating what kind of traces is enabled for the process. The list is empty if no
traces are enabled, and one or more of the followings atoms if traces are enabled: send, ' r ecei ve',
set_on_spawn, call, return_to, procs, set_on _first_spawn, set_on_Ilink, running
gar bage_col |l ection,ti nestanp,andarity. Theorder isarbitrary.

tracer
Returns the identifier for process or port tracing this process. If this processis not being traced, the return value

is[].
Togetinformation about afunction, Pi dOr Func isto bethethree-element tuple{ Modul e, Function, Arity}
or theatom on_| oad. No wild cards are allowed. Returns undef i ned if the function does not exigt, or f al se if
the function is not traced.

Thefollowing | t ensarevalid:
traced

Returns gl obal if this function is traced on global function calls, | ocal if this function is traced on local
function calls (that is, local and global function calls), and f al se if local or global function calls are not traced.

mat ch_spec

Returns the match specification for this function, if it has one. If the functionislocally or globally traced but has
no match specification defined, the returned valueis|] .

218 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

met a

Returns the meta-trace tracer process or port for thisfunction, if it has one. If the function is not meta-traced, the
returned value is f al se. If the function is meta-traced but has once detected that the tracer processisinvalid,
the returned valueis|].

nmet a_nat ch_spec

Returns the meta-trace match specification for this function, if it has one. If the function is meta-traced but has
no match specification defined, the returned valueis|] .

cal |l _count

Returns the call count value for this function or t r ue for the pseudo function on_| oad if call count tracing is
active. Otherwisef al se isreturned. See also erlang:trace pattern/3.

call _time

Returns the call time values for this function or t r ue for the pseudo function on_I oad if call timetracing is
active. Otherwisef al se isreturned. The call timevaluesreturned, [{ Pi d, Count, S, Us}],isalist of
each process that executed the function and its specific counters. See also erlang:trace_pattern/3.

al |

Returnsalist containingthe{ 1t em Val ue} tuplesfor all other items, or returnsf al se if notracingisactive
for this function.

Thereturnvalueis{1tem Val ue}, whereVal ue isthe requested information as described earlier. If apid for a
dead process was given, or the name of a non-existing function, Val ue isundef i ned.

If Pi dOr Func ison_| oad, the information returned refers to the default value for code that will be loaded.

erlang:trace pattern(MFA, MatchSpec) -> integer() >= 0

Types:
MFA = trace_pattern_nfa()
MatchSpec =
(MatchSpeclList :: trace_nmatch_spec()) |
boolean() |
restart |
pause
trace pattern mfa() = {atom(), atom(), arity() | ' '} | on_load
trace match spec() = [{[term()] | ' ', [term()], [term()]}]

The same as erlang:trace pattern(MFA, MatchSpec, []), retained for backward compatibility.

erlang:trace pattern(MFA, MatchSpec, FlagList) ->
integer() >= 0

Types:
MFA = trace _pattern_nfa()
MatchSpec =
(MatchSpeclList :: trace_match_spec()) |
boolean() |
restart |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 219

erlang

pause
FlagList = [trace_pattern_flag()]
trace pattern mfa() = {atom(), atom(), arity() | ' '} | on load
trace match spec() = [{[term()] | ' ', [term()], [term()]1}]
trace pattern flag() =

global |

local |

meta |

{meta, Pid :: pid()} |

call count |

call time

Enables or disables call tracing for one or more functions. Must be combined with erlang:trace/3 to set the cal |
trace flag for one or more processes.

Conceptually, call tracing works asfollows. Inside the Erlang Virtual Machine, a set of processes and a set of functions
areto betraced. If atraced process calls atraced function, the trace action is taken. Otherwise, nothing happens.

To add or remove one or more processes to the set of traced processes, use erlang:trace/3.
To add or remove functions to the set of traced functions, useer | ang: trace_pattern/ 3.

The BIF erl ang: trace_pattern/ 3 can also add match specifications to a function. A match specification
comprises a pattern that the function arguments must match, a guard expression that must evaluatetot r ue, and an
action to be performed. The default action is to send atrace message. If the pattern does not match or the guard fails,
the action is not executed.

Argument MFA isto be atuple, such as{ Modul e, Function, Arity}, ortheatomon_| oad (describedin

the following). It can be the module, function, and arity for a function (or a BIF in any module). Theatom' ' can
be used as awild card in any of the following ways:
{Modul e, Function,' '}
All functions of any arity named Funct i on in module Modul e.
{Module,' '," "}
All functionsin module Modul e.
¢
All functionsin all loaded modules.
Other combinations, such as{ Modul e,' ', Arity}, are not alowed. Local functions match wild cards only if

optionl ocal isinFl agLi st .

If argument MFA is the atom on_| oad, the match specification and flag list are used on al modules that are newly
loaded.

Argument Mat chSpec can take the following forms;
fal se
Disables tracing for the matching functions. Any match specification is removed.
true
Enables tracing for the matching functions.
Mat chSpeclLi st

A list of match specifications. An empty list is equivalent to t r ue. For a description of match specifications,
see the User's Guide.

220 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

restart

For the Fl agLi st optionscal | _count and cal | _ti ne: restarts the existing counters. The behavior is
undefined for other Fl agLi st options.

pause

For the FI agLi st optionscal | _count and cal | _ti ne: pauses the existing counters. The behavior is
undefined for other Fl agLi st options.

Parameter FI agLi st isalist of options. The following are the valid options:
gl obal

Turnson or off call tracing for global function calls (that is, calls specifying the module explicitly). Only exported
functions match and only global calls generate trace messages. Thisis the default.

| ocal

Turns on or off call tracing for all types of function calls. Trace messages are sent whenever any of the specified
functions are called, regardless of how they are called. If flagr et ur n_t o isset for the process, aret urn_t o
message is aso sent when this function returnsto its caller.

nmeta | {neta, Pid}

Turns on or off meta-tracing for all types of function calls. Trace messages are sent to the tracer process or port
Pi d whenever any of the specified functions are called, regardliess of how they are called. If no Pi d is specified,
sel f () isused as adefault tracer process.

Meta-tracing traces all processes and does not care about the processtraceflagsset by t r ace/ 3, thetraceflags
areinstead fixedto[cal |, tinestanp].

The match specification function { r et ur n_t r ace} works with meta-trace and sends its trace message to the
same tracer process.

call _count

Starts(Mat chSpec == true) or stops(Mat chSpec == f al se) call count tracing for all types of function
calls. For every function, a counter isincremented when the function is called, in any process. No process trace
flags need to be activated.

If call count tracing is started while already running, the count is restarted from zero. To pause running counters,
use Mat chSpec == pause. Paused and running counters can be restarted from zero with Mat chSpec ==
restart.

To read the counter value, use erlang:trace _info/2.
call _tine

Starts (Mat chSpec == true) or stops (Mat chSpec == f al se) cal timetracing for all types of function
calls. For every function, a counter is incremented when the function is called. Time spent in the function is
accumulated in two other counters, seconds and microseconds. The counters are stored for each call traced
process.

If cal time tracing is started while already running, the count and time is restarted from zero. To pause
running counters, use Mat chSpec == pause. Paused and running counters can be restarted from zero with
Mat chSpec == restart.

To read the counter value, use erlang:trace_info/2.

Theoptionsgl obal andl ocal aremutually exclusive, and gl obal isthedefault (if no options are specified). The
optionscal | _count and net a perform akind of local tracing, and cannot be combined with gl obal . A function
can be globally or locally traced. If global tracing is specified for a set of functions, then local, meta, call time, and
call count tracing for the matching set of local functionsis disabled, and conversaly.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 221

erlang

When disabling trace, the option must match the type of trace set on thefunction. That is, local tracing must be disabled
with option | ocal and global tracing with option gl obal (or no option), and so forth.

Part of amatch specification list cannot be changed directly. If afunction has a match specification, it can be replaced
with a new one. To change an existing match specification, use the BIF erlang:trace_info/2 to retrieve the existing
match specification.

Returns the number of functions matching argument MFA. Thisis zero if none matched.

trunc(Number) -> integer()
Types:
Number = number()
Returns an integer by truncating Nunber , for example:

> trunc(5.5).
5

Allowed in guard tests.

tuple size(Tuple) -> integer() >= 0
Types:
Tuple = tuple()
Returns an integer that is the number of elementsin Tupl e, for example:

> tuple size({morni, mulle, bwange}).
3

Allowed in guard tests.

tuple to list(Tuple) -> [term()]
Types:
Tuple = tuple()
Returns alist corresponding to Tupl e. Tupl e can contain any Erlang terms.
Example:

> tuple to list({share, {'Ericsson B', 163}}).
[share,{'Ericsson B',163}]

erlang:universaltime() -> DateTime
Types:
DateTime = cal endar: dateti nme()
Returns the current date and time according to Universal Time Coordinated (UTC) in the form {{ Year,

Mont h, Day}, {Hour, M nut e, Second}} if supported by the underlying OS. Otherwise
erl ang: uni versal ti me() isequivaenttoer| ang: | ocal ti me().

222 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Example:

> erlang:universaltime().
{{1996,11,6},{14,18,43}}

erlang:universaltime to localtime(Universaltime) -> Localtime
Types.
Localtime = Universaltime = cal endar: dateti me()

Converts Universal Time Coordinated (UTC) date and time to local date and time in the form { { Year, Mont h,
Day}, {Hour, M nute, Second}} if supported by the underlying OS. Otherwise no conversion is done, and
Uni ver sal ti e isreturned.

Example:

> erlang:universaltime to localtime({{1996,11,6},{14,18,43}}).
{{1996,11,7},4{15,18,43}}

Failure: badar g if Uni ver sal ti ne denotes an invalid date and time.

erlang:unique integer() -> integer()

Generates and returns an integer unique on current runtime system instance. The same as caling
erl ang: uni que_integer([]).

erlang:unique integer(ModifierList) -> integer()
Types.

ModifierList = [Modifier]

Modifier = positive | monotonic

Generates and returns an integer unique on current runtime systeminstance. Theinteger isuniquein the sensethat this
BIF, using the same set of modifiers, will not return the same integer more than once on the current runtime system
instance. Each integer value can of course be constructed by other means.

By default, when [] ispassed asModi fi er Li st , both negative and positive integers can be returned. Thisin order
to utilize the range of integers that do not need heap memory allocation as much as possible. By default the returned
integers are also only guaranteed to be unique, that is, any returned integer can be smaller or larger than previously
returned integers.

VaidModi fi ers:
positive

Return only positive integers.

Note that by passing the posi t i ve modifier you will get heap allocated integers (bignums) quicker.
monotonic

Return strictly monotonically increasing integers corresponding to creation time. That is, theinteger returned will
aways be larger than previously returned integers on the current runtime system instance.

These values can be used to determine order between events on the runtime system instance. That is, if both X =
erl ang: uni que_i nt eger ([monot oni c]) andY = erl ang: uni que_i nt eger ([nmonot oni c])

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 223

erlang

are executed by different processes (or the same process) on the same runtime system instanceand X < Y we
know that X was created before Y.

Warning:

Strictly monotonically increasing values are inherently quite expensive to generate and scales poorly. This
is because the values need to be synchronized between cpu cores. That is, do not pass the nonot oni ¢
modifier unless you really need strictly monotonically increasing values.

All valid Modi f i er scan be combined. Repeated (valid) Mbdi f i er sintheModi fi er Li st areignored.

Note:

Note that the set of integersreturned by uni que_i nt eger/ 1 using different setsof Modi f i er swill overlap.
For example, by caling uni que_i nt eger ([nonot oni c]), and uni que_i nt eger ([positive,
nonot oni c]) repeatedly, you will eventually see some integers being returned by both calls.

Failures:

badar g

if Modi fi erLi st isnot aproper list.
badar g

if Modi fi er isnot avalid modifier.

unlink(Id) -> true
Types:
Id = pid() | port()
Removesthelink, if thereis one, between the calling process and the process or port referred to by | d.
Returnst r ue and does not fail, even if thereisnolink to | d, or if | d does not exist.

Onceunl i nk(1d) hasreturned, it isguaranteed that the link between the caller and the entity referredto by | d has
no effect on the caller in the future (unlessthe link is setup again). If the caller istrapping exits, an{' EXI T', 1d,
_} message from the link can have been placed in the caller's message queue before the call.

Notice that the {" EXIT', 1d, _} message can be the result of the link, but can also be the result of | d
calling exi t / 2. Therefore, it can be appropriate to clean up the message queue when trapping exits after the call
tounl i nk(1d), asfollows:

unlink(Id),
receive
{'EXIT', Id, } ->
true
after 0 ->
true
end

224 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

Prior to OTP release R11B (ERTS version 5.5) unl i nk/ 1 behaved completely asynchronoudly, i.e., the link
was active until the "unlink signal" reached the linked entity. This had an undesirable effect, as you could never
know when you were guaranteed not to be effected by the link.

The current behavior can be viewed as two combined operations: asynchronously send an "unlink signa” to the
linked entity and ignore any future results of the link.

unregister(RegName) -> true
Types:
RegName = atom()
Removes the registered name RegNan®e associated with a process identifier or a port identifier, for example:

> unregister(db).
true

Users are advised not to unregister system processes.
Failure: badar g if RegNare isnot aregistered name.

whereis (RegName) -> pid() | port() | undefined
Types:
RegName = atom()

Returnsthe processidentifier or port identifier with the registered name RegNane. Returnsundef i ned if the name
is not registered.

Example:

> whereis(db).
<0.43.0>

erlang:yield() -> true

Voluntarily lets other processes (if any) get a chance to execute. Using er | ang: yi el d() issimilartor ecei ve
after 1 -> ok end, exceptthatyi el d() isfaster.

Warning:

There is seldom or never any need to use this BIF, especialy in the SMP emulator, as other processes have a
chanceto run in another scheduler thread anyway. Using this BIF without athorough grasp of how the scheduler
works can cause performance degradation.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 225

init

init

Erlang module

Thei ni t moduleis pre-loaded and contains the code for thei ni t system process which coordinates the start-up of
the system. The first function evaluated at start-up is boot (Boot Ar gs) , where Boot Ar gs isalist of command
line arguments supplied to the Erlang runtime system from the local operating system. See erl(1).

i ni t readstheboot script which containsinstructionson how toinitiate the system. See script(4) for moreinformation
about boot scripts.

i ni t also contains functions to restart, reboot, and stop the system.

Exports

boot(BootArgs) -> no_return()
Types:
BootArgs = [binary()]
Starts the Erlang runtime system. This function is called when the emulator is started and coordinates system start-up.
Boot Ar gs are all command line arguments except the emulator flags, that is, flags and plain arguments. See erl(1).

i nit itself interprets some of the flags, see Command Line Flags below. The remaining flags ("user flags")
and plain arguments are passed to the i nit loop and can be retrieved by calling get _ar gunent s/ 0 and
get _pl ai n_ar gunent s/ 0, respectively.

get argument(Flag) -> {ok, Arg} | error
Types:

Flag = atom()

Arg = [Values :: [string()]]

Returnsall values associated with the command line user flag Fl ag. If Fl ag isprovided several times, each Val ues
isreturned in preserved order.

%$erl -abc-ad
i;.init:getfargument(a).
{ok'[[IIbII’IICII]’[IIdII]]}

There are also a number of flags, which are defined automatically and can be retrieved using this function:
r oot
The installation directory of Erlang/OTP, $ROOT.

2> init:get argument(root).
{ok,[["/usr/local/otp/releases/otp beam solaris8 r10b patched"]]}

pr ognane
The name of the program which started Erlang.

226 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

3> init:get argument(progname).
{ok, [["erl"]11}

home
The home directory.

4> init:get argument(home).
{ok,[["/home/harry"]1}

Returnser r or if thereis no value associated with Fl ag.

get arguments() -> Flags
Types.
Flags = [{Flag :: atom(), Values :: [string()]}]
Returns all command line flags, as well as the system defined flags, seeget _ar gunent / 1.

get plain arguments() -> [Arg]
Types.
Arg = string()
Returns any plain command line arguments as alist of strings (possibly empty).

get status() -> {InternalStatus, ProvidedStatus}
Types.

InternalStatus i nternal status()

ProvidedStatus = term()

internal status() = starting | started | stopping

The current status of thei ni t process can be inspected. During system startup (initialization), I nt er nal St at us
isstarting, and Provi dedSt at us indicates how far the boot script has been interpreted. Each { pr ogr ess,

I nf 0} term interpreted in the boot script affects Pr ovi dedSt at us, that is, Provi dedSt at us gets the value
of I nf o.

reboot() -> ok

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the - hear t command line flag was given, the hear t program will try to reboot the system. Refer to hear t (3)
for more information.

To limit the shutdown time, the timei ni t is allowed to spend taking down applications, the - shut down_t i e
command line flag should be used.

restart() -> ok

The system isrestarted inside the running Erlang node, which meansthat the emulator is not restarted. All applications
are taken down smoothly, all code is unloaded, and al ports are closed before the system is booted again in the same
way asinitialy started. The same Boot Ar gs are used again.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, the - shut down_t i e
command line flag should be used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 227

init

script _id() -> Id
Types:
Id = term()

Get the identity of the boot script used to boot the system. | d can be any Erlang term. In the delivered boot scripts,
I dis{Name, Vsn}.Nane andVsn are strings.

stop() -> ok

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the - heart command line flag was given, the hear t program is terminated before the Erlang node terminates.
Refer to hear t (3) for more information.

To limit the shutdown time, the timei ni t is allowed to spend taking down applications, the - shut down_t i ne
command line flag should be used.

stop(Status) -> ok
Types:
Status = integer() >= 0 | string()
All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates

by calling hal t (St at us) . If the- heart command line flag was given, the hear t program isterminated before
the Erlang node terminates. Refer to hear t (3) for moreinformation.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, the - shut down_t i ne
command line flag should be used.

Command Line Flags

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it beforeiit is

ready isto obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.
The- code_pat h_choi ce flag is also experimental.

Thei ni t moduleinterprets the following command line flags:

Everything following - - up to the next flag is considered plain arguments and can be retrieved using
get _pl ai n_argunent s/ 0.

-code_pat h_choi ce Choi ce

This flag can be set to stri ct or r el axed. It controls whether each directory in the code path should be
interpreted strictly as it appears in the boot scri pt orif i nit should be more relaxed and try to find a
suitable directory if it can choose from a regular ebin directory and an ebin directory in an archive file. This
flag is particular useful when you want to elaborate with code loading from archives without editing the boot
scri pt . Seescript(4) for moreinformation about interpretation of boot scripts. Theflag doesaso haveasimilar
affect on how the code server works. See code(3).

228 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

-eval Expr

Scans, parses and evaluates an arbitrary expression Expr during system initialization. If any of these steps fail
(syntax error, parse error or exception during eval uation), Erlang stopswith an error message. Hereisan example
that seeds the random number generator:

% erl -eval '{X,Y,Z} = now(), random:seed(X,Y,Z).'

This example uses Erlang as a hexadecimal calculator:

% erl -noshell -eval 'R = 16#1F+16#A0, io:format("~.16B~n", [R])"' \\
-s erlang halt
BF

If multiple - eval expressions are specified, they are evaluated sequentially in the order specified. - eval
expressions are evaluated sequentially with - s and - r un function calls (thisa so in the order specified). Aswith
- s and - r un, an evauation that does not terminate, blocks the system initialization process.

-extra

Everything following -extra is considered plain arguments and can be retrieved using
get _pl ai n_argunents/O0.

-run Mod [Func [Argl, Arg2, ...]]

Evaluates the specified function call during system initiadization. Func defaults to st art . If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Argl, Arg2,...] asargument. All arguments are passed as strings. If an exception is raised, Erlang stops
with an error message.

Example:

% erl -run foo -run foo bar -run foo bar baz 1 2

This starts the Erlang runtime system and eval uates the following functions:

foo:start()
foo:bar()
foo:bar(["baz", "1", "2"]).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This means that a - r un call which does not return will block further processing; to avoid
this, use some variant of spawn in such cases.

-s Mod [Func [Argl, Arg2, ...]]

Evaluates the specified function call during system initiadization. Func defaults to st art . If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Argl, Arg2,...] asargument. All arguments are passed as atoms. If an exception is raised, Erlang stops
with an error message.

Example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 229

init

% erl -s foo -s foo bar -s foo bar baz 1 2

This starts the Erlang runtime system and eval uates the following functions:

foo:start()
foo:bar()
foo:bar([baz, '1', '2']).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This meansthat a- s call which does not return will block further processing; to avoid this,
use some variant of spawn in such cases.

Due to the limited length of atoms, it is recommended that - r un be used instead.

Example

% erl -- a b -children thomas claire -ages 7 3 -- X y

1> init:get plain arguments().
["a","b","x","y"]

2> init:get argument(children).
{ok, [["thomas",6 "claire"]]1}

3> init:get argument(ages).
{ok, [["7","3"]11}

4> init:get argument(silly).
error

SEE ALSO
erl_prim_loader(3), heart(3)

230 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

zlib

Erlang module

The zlib module provides an API for the zlib library (http://www.zlib.org). It is used to compress and decompress
data. The dataformat is described by RFCs 1950 to 1952.

A typical (compress) usage looks like:

Z = zlib:open(),
ok = zlib:deflateInit(Z,default),

Compress = fun(end of data, Cont) -> [];
(Data, Cont) ->
[zlib:deflate(Z, Data)|Cont(Read(),Cont)]
end,
Compressed = Compress(Read(),Compress),
Last = zlib:deflate(Z, [], finish),
ok = zlib:deflateEnd(Z),
zlib:close(Z),
list_to_binary([Compressed|Last])

Inall functionserrors, {' EXI T' , { Reason, Backt r ace} } , might be thrown, where Reason describesthe error.
Typical reasons are:

badar g
Bad argument
data_error
The data contains errors
streamerror
Inconsistent stream state
ei nval
Bad value or wrong function called
{need_di ctionary, Adl er 32}
Seeinflate/?2

Data Types
zstream() = port()
A zlib stream, see open/0.

zlevel() =

none | default | best compression | best speed | 0..9
zmemlevel() = 1..9
zmethod() = deflated

zstrategy() = default | filtered | huffman_only | rle
zwindowbits() = -15..-8 | 8..47

Normally intherange- 15..-8 | 8..15.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 231

zlib

Exports

open() -> zstream()
Open a zlib stream.

close(Z) -> ok
Types.
Z = zstream()
Closes the stream referenced by Z.

deflateInit(Z) -> ok
Types:

Z = zstream()
Sameaszlib:deflatelnit(Z, default).

deflateInit(Z, Level) -> ok
Types:

Z = zstream()

Level = zlevel ()
Initialize a zlib stream for compression.

Level decidesthe compressionlevel tobeused, 0 (none), givesno compression at al, 1 (best _speed) givesbest
speed and 9 (best _conpr essi on) gives best compression.

deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) ->
ok

Types:
Z = zstream()
Level = zlevel ()
Method = znet hod()
WindowBits = zwi ndowbi t s()
MemLevel = znemn evel ()
Strategy = zstrategy()

Initiates a zlib stream for compression.

The Level parameter decides the compression level to be used, 0 (none), gives no compression at al, 1
(best _speed) gives best speed and 9 (best _conpr essi on) gives best compression.

The Met hod parameter decides which compression method to use, currently the only supported method is
def | at ed.

The W ndowBi t s parameter is the base two logarithm of the window size (the size of the history buffer). It should
be in the range 8 through 15. Larger values of this parameter result in better compression at the expense of memory
usage. Thedefault valueis15if def | at el ni t/ 2. A negative W ndowBi t s value suppresses the zlib header (and
checksum) from the stream. Note that the zlib source mentions this only as a undocumented feature.

232 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

The MenLevel parameter specifies how much memory should be alocated for the internal compression state.
Memievel =1 uses minimum memory but is slow and reduces compression ratio; MenLevel =9 uses maximum
memory for optimal speed. The default valueis 8.

The St r at egy parameter is used to tune the compression algorithm. Use the value def aul t for normal data,
filtered for dataproduced by afilter (or predictor), huf f man_onl y to force Huffman encoding only (no string
match), or r | e tolimit match distancesto one (run-length encoding). Filtered data consists mostly of small valueswith
asomewhat random distribution. Inthis case, the compression algorithm istuned to compressthem better. The effect of
filteredistoforce more Huffman coding and less string matching; it is somewhat intermediate between def aul t
and huf f man_onl y.r| e isdesigned to bealmost asfast ashuf f nan_onl y, but give better compression for PNG
image data. The St r at egy parameter only affects the compression ratio but not the correctness of the compressed
output even if it is not set appropriately.

deflate(Z, Data) -> Compressed
Types:

Z = zstream()

Data = iodata()

Compressed = iolist()

Sameasdef |l ate(Z, Data, none).

deflate(Z, Data, Flush) -> Compressed
Types:
Z = zstream()
Data = iodata()
Flush = none | sync | full | finish
Compressed = iolist()

def | at e/ 3 compresses as much data as possible, and stops when the input buffer becomes empty. It may introduce
some output latency (reading input without producing any output) except when forced to flush.

If the parameter Fl ush isset to sync, al pending output is flushed to the output buffer and the output is aligned on
a byte boundary, so that the decompressor can get al input data available so far. Flushing may degrade compression
for some compression algorithms and so it should be used only when necessary.

If Fl ushissettof ul | , all output isflushed aswith sync, and the compression state is reset so that decompression
can restart from this point if previous compressed data has been damaged or if random accessis desired. Using f ul |
too often can seriously degrade the compression.

If the parameter Fl ush issetto f i ni sh, pending input is processed, pending output is flushed and def | at e/ 3
returns. Afterwards the only possible operations on the stream aredef | at eReset/ 1 or def | at eEnd/ 1.

Fl ush canbesettof i ni sh immediately after def | at el ni t if all compression isto be donein one step.

zlib:deflateInit(Z),

Bl = zlib:deflate(Z,Data),

B2 = zlib:deflate(Z,<< >>,finish),
zlib:deflateEnd(Z),
list_to_binary([B1,B2])

deflateSetDictionary(Z, Dictionary) -> Adler32
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 233

zlib

Z = zstream()

Dictionary = iodata()

Adler32 = integer()
Initializes the compression dictionary from the given byte sequence without producing any compressed output.
This function must be called immediately after deflatelnit/[1] 2| 6] or defl at eReset/ 1, before

any cal of deflate/ 3. The compressor and decompressor must use exactly the same dictionary (see
i nfl at eSet Di cti onary/ 2). Theadler checksum of the dictionary is returned.

deflateReset(Z) -> ok
Types:
Z = zstream()

This function is equivalent to def | at eEnd/ 1 followed by defl atel nit/[1| 2| 6], but does not free and
reallocate all theinternal compression state. The stream will keep the same compression level and any other attributes.

deflateParams(Z, Level, Strategy) -> ok
Types:

Z = zstream()

Level = zlevel ()

Strategy = zstrategy()
Dynamically update the compression level and compression strategy. The interpretation of Level and St r at egy
isasindef| at el ni t/ 6. This can be used to switch between compression and straight copy of the input data, or
to switch to adifferent kind of input data requiring a different strategy. If the compression level is changed, the input

available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next
cal of def | at e/ 3.

Before the call of def | at ePar ans, the stream state must be set as for acall of def | at e/ 3, since the currently
available input may have to be compressed and flushed.

deflateEnd(Z) -> ok
Types:
Z = zstream()

End the deflate session and cleans al data used. Note that this function will throw an dat a_er r or exception if the
last call todef | at e/ 3 wasnot called with Fl ush settofi ni sh.

inflateInit(Z) -> ok
Types:
Z = zstream()
Initialize a zlib stream for decompression.

inflateInit(Z, WindowBits) -> ok
Types.

Z = zstream()

WindowBits = zwi ndowbits()

Initialize decompression session on zlib stream.

234 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

TheW ndowBi t s parameter isthe base two logarithm of the maximum window size (the size of the history buffer). It
should bein the range 8 through 15. The default valueis 15if i nf | at el ni t/ 1 isused. If acompressed stream with
alarger window size is given as input, inflate() will throw the dat a_er r or exception. A negative W ndowBi t s
value makes zlib ignore the zlib header (and checksum) from the stream. Note that the zlib source mentions this only
as aundocumented feature.

inflate(Z, Data) -> Decompressed
Types.

Z = zstream()

Data = iodata()

Decompressed = iolist()

i nfl at e/ 2 decompresses as much data as possible. It may introduce some output latency (reading input without
producing any output).

If a preset dictionary is needed at this point (see i nfl at eSet Di cti onary below), i nfl at e/ 2 throws a
{need_di ctionary, Adl er} exception where Adl er isthe adler32 checksum of the dictionary chosen by the
COmpressor.

inflateChunk(Z, Data) -> Decompressed | {more, Decompressed}
Types:

Z = zstream()

Data = iodata()

Decompressed = iolist()

Likei nfl at e/ 2, but decompress no more data than will fit in the buffer configured via set Buf Si ze/ 2. Isis
useful when decompressing a stream with a high compression ratio such that a small amount of compressed input
may expand up to 1000 times. It returns { nore, Deconpr essed}, when there is more output available, and
i nfl at eChunk/ 1 should be usedtoreadit. It may introduce some output latency (reading input without producing
any output).

If apreset dictionary isneeded at thispoint (seei nf | at eSet Di cti onary below), i nf | at eChunk/ 2 throwsa
{need_di ctionary, Adl er} exception where Ad| er isthe adler32 checksum of the dictionary chosen by the
COMpressor.

walk(Compressed, Handler) ->
Z = zlib:open(),
zlib:inflateInit(Z),
% Limit single uncompressed chunk size to 512kb
zlib:setBufSize(Z, 512 * 1024),
loop(Z, Handler, zlib:inflateChunk(Z, Compressed)),
zlib:inflateEnd(Z),
zlib:close(Z).

loop(Z, Handler, {more, Uncompressed}) ->
Handler(Uncompressed),
loop(Z, Handler, zlib:inflateChunk(Z));
loop(Z, Handler, Uncompressed) ->
Handler(Uncompressed) .

inflateChunk(Z) -> Decompressed | {more, Decompressed}
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 235

zlib

Z = zstream()
Decompressed = iolist()

Read next chunk of uncompressed data, initialized by i nf | at eChunk/ 2.
This function should be repeatedly called, whileit returns{ nor e, Deconpr essed}.

inflateSetDictionary(Z, Dictionary) -> ok
Types:
Z = zstreanm()
Dictionary = iodata()
Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called
immediately after a call of i nfl ate/ 2 if this call threw a { need_di cti onary, Adl er} exception. The

dictionary chosen by the compressor can be determined from the Adler value thrown by thecall toi nf | at e/ 2. The
compressor and decompressor must use exactly the sasme dictionary (seedef | at eSet Di cti onary/ 2).

Example:

unpack(Z, Compressed, Dict) ->
case catch zlib:inflate(Z, Compressed) of
{'EXIT',{{need dictionary,DictID}, }} ->
zlib:inflateSetDictionary(Z, Dict),
Uncompressed = zlib:inflate(Z, [1);
Uncompressed ->
Uncompressed
end.

inflateReset(Z) -> ok
Types:
Z = zstream()

Thisfunction isequivalent to i nf | at eEnd/ 1 followed by i nf | at el ni t/ 1, but does not free and reallocate all
theinternal decompression state. The stream will keep attributesthat may havebeensetbyinfl atel nit/[1] 2] .

inflateEnd(Z) -> ok
Types:
Z = zstream()

End the inflate session and cleans all data used. Note that this function will throw adat a_er r or exception if no
end of stream was found (meaning that not all data has been uncompressed).

setBufSize(Z, Size) -> ok
Types:

Z = zstream()

Size = integer() >= 0
Sets the intermediate buffer size.

getBufSize(Z) -> Size
Types:

236 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Z = zstream()
Size = integer() >= 0
Get the size of intermediate buffer.

crc32(Z) -> CRC
Types.
Z = zstream()
CRC = integer()
Get the current calculated CRC checksum.

crc32(zZ, Data) -> CRC
Types:
Z = zstream()
Data = iodata()
CRC = integer()
Calculate the CRC checksum for Dat a.

crc32(Z, PrevCRC, Data) -> CRC

Types.
Z = zstream()
PrevCRC = integer()
Data = iodata()
CRC = integer()

Update arunning CRC checksum for Dat a. If Dat a isthe empty binary or the empty iolist, this function returns the

required initial value for the crc.

Crc = lists:foldl(fun(Data,Crc0) ->

zlib:crc32(Z, CrcO, Data),
end, zlib:crc32(Z,<< >>), Datas)

crc32 combine(Z, CRC1, CRC2, Size2) -> CRC

Types:
Z = zstream()

CRC = CRC1 = CRC2 = Size2 = integer()

Combine two CRC checksums into one. For two binaries or iolists, Dat al and Dat a2 with sizes of Si zel
and Si ze2, with CRC checksums CRC1 and CRC2. crc32_conbi ne/ 4 returns the CRC checksum of

[Dat al, Dat a2] , requiring only CRC1, CRC2, and Si ze2.

adler32(Z, Data) -> CheckSum
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 237

zlib

Z = zstream()
Data = iodatal()
CheckSum = integer()

Calculate the Adler-32 checksum for Dat a.

adler32(Z, PrevAdler, Data) -> CheckSum
Types:

Z = zstream()

PrevAdler = integer()

Data = iodata()

CheckSum = integer()

Update arunning Adler-32 checksum for Dat a. If Dat a isthe empty binary or the empty iolist, this function returns
the required initial value for the checksum.

Crc = lists:foldl(fun(Data,Crc0) ->
zlib:adler32(Z, CrcO, Data),
end, zlib:adler32(Z,<< >>), Datas)

adler32 combine(Z, Adlerl, Adler2, Size2) -> Adler
Types.
Z = zstream()
Adler = Adlerl = Adler2 = Size2 = integer()
Combine two Adler-32 checksums into one. For two binaries or iolists, Dat al and Dat a2 with sizesof Si zel and

Si ze2, with Adler-32 checksums Adl er 1 and Adl er 2. adl er 32_conbi ne/ 4 returnsthe Adl er checksum of
[Dat al, Dat a2] , requiringonly Adl er 1, Adl er 2, and Si ze2

compress(Data) -> Compressed
Types.
Data = iodata()
Compressed = binary()

Compress data (with zlib headers and checksum).

uncompress(Data) -> Decompressed
Types:

Data = iodata()

Decompressed = binary()

Uncompress data (with zlib headers and checksum).

zip(Data) -> Compressed
Types.

238 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Data = iodata()
Compressed = binary()

Compress data (without zlib headers and checksum).

unzip(Data) -> Decompressed
Types.
Data = iodata()
Decompressed = binary()

Uncompress data (without zlib headers and checksum).

gzip(Data) -> Compressed
Types:
Data = iodata()
Compressed = binary()

Compress data (with gz headers and checksum).

gunzip(Data) -> Decompressed
Types:
Data = iodata()
Decompressed = binary()

Uncompress data (with gz headers and checksum).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 239

epmd

epmd

Command

Erlang Port Mapper Daemon

epnd [-d|-debug] [DbgExtra...] [-address Addresses] [-port No] [-daenon] |-
rel axed_conmand_check]

Starts the port mapper daemon
epnd [-d|-debug] [-port No] [-names|-kill]|-stop Nane]
Communicates with a running port mapper daemon

This daemon acts as a name server on all hosts involved in distributed Erlang computations. When an Erlang node
starts, the node has aname and it obtains an address from the host OS kernel. The name and the address are sent to the
epnd daemon running on the local host. In a TCP/IP environment, the address consists of the IP address and a port
number. The name of the node is an atom on the form of Name @\ode. The job of the epnd daemon isto keep track
of which node name listens on which address. Hence, epnd maps symbolic node names to machine addresses.

The TCP/IP epnd daemon actually only keepstrack of the Nane (first) part of an Erlang node name. The Host part
(whatever is after the @ is implicit in the node name where the epnd daemon was actually contacted, as is the IP
address where the Erlang node can be reached. Consistent and correct TCP naming services are therefore required for
an Erlang network to function correctly.

Starting the port mapper daemon

The daemon is started automatically by theer | command if the node is to be distributed and there is no running
instance present. If automatically launched, environment variables have to be used to ater the behavior of the
daemon. See the Environment variables section below.

If the -daemon argument is not given, epnd runs as anormal program with the controlling terminal of the shell
inwhich it is started. Normally, it should run as a daemon.

Regular start-up options are described in the Regular options section below.
The DbgExt r a options are described in the DbgExtra options section below.
Communicating with a running port mapper daemon

Communicating with the running epmd daemon by means of the epnd program is done primarily for debugging
purposes.

The different queries are described in the Interactive options section below.

Regular options

These options are available when starting the actual name server. The name server is normally started automatically
by theer | command (if not already available), but it can also be started at i.e. system start-up.

-address Li st

Let this instance of epnd listen only on the comma-separated list of IP addresses and on the loopback
address (which is implicitly added to the list if it has not been specified). This can also be set using the
ERL _EPMD ADDRESS environment variable. See the section Environment variables below.

-port No

Let this instance of epmd listen to another TCP port than default 4369. This can also be set using the
ERL_EPNMD_PORT environment variable. See the section Environment variables bel ow

240 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd

-d | -debug

Enable debug output. The more - d flags given, the more debug output you will get (to acertain limit). Thisoption
is most useful when the epmd daemon is not started as a daemon.

- daenon

Start epmd detached from the controlling terminal. Logging will end up in syslog when available and correctly
configured. If the epmd daemon is started at boot, this option should definitely be used. It is also used when the
er | command automatically starts epnd.

-rel axed_command_check

Start the epmd program with relaxed command checking (mostly for backward compatibility). This affects the
following:

« Withrelaxed command checking, the epnd daemon can be killed from the localhost withi.e.epnd - ki | |
even if there are active nodes registered. Normally only daemons with an empty node database can be killed
withtheepnd -ki |l command.

e The epnd -stop command (and the corresponding messages to epmd, as can be given using
erl _interface/ei) isnormally aways ignored, as it opens up the possibility of a strange situation
where two nodes of the same name can be alive at the sametime. A node unregistersitself by just closing the
connection to epmd, which iswhy the st op command was only intended for use in debugging situations.

With relaxed command checking enabled, you can forcibly unregister live nodes.

Relaxed command checking can adso be enabled by setting the environment variable
ERL _EPMD RELAXED COMVAND CHECK prior to starting eprd.

Only use relaxed command checking on systems with very limited interactive usage.

DbgExtra options
These options are purely for debugging and testing epmd clients. They should not be used in hormal operation.
- packet _ti meout Seconds

Set the number of seconds a connection can be inactive before epmd times out and closes the connection (default
60).

-del ay_accept Seconds

To simulate a busy server you can insert a delay between when epmd gets notified that a new connection is
reguested and when the connection gets accepted.

-delay_write Seconds

Also asimulation of abusy server. Inserts adelay before areply is sent.

Interactive options

These options make epnd run as an interactive command, displaying the results of sending queries to an already
running instance of epnd. The epmd contacted is always on the local node, but the - port option can be used to
select between instances if several are running using different ports on the host.

-port No

Contacts the epnd listening on the given TCP port number (default 4369). This can also be set using the
ERL_EPMD PORT environment variable. See the section Environment variables below.

- nanes

List names registered with the currently running epmd

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 241

epmd

-kill
Kill the currently running epnd.

Killing the running epmd is only alowed if epnd -nanes shows an empty database or -
rel axed_command_check was given when the running instance of epnd was started. Note that -
r el axed_comuand_check isgiven when starting the daemon that is to accept killing when it has live nodes
registered. When running epmd interactively, - r el axed_conmand_check has no effect. A daemon that is
started without relaxed command checking has to be killed using i.e. signals or some other OS specific method
if it has active clients registered.

-stop Nane
Forcibly unregister alive node from epnd's database

This command can only be used when contacting epnd instances started with the -
rel axed_comand_check flag. Note that relaxed command checking has to be enabled for the epnd
daemon contacted. When running epmd interactively, - r el axed_comand_check has no effect.

Environment variables
ERL_EPMD_ADDRESS

Thisenvironment variable may be set to acomma-separated list of 1P addresses, in which case the epnd daemon
will listen only on the specified address(es) and on the loopback address (which isimplicitly added to the list if
it has not been specified). The default behaviour isto listen on all available IP addresses.

ERL_EPMD_PORT

This environment variable can contain the port number epmd will use. The default port will work fine in most
cases. A different port can be specified to allow several instances of epmd, representing independent clusters of
nodes, to co-exist on the same host. All nodesin a cluster must use the same epmd port number.

ERL_EPMD_RELAXED COMVAND_CHECK

If set prior to start, the epnd daemon will behave asif the- r el axed_conmmand_check option was given at
start-up. Consequently, if this option is set before starting the Erlang virtual machine, the automatically started
epnd will accept the- ki | | and - st op commands without restrictions.

Logging
On some operating systems syslog will be used for error reporting when epmd runs as an daemon. To enable the error
logging you have to edit /etc/syslog.conf file and add an entry

lepmd
* . *<TABs>/var/log/epmd. log

where <TABs> are at least one real tab character. Spaces will silently be ignored.

Access restrictions

The epnd daemon accepts messages from both localhost and remote hosts. However, only the query commands are
answered (and acted upon) if the query comes from aremote host. It is always an error to try to register anodename if
the client is not a process located on the same host as the epnd instance is running on- such requests are considered
hostile and the connection is immediately closed.

The queries accepted from remote nodes are:

242 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd

e Port queries - i.e. on which port does the node with a given name listen
* Nameligting - i.e. give alist of all names registered on the host

To restrict access further, firewall software has to be used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 243

erl

erl

Command

Theer | program starts an Erlang runtime system. The exact details (for example, whether er | isascript or aprogram
and which other programsiit calls) are system-dependent.

Windows users probably wants to use thewer | program instead, which runs in its own window with scrollbars and
supports command-line editing. Theer | program on Windows provides no line editing in its shell, and on Windows
95 there is no way to scroll back to text which has scrolled off the screen. The er | program must be used, however,
in pipelines or if you want to redirect standard input or output.

Note:

Asof ERTSversion 5.9 (OTP-R15B) the runtime system will by default not bind schedulersto logical processors.
For more information see documentation of the +sbt system flag.

Exports

erl <arguments>

Starts an Erlang runtime system.

The arguments can be divided into emulator flags, flags and plain arguments:

* Any argument starting with the character + isinterpreted as an emulator flag.

As indicated by the name, emulator flags controls the behavior of the emulator.

» Any argument starting with the character - (hyphen) isinterpreted as a flag which should be passed to the Erlang
part of the runtime system, more specifically to thei ni t system process, seeinit(3).
Thei ni t processitself interprets some of these flags, the init flags. It also stores any remaining flags, the user
flags. The latter can be retrieved by callingi ni t : get _ar gument / 1.
It can be noted that there are asmall number of "-" flags which now actually are emulator flags, seethe description
below.

» Plainarguments are not interpreted in any way. They are also stored by thei ni t process and can be retrieved by
calingi ni t: get plai n_argunent s/ 0. Plain arguments can occur before thefirst flag, or after a- - flag.
Additionally, the flag - ext r a causes everything that follows to become plain arguments.

Example:

% erl +W w -sname arnie +R 9 -s my init -extra +bertie
(arnie@host)1> init:get argument(sname).

{ok,[["arnie"]1]}
(arnie@host)2> init:get plain arguments().
["+bertie"]

Here +W wand +R 9 are emulator flags. -s ny_i ni t isaninit flag, interpreted by i nit.-snane arni eisa
user flag, stored by i ni t . Itisread by Kernel and will cause the Erlang runtime system to become distributed. Finally,
everything after - ext r a (that is, +ber t i e) isconsidered as plain arguments.

244 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

% erl -myflag 1

1> init:get argument(myflag).
{ok, [["1"]11}

2> init:get plain arguments().

[1

Here the user flag - myf 1 ag 1 is passed to and stored by the i ni t process. It is a user defined flag, presumably
used by some user defined application.

Flags

Inthefollowing list, init flags are marked (init flag). Unless otherwise specified, all other flags are user flags, for which
the values can be retrieved by calling i ni t : get _ar gunment / 1. Note that the list of user flags is not exhaustive,
there may be additional, application specific flags which instead are documented in the corresponding application
documentation.

- - (init flag)
Everything following - - up to the next flag (- f | ag or +f | ag) is considered plain arguments and can be
retrieved usingi ni t: get _pl ai n_ar gunent s/ 0.

- Application Par Val

Setsthe application configuration parameter Par tothevalueVal fortheapplication Appl i cat i on, seeapp(4)
and application(3).

-args_file Fil eNane

Command line arguments are read from the file Fi | eName. The arguments read from the file replace the '-
args_fil e Fil eNane'flag ontheresulting command line.

The file Fi | eNanme should be a plain text file and may contain comments and command line arguments. A
comment beginswith a# character and continues until next end of line character. Backslash (\\) is used as quoting
character. All command line arguments accepted by er | arealowed, alsothe-args_fil e Fi | eNane flag.
Be careful not to cause circular dependencies between files containing the - ar gs_f i | e flag, though.

The - ext r a flag is treated specialy. Its scope ends at the end of the file. Arguments following an - extra
flag are moved on the command line into the - ext r a section, i.e. the end of the command line following after
an - ext r a flag.

-async_shel | _start

Theinitia Erlang shell does not read user input until the system boot procedure has been completed (Erlang 5.4
and later). This flag disables the start synchronization feature and lets the shell start in parallel with the rest of
the system.

-boot File

Specifies the name of the boot file, Fi | e. boot , which is used to start the system. See init(3). UnlessFi | e
contains an absolute path, the system searchesfor Fi | e. boot inthe current and $ROOT/ bi n directories.

Defaultsto $ROOT/ bi n/ st art . boot .
-boot _var Var Dir

If the boot script contains a path variable Var other than $ROOT, this variable is expanded to Di r . Used when
applications are installed in another directory than $ROOT/ | i b, see systools:make_script/1,2.

-code_pat h_cache
Enables the code path cache of the code server, see code(3).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 245

erl

-conpil e Mbdl Mbd2 ...

Compiles the specified modules and then terminates (with non-zero exit code if the compilation of some file did
not succeed). Implies - noi nput . Not recommended - use erlc instead.

-config Config

Specifiesthe name of aconfigurationfile, Conf i g. conf i g, whichisusedto configure applications. See app(4)
and application(3).

-connect _all false

If thisflag ispresent, gl obal will not maintain afully connected network of distributed Erlang nodes, and then
global name registration cannot be used. See global (3).

- cooki e Cooki e
Obsolete flag without any effect and common misspelling for - set cooki e. Use- set cooki e instead.
- det ached

Startsthe Erlang runtime system detached from the system console. Useful for running daemons and backgrounds
processes. Implies - noi nput .

-enu_args
Useful for debugging. Prints out the actual arguments sent to the emulator.
-env Variabl e Val ue

Setsthe host OS environment variable Var i abl e to thevaue Val ue for the Erlang runtime system. Example:

% erl -env DISPLAY gin:0

In this example, an Erlang runtime system is started with the DI SPLAY environment variable set to gi n: 0.
-eval Expr (init flag)

Makesi ni t evaluate the expression Expr , seeinit(3).
- ext r a(init flag)

Everything following -extra is considered plain arguments and can be retrieved using
i nit:get_plain_argunents/O.

- heart
Starts heart beat monitoring of the Erlang runtime system. See heart(3).
- hi dden

Startsthe Erlang runtime system as ahidden node, if it isrun asadistributed node. Hidden nodes always establish
hidden connections to al other nodes except for nodes in the same globa group. Hidden connections are not
published on either of the connected nodes, i .e. neither of the connected nodesare part of theresult fromnodes/ O
on the other node. See aso hidden global groups, global _group(3).

-hosts Hosts

Specifies the IP addresses for the hosts on which Erlang boot servers are running, see erl_boot_server(3). This
flag ismandatory if the- | oader i net flagis present.

The IP addresses must be given in the standard form (four decimal numbers separated by periods, for example
"150. 236. 20. 74" . Hosts names are not acceptable, but a broadcast address (preferably limited to the local
network) is.

246 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

-id Id

Specifies the identity of the Erlang runtime system. If it isrun as a distributed node, | d must be identical to the
name supplied together with the - snane or - nane flag.

-init_debug
Makesi ni t write some debug information while interpreting the boot script.
- i nst r (emulator flag)

Selects an instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one. When
running an instrumented runtime system, some resource usage data can be obtai ned and anal ysed using the module
i nst rument . Functionaly, it behaves exactly like an ordinary Erlang runtime system.

-l oader Loader

Specifies the method used by erl priml oader to load Erlang modules into the system. See
erl_prim_loader(3). Two Loader methods are supported, ef i | e and i net . ef i | e means use the local file
system, this is the default. i net means use a boot server on another machine, and the - i d, - host s and -
set cooki e flags must be specified as well. If Loader is something else, the user supplied Loader port
program is started.

- make

Makesthe Erlang runtime systeminvokemake: al | () inthe current working directory and then terminate. See
make(3). Implies- noi nput .

-man Modul e
Displays the manual page for the Erlang module Modul e. Only supported on Unix.
-nmode interactive | enbedded

Indicates if the system should load code dynamically (i nt er acti ve), or if al code should be loaded during
system initiaization (enbedded), see code(3). Defaultstoi nt eract i ve.

-nane Nane

Makes the Erlang runtime system into a distributed node. This flag invokes all network servers necessary for a
node to become distributed. See net_kernel(3). It isalso ensured that epnd runs on the current host before Erlang
is started. See epmd(1).

The name of the node will be Name @ost , where Host isthe fully qualified host name of the current host. For
short names, use the - snane flag instead.

- noi nput
Ensures that the Erlang runtime system never triesto read any input. Implies- noshel | .
-noshel |

Starts an Erlang runtime system with no shell. This flag makes it possible to have the Erlang runtime system as
acomponent in a series of UNIX pipes.

-nostick
Disables the sticky directory facility of the Erlang code server, see code(3).

- ol dshel |
Invokes the old Erlang shell from Erlang 3.3. The old shell can still be used.
-pa DrlDr2...

Addsthe specified directoriesto the beginning of the code path, similar tocode: add_pat hsa/ 1. See code(3).
As an dternative to - pa, if several directories are to be prepended to the code path and the directories have a

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 247

erl

common parent directory, that parent directory could be specified in the ERL_LI BS environment variable. See
code(3).

-pz Dir1 Dir2 ...
Adds the specified directories to the end of the code path, similar to code: add_pat hsz/ 1. See code(3).
-path Dirl Dir2 ...
Replaces the path specified in the boot script. See script(4).
-proto_dist Proto
Specify a protocol for Erlang distribution.
inet _tcp
TCP over |Pv4 (the default)
inet_tls
distribution over TLS/SSL
inet6_tcp
TCP over IPv6
For example, to start up I1Pv6 distributed nodes:

% erl -name test@ipv6node.example.com -proto dist inet6 tcp

-rensh Node

Starts Erlang with aremote shell connected to Node.
-rsh Program

Specifies an alternative to r sh for starting a slave node on aremote host. See slave(3).
-run Mod [Func [Argl, Arg2, ...]1] (initflag)

Makesi ni t cal the specified function. Func defaultsto st art . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as strings. See init(3).

-s Mod [Func [Argl, Arg2, ...]](initflag)

Makesi ni t cal the specified function. Func defaultsto st art . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as atoms. See init(3).

- set cooki e Cooki e
Sets the magic cookie of the node to Cooki e, see erlang: set_cookie/2.
-shutdown_tine Tine

Specifies how long time (in milliseconds) the i ni t process is alowed to spend shutting down the system. If
Ti me ms have elapsed, all processes till existing are killed. Defaultstoi nfinity.

-snane Nane

Makes the Erlang runtime system into a distributed node, similar to - nane, but the host name portion of the
node name Nane @+ost will be the short name, not fully qualified.

248 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

Thisissometimesthe only way to run distributed Erlang if the DNS (Domain Name System) isnot running. There
can be no communication between nodes running with the - snane flag and those running with the - nane flag,
as node names must be unique in distributed Erlang systems.

-snp [enabl e| aut o] di sabl €]

-snp enabl e and - snp starts the Erlang runtime system with SMP support enabled. This may fail if no
runtime system with SMP support isavailable. - snp aut o starts the Erlang runtime system with SMP support
enabled if it is available and more than one logical processor are detected. - snp di sabl e starts a runtime
system without SMP support.

NOTE: The runtime system with SMP support will not be available on all supported platforms. See also the +S
flag.

- ver si on(emulator flag)
Makes the emulator print out its version number. Thesameaser| +V.

Emulator Flags
er | invokesthe code for the Erlang emulator (virtual machine), which supports the following flags:
+a size

Suggested stack size, in kilowords, for threads in the async-thread pool. Valid range is 16-8192 kilowords. The
default suggested stack size is 16 kilowords, i.e, 64 kilobyte on 32-bit architectures. This small default size
has been chosen since the amount of async-threads might be quite large. The default size is enough for drivers
delivered with Erlang/OTP, but might not be sufficiently large for other dynamically linked in drivers that use
the driver_async() functionality. Note that the value passed is only a suggestion, and it might even be ignored
on some platforms.

+A size

Sets the number of threads in async thread pool, valid range is 0-1024. If thread support is available, the default
is 10.

+Blc| d| il

The ¢ option makes Ct r | - Cinterrupt the current shell instead of invoking the emulator break handler. The
d option (same as specifying +B without an extra option) disables the break handler. Thei option makes the
emulator ignore any break signal.

If the ¢ optionisused with ol dshel | on Unix, Ct r | - Cwill restart the shell process rather than interrupt it.

Note that on Windows, this flag is only applicable for wer | , not er| (ol dshel |'). Note also that Ct r | -
Br eak isused instead of Ct r | - C on Windows.

+c true | false
Enable or disable time correction:
true
Enable time correction. Thisisthe default if time correction is supported on the specific platform.
fal se
Disable time correction.
For backwards compatibility, the boolean value can be omitted. Thisisinterpreted as+c f al se.
+C no_tinme_warp | single_tine_warp | rmulti_time_warp
Set time warp mode:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 249

erl

+d

+e

+ec

no_time_warp

No Time Warp Mode (the default)
single_time_warp

Sngle Time Warp Mode
multi _time_warp

Multi Time Warp Mode

If the emulator detects an internal error (or runs out of memory), it will by default generate both a crash dump
and acore dump. The core dump will, however, not be very useful since the content of process heapsis destroyed
by the crash dump generation.

The +d option instructs the emulator to only produce a core dump and no crash dump if an interna error is
detected.

Cdlinger | ang: hal t/ 1 with astring argument will still produce a crash dump. On Unix systems, sending an
emulator process a SIGUSR1 signal will also force a crash dump.

Nunber
Set max number of ETS tables.

Forcethe conpr essed option on al ETStables. Only intended for test and evaluation.

+f nl

The VM works with file names as if they are encoded using the 1SO-latin-1 encoding, disallowing Unicode
characters with codepoints beyond 255.

See STDLIB User's Guide for more infomation about unicode file names. Note that this value also applies to
command-line parameters and environment variables (see STDLIB User's Guide).

+Hnu[{wi]e}]

The VM works with file names as if they are encoded using UTF-8 (or some other system specific Unicode
encoding). Thisisthe default on operating systems that enforce Unicode encoding, i.e. Windows and MacOS X.

The+f nu switch can befollowed by w, i , or e to control the way wrongly encoded file names are to be reported.
w means that awarning is sent to theer r or _| ogger whenever awrongly encoded file nameis "skipped" in
directory listings, i means that those wrongly encoded file names are silently ignored and e means that the API
function will return an error whenever awrongly encoded file (or directory) nameis encountered. wisthe default.
Notethatfi | e: read_| i nk/ 1 will dwaysreturn an error if the link pointsto an invalid file name.

See STDLIB User's Guide for more infomation about unicode file names. Note that this value also applies to
command-line parameters and environment variables (see STDLIB User's Guide).

+Hfna[{wi]|e}]

Selection between +f nl and +f nu is done based on the current locale settings in the OS, meaning that if you
have set your terminal for UTF-8 encoding, the filesystem is expected to use the same encoding for file names.
Thisisdefault on all operating systems except MacOS X and Windows.

The +f na switch can be followed by w, i , or e. Thiswill have effect if the locale settings cause the behavior
of +f nu to be selected. See the description of +f nu above. If the locale settings cause the behavior of +f nl to
be selected, thenw, i , or e will not have any effect.

See STDLIB User's Guide for more infomation about unicode file names. Note that this value also applies to
command-line parameters and environment variables (see STDLIB User's Guide).

250 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+hns Size

Sets the default heap size of processesto thesize Si ze.
+hnmbs Si ze

Sets the default binary virtual heap size of processestothesize Si ze.
+hpds Si ze

Setstheinitial process dictionary size of processesto thesize Si ze.
+K true | false

Enables or disables the kernel poll functionality if the emulator supportsit. Default isf al se (disabled). If the
emulator does not support kernel poll, and the +K flag is passed to the emulator, awarning isissued at startup.

+
Enables auto load tracing, displaying info while loading code.
+L

Don't load information about source file names and line numbers. This will save some memory, but exceptions
will not contain information about the file names and line numbers.

+MFl ag Val ue

Memory allocator specific flags, see erts alloc(3) for further information.
+n Behavi or

Control behavior of signals to ports.

As of OTP-R16 signas to ports are truly asynchronously delivered. Note that signals always have been
documented as asynchronous. The underlying implementation has, however, previously delivered these signals
synchronoudly. Correctly written Erlang programs should be able to handle this without any issues. Bugs in
existing Erlang programs that make fal se assumptions about signalsto ports may, however, betricky to find. This
switch has been introduced in order to at least make it easier to compare behaviors during a transition period.
Note that this flag is deprecated as of its introduction, and is scheduled for removal in OTP-R17. Behavi or
should be one of the following characters:

d
The default. Asynchronous signals. A process that sends asignal to a port may continue execution before
the signal has been delivered to the port.

S
Synchronous signals. A processes that sends asignal to a port will not continue execution until the signal
has been delivered. Should only be used for testing and debugging.

a
Asynchronous signals. As the default, but a processes that sends a signal will even more frequently
continue execution before the signal has been delivered to the port. Should only be used for testing and
debugging.

+pc Range

Setstherange of charactersthat the system will consider printable in heuristic detection of strings. Thistypically
affects the shell, debugger and io:format functions (when ~tp is used in the format string).

Currently two values for the Range are supported:

latinl
The default. Only characters in the ISO-latin-1 range can be considered printable, which means that
a character with a code point > 255 will never be considered printable and that lists containing such
characters will be displayed as lists of integers rather than text strings by tools.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 251

erl

uni code
All printable Unicode characters are considered when determining if alist of integersisto be displayed
in string syntax. This may give unexpected results if for example your font does not cover all Unicode
characters.

Sedso io:printable range/O.

+P Nunber | | egacy

Sets the maximum number of simultaneously existing processes for this system if aNunber is passed as value.
Valid range for Nunber is[1024- 134217727]

NOTE: The actual maximum chosen may be much larger than the Nunber passed. Currently the runtime system
often, but not always, chooses a value that is a power of 2. This might, however, be changed in the future. The
actual value chosen can be checked by calling erlang: system _info(process _limit).

The default valueis 262144

If | egacy is passed as value, the legacy algorithm for alocation of process identifiers will be used. Using the
legacy algorithm, identifiers will be allocated in a strictly increasing fashion until largest possible identifier has
been reached. Note that this algorithm suffers from performance issues and can under certain circumstances be
extremely expensive. The legacy algoritm is deprecated, and the | egacy option is scheduled for removal in
OTP-R18.

+Q Nunber | | egacy

Sets the maximum number of simultaneously existing ports for this system if aNumber is passed asvalue. Vaid
range for Nunber is[1024- 134217727]

NOTE: The actual maximum chosen may be much larger than the actual Nurmber passed. Currently the runtime
system often, but not always, chooses avalue that isapower of 2. This might, however, be changed in the future.
The actual value chosen can be checked by calling erlang: system info(port_limit).

Thedefault value usedisnormally 65536. However, if the runtime system is abl e to determine maximum amount
of file descriptorsthat it is allowed to open and this value is larger than 65536, the chosen value will increased
to avaluelarger or equal to the maximum amount of file descriptors that can be opened.

On Windowsthe default valueis set to 8196 because the normal OSlimitationsare set higher than most machines
can handle.

Previoudly the environment variable ERL_MAX PORTS was used for setting the maximum number of
simultaneously existing ports. This environment variable is deprecated, and scheduled for removal in OTP-R17,
but can still be used.

If | egacy is passed as value, the legacy algorithm for alocation of port identifiers will be used. Using the
legacy algorithm, identifiers will be alocated in a strictly increasing fashion until largest possible identifier has
been reached. Note that this algorithm suffers from performance issues and can under certain circumstances be
extremely expensive. The legacy algoritm is deprecated, and the | egacy option is scheduled for removal in
OTP-R18.

+R Rel easeNunber

Sets the compatibility mode.

The distribution mechanism is not backwards compatible by default. Thisflags setsthe emulator in compatibility
mode with an earlier Erlang/OTP release Rel easeNunber. The release number must be in the range
<current release>-2..<current release>. Thislimitsthe emulator, making it possible for it to
communicate with Erlang nodes (as well as C- and Java nodes) running that earlier release.

Note: Make sure al nodes (Erlang-, C-, and Java nodes) of a distributed Erlang system is of the same Erlang/
OTPrelease, or from two different Erlang/OTP releases X and Y, where all Y nodes have compatibility mode X.

252 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+r
Force ets memory block to be moved on realloc.
+rg Reader G- oupsLimt

Limits the amount of reader groups used by read/write locks optimized for read operationsin the Erlang runtime
system. By default the reader groups limit equals 64.

When the amount of schedulers is less than or equal to the reader groups limit, each scheduler has its own
reader group. When the amount of schedulers is larger than the reader groups limit, schedulers share reader
groups. Shared reader groups degrades read lock and read unlock performance while a large amount of reader
groups degrades write lock performance, so the limit is a tradeoff between performance for read operations and
performance for write operations. Each reader group currently consumes 64 byte in each read/write lock. Also
note that a runtime system using shared reader groups benefits from binding schedulers to logical processors,
since the reader groups are distributed better between schedulers.

+S Schedul ers: Schedul erOnl i ne

Sets the number of scheduler threads to create and scheduler threads to set online when SMP support has been
enabled. The maximum for both values is 1024. If the Erlang runtime system is able to determine the amount of
logical processors configured and logical processors available, Schedul er s will default to logical processors
configured, and Schedul er sOnl i ne will default to logical processors available; otherwise, the default values
will be 1. Schedul er s may be omitted if : Schedul er Onl i ne is not and vice versa. The number of
schedulers online can be changed at run time via erlang: system flag(schedulers_online, SchedulersOnline).

If Schedul er s or Schedul er sOnl i ne is specified as a negative number, the value is subtracted from the
default number of logical processors configured or logical processors available, respectively.

Specifying the value O for Schedul er s or Schedul er sOnl i ne resets the number of scheduler threads or
scheduler threads online respectively to its default value.

Thisoption isignored if the emulator doesn't have SMP support enabled (see the -smp flag).
+SP Schedul er sPer cent age: Schedul er sOnl i nePer cent age

Similar to +S but uses percentages to set the number of scheduler threads to create, based on logical
processors configured, and scheduler threads to set online, based on logical processors available, when SMP
support has been enabled. Specified values must be greater than 0. For example, +SP 50: 25 sets the
number of scheduler threads to 50% of the logical processors configured and the number of scheduler
threads online to 25% of the logical processors available. Schedul er sPer cent age may be omitted if
: Schedul er sOnl i nePer cent age isnot and vice versa. The number of schedulers online can be changed
a run time viaerlang: system flag(schedulers_online, SchedulersOnline).

This option interacts with + S settings. For example, on a system with 8 logical cores configured and 8 logical
cores available, the combination of the options +S 4: 4 +SP 50: 25 (in either order) results in 2 scheduler
threads (50% of 4) and 1 scheduler thread online (25% of 4).

Thisoption isignored if the emulator doesn't have SMP support enabled (see the -smp flag).
+SDcpu Di rtyCPUSchedul ers: Di rt yCPUSchedul er sOnl i ne

Sets the number of dirty CPU scheduler threads to create and dirty CPU scheduler threads to set online
when threading support has been enabled. The maximum for both values is 1024, and each value is further
limited by the settings for normal schedulers: the number of dirty CPU scheduler threads created cannot
exceed the number of normal scheduler threads created, and the number of dirty CPU scheduler threads
online cannot exceed the number of normal scheduler threads online (see the +S and +SP flags for more
details). By default, the number of dirty CPU scheduler threads created equals the number of normal
scheduler threads created, and the number of dirty CPU scheduler threads online equals the number of normal
scheduler threads online. Di rt yCPUSchedul er s may be omitted if : Di rt yCPUSchedul ersOnl i ne

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 253

erl

is not and vice versa. The number of dirty CPU schedulers online can be changed at run time via
erlang:system flag(dirty_cpu_schedulers online, DirtyCPUSchedulersOnline).

This option is ignored if the emulator doesn't have threading support enabled. Currently, this option is
experimental and is supported only if the emulator was configured and built with support for dirty schedulers
enabled (it's disabled by default).

+SDPcpu Di rt yCPUSchedul er sPer cent age: Di rt yCPUSchedul er sOnl i nePer cent age

Similar to +SDcpu but uses percentages to set the number of dirty CPU scheduler threads to create
and number of dirty CPU scheduler threads to set online when threading support has been enabled.
Specified values must be greater than 0. For example, +SDPcpu 50: 25 sets the number of dirty CPU
scheduler threads to 50% of the logical processors configured and the number of dirty CPU scheduler
threads online to 25% of the logical processors available. Di rt yCPUSchedul er sPer cent age may be
omitted if : Di rt yCPUSchedul er sOnl i nePer cent age is not and vice versa. The number of dirty
CPU schedulers online can be changed a run time via erlang:system flag(dirty_cpu_schedulers online,
DirtyCPUSchedulersOnling).

Thisoptioninteractswith + SDcpu settings. For example, on asystem with 8 logical cores configured and 8 logical
cores available, the combination of the options +SDcpu 4: 4 +SDPcpu 50: 25 (in either order) resultsin 2
dirty CPU scheduler threads (50% of 4) and 1 dirty CPU scheduler thread online (25% of 4).

This option is ignored if the emulator doesn't have threading support enabled. Currently, this option is
experimental and is supported only if the emulator was configured and built with support for dirty schedulers
enabled (it's disabled by default).

+SDi o | CSchedul ers

Setsthe number of dirty 1/0 scheduler threadsto create when threading support has been enabled. Thevalid range
is 0-1024. By default, the number of dirty 1/0O scheduler threads created is 10, same as the default number of
threads in the async thread pool .

This option is ignored if the emulator doesn't have threading support enabled. Currently, this option is
experimental and is supported only if the emulator was configured and built with support for dirty schedulers
enabled (it's disabled by default).

+sFl ag Val ue

Scheduling specific flags.
+sbt Bi ndType
Set scheduler bind type.

Schedulers can also be bound using the +stbt flag. The only difference between these two flags is how the
following errors are handled:

» Binding of schedulersis not supported on the specific platform.

e Noavailable CPU topology. That is the runtime system was not able to automatically detected the
CPU topology, and no user defined CPU topology was set.

If any of these errors occur when +sbt has been passed, the runtime system will print an error message, and
refuse to start. If any of these errors occur when +st bt has been passed, the runtime system will silently
ignore the error, and start up using unbound schedulers.

Currently valid Bi ndTypes:
u

unbound - Schedulerswill not be bound to logical processors, i.e., the operating system decideswhere
the scheduler threads execute, and when to migrate them. Thisis the default.

254 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

ns

no_spread - Schedulers with close scheduler identifiers will be bound as close as possible in
hardware.

ts

t hr ead_spr ead - Thread refers to hardware threads (e.g. Intel's hyper-threads). Schedulers with
low scheduler identifiers, will be bound to the first hardware thread of each core, then schedulers with
higher scheduler identifiers will be bound to the second hardware thread of each core, etc.

ps
processor _spread - Schedulers will be spread like t hr ead_spr ead, but aso over physical
processor chips.

S
spr ead - Schedulers will be spread as much as possible.

nnt s
no_node_t hread_spread - Like t hread_spread, but if multiple NUMA (Non-Uniform
Memory Access) nodes exists, schedulerswill be spread over one NUMA node at atime, i.e., al logical
processors of one NUMA node will be bound to schedulersin sequence.

nnps
no_node_processor_spread - Like processor _spread, but if multiple NUMA nodes
exists, schedulers will be spread over one NUMA node at atime, i.e., all logical processors of one
NUMA node will be bound to schedulersin sequence.

t nnps

thread_no_node_processor_spread - A combination of thread spread, and
no_node_processor _spread. Schedulers will be spread over hardware threads across NUMA
nodes, but schedulers will only be spread over processors internally in one NUMA node at atime.

db

default_bind - Binds schedulers the default way. Currently the default is
t hread_no_node_processor _spread (which might changein the future).

Binding of schedulersiscurrently only supported on newer Linux, Solaris, FreeBSD, and Windows systems.

If no CPU topology is available when the +sbt flagis processed and Bi nd Ty pe isany other type than u,
the runtime system will fail to start. CPU topology can be defined using the +sct flag. Note that the +sct

flag may have to be passed before the +sbt flag on the command line (in case no CPU topology has been
automatically detected).

The runtime system will by default not bind schedulersto logical processors.

NOTE: If the Erlang runtime system is the only operating system process that binds threads to logical
processors, this improves the performance of the runtime system. However, if other operating system
processes (asfor example another Erlang runtime system) also bind threadsto logical processors, there might
be a performance penalty instead. In some cases this performance penalty might be severe. If thisisthe case,
you are advised to not bind the schedulers.

How schedulers are bound matters. For example, in situations when there are fewer running processes than
schedulers online, the runtime system triesto migrate processesto schedulerswith low scheduler identifiers.
The more the schedulers are spread over the hardware, the more resources will be available to the runtime
system in such situations.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 255

erl

NOTE: If a scheduler fails to bind, this will often be silently ignored. This since it isn't aways
possible to verify valid logical processor identifiers. If an error is reported, it will be reported to the
error _| ogger. If you want to verify that the schedulers actually have bound as requested, call
erlang: system _info(scheduler _bindings).

+sbwt none| very_short|short| nedi unj ! ong|very_ | ong

Set scheduler busy wait threshold. Defaultismedi um Thethreshold determines how |ong schedul ers should
busy wait when running out of work before going to sleep.

NOTE: Thisflag may be removed or changed at any time without prior notice.
true|fal se

Enable or disable scheduler compaction of load. By default scheduler compaction of load is enabled. When
enabled, load balancing will strivefor aload distribution which causes as many scheduler threads as possible
to befully loaded (i.e., not run out of work). Thisisaccomplished by migrating load (e.g. runnabl e processes)
into asmaller set of schedulers when schedulers frequently run out of work. When disabled, the frequency
with which schedulers run out of work will not be taken into account by the load balancing logic.

+scl fal se issimilar to +sub true with the difference that +sub t r ue also will balance scheduler
utilization between schedulers.

+sct CpuTopol ogy

e <ld> = integer(); when 0 =< <l d> =< 65535

« <ldRange> = <l d>-<ld>

e <ldOrldRange> = <ld> | <IdRange>

+ <ldList> = <1dO I dRange>, <l dO | dRange> | <l dOr | dRange>

e <Logicallds> = L<IdList>

* <Threadlds> = T<ldList> | t<IdList>

e <Corelds> = C<ldList> | c<ldList>

e <Processorlds> = P<ldList> | p<ldList>

 <Nodelds> = N<ldList> | n<ldList>

» <l dDefs> = <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds>
<Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>

 CpuTopol ogy = <IdDefs>: <l dDefs> | <IdDefs>

Set a user defined CPU topology. The user defined CPU topology will override any automatically detected
CPU topology. The CPU topology is used when binding schedulersto logical processors.

Upper-case letters signify real identifiers and lower-case letters signify fake identifiers only used for
description of the topology. Identifiers passed as real identifiers may be used by the runtime system when
trying to access specific hardware and if they are not correct the behavior is undefined. Faked logical CPU
identifiers are not accepted since there is no point in defining the CPU topology without real logical CPU
identifiers. Thread, core, processor, and node identifiers may beleft out. If left out, thread id defaultstot O,
core id defaults to c0, processor id defaults to p0, and node id will be left undefined. Either each logical
processor must belong to one and only one NUMA node, or no logical processors must belong toany NUMA
nodes.

Both increasing and decreasing <I dRange>s are allowed.

NUMA node identifiers are system wide. That is, each NUMA node on the system have to have a unique
identifier. Processor identifiers are also system wide. Core identifiers are processor wide. Thread identifiers
are core wide.

The order of the identifier types imply the hierarchy of the CPU topology. Valid
orders are either <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds>, or

256 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

<Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>. Thatis, thread ispart of
acorewhich is part of a processor which is part of aNUMA node, or thread is part of a core which is part
of aNUMA node which is part of a processor. A cpu topology can consist of both processor external, and
processor internal NUMA nodes aslong as each logical processor belongsto one and only one NUMA node.
If <Processor | ds> isleft out, its default position will be before <Nodel ds>. That is, the default is
processor external NUMA nodes.

If alist of identifiersisused in an <I dDef s>:

* <Logi cal | ds>havetobealist of identifiers.
e Atleast one other identifier type apart from <Logi cal | ds> aso haveto have alist of identifiers.
» All lists of identifiers have to produce the same amount of identifiers.

A simple example. A single quad core processor may be described this way:

% erl +sct LO-3c0-3

1> erlang:system info(cpu_ topology) .

[{processor, [{core,{logical,0}},
{core,{logical,1}},
{core,{logical,2}},
{core,{logical,3}}1}1]

A little more complicated example. Two quad core processors. Each processor in itsown NUMA node. The
ordering of logical processorsisalittle weird. Thisin order to give a better example of identifier lists:

% erl +sct LO-1,3-2c0-3pONO:L7,4,6-5c0-3p1N1

1> erlang:system info(cpu_topology).

[{node, [{processor, [{core,{logical,0}},
{core,{logical,1}},
{core,{logical,3}},
{core,{logical,2}}1}1},

{node, [{processor, [{core, {logical,7}},
{core,{logical,h4}},
{core,{logical,6}},
{core,{logical,5}}1}1}1]

Aslong as real identifiers are correct it is okay to pass a CPU topology that is not a correct description of
the CPU topology. When used with care this can actually be very useful. Thisin order to trick the emulator
to bind its schedulers as you want. For example, if you want to run multiple Erlang runtime systems on the
same machine, you want to reduce the amount of schedulers used and manipulate the CPU topology so that
they bind to different logical CPUs. An example, with two Erlang runtime systems on a quad core machine:

% erl +sct LO-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
% erl +sct L3-0c0-3 +sbt db +53:2 -detached -noinput -noshell -sname two

In this example each runtime system have two schedulers each online, and all schedulers online will run on
different cores. If we change to one scheduler online on one runtime system, and three schedulers online on
the other, all schedulers online will still run on different cores.

Note that a faked CPU topology that does not reflect how the real CPU topology looks like is likely to
decrease the performance of the runtime system.

For more information, see erlang: system info(cpu_topology).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 257

erl

+seci o true|fal se

Enable or disable eager check 1/0O scheduling. The default is currently t r ue. The default was changed
fromfal setotrue asof ertsversion 7.0. The behaviour before this flag was introduced corresponds to
+seci o fal se.

The flag effects when schedulers will check for 1/O operations possible to execute, and when such 1/0
operations will execute. As the name of the parameter implies, schedulers will be more eager to check for
[/Owhent rue is passed. This however also implies that execution of outstanding /O operation will not
be prioritized to the same extent aswhen f al se is passed.

erl ang: system i nf o(eager _check_i 0) returns the value of this parameter used when starting
the VM.

+sfwi | nterval

Set scheduler forced wakeup interval. All run queueswill be scanned each | nt er val milliseconds. While
there are sleeping schedulers in the system, one scheduler will be woken for each non-empty run queue
found. Anl nt er val of zero disables this feature, which also is the default.

This feature has been introduced as a temporary workaround for long-executing native code, and native
code that does not bump reductions properly in OTP. When these bugs have be fixed the +sf wi flag will
be removed.

+st bt Bi ndType

Try to set scheduler bind type. The same asthe + sbt flag with the exception of how some errors are handled.
For more information, see the documentation of the +sbt flag.

+sub true|fal se

Enable or disable scheduler utilization balancing of load. By default scheduler utilization balancing is
disabled and instead scheduler compaction of load is enabled which will strive for a load distribution
which causes as many scheduler threads as possible to be fully loaded (i.e., not run out of work). When
scheduler utilization balancing is enabled the system will instead try to balance schedul er utilization between
schedulers. That is, strive for equal scheduler utilization on al schedulers.

+sub true isonly supported on systems where the runtime system detects and uses a monotonically
increasing high resolution clock. On other systems, the runtime system will fail to start.

+sub true implies+scl false. The difference between +sub true and +scl fal se isthat +scl
f al se will not try to balance the scheduler utilization.

+swet very_eager | eager | nedi unj | azy| very_| azy

Set scheduler wake cleanup threshold. Default is medi um This flag controls how eager schedulers should
be requesting wake up due to certain cleanup operations. When a lazy setting is used, more outstanding
cleanup operations can be left undone while a scheduler isidling. When an eager setting is used, schedulers
will more frequently be woken, potentially increasing CPU-utilization.

NOTE: Thisflag may be removed or changed at any time without prior notice.

+sws defaul t|| egacy

Set scheduler wakeup strategy. Default strategy changed in erts-5.10/0TP-R16A. This strategy was
previously known as pr oposal in OTP-R15. Thel egacy strategy was used as default from R13 up to
and including R15.

NOTE: This flag may be removed or changed at any time without prior notice.

+swt very_| ow | ow medi unj hi gh| very_hi gh

Set scheduler wakeup threshold. Default is medi um The threshold determines when to wake up sleeping
schedulers when more work than can be handled by currently awake schedulers exist. A low threshold will

258 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

cause earlier wakeups, and a high threshold will cause later wakeups. Early wakeups will distribute work
over multiple schedulers faster, but work will more easily bounce between schedulers.

NOTE: Thisflag may be removed or changed at any time without prior notice.
+spp Bool

Set default scheduler hint for port parallelism. If set to tr ue, the VM will schedule port tasks when
doing so will improve parallelism in the system. If set to f al se, the VM will try to perform port tasks
immediately, improving latency at the expense of parallelism. If this flag has not been passed, the default
scheduler hint for port paralelism is currently f al se. The default used can be inspected in runtime by
calling erlang: system_info(port_parallelism). The default can be overriden on port creation by passing the
parallelism option to open_port/2

+sss size

Suggested stack size, in kilowords, for scheduler threads. Valid rangeis 4-8192 kilowords. The default stack
size is OS dependent.

+t size
Set the maximum number of atomsthe VM can handle. Default is 1048576.
+T Level

Enables modified timing and setsthemodified timing level. Currently valid rangeis0-9. Thetiming of theruntime
system will change. A high level usually means a greater change than a low level. Changing the timing can be
very useful for finding timing related bugs.

Currently, modified timing affects the following:
Process spawning

A process calling spawn, spawn_| i nk, spawn_noni t or, or spawn_opt will be scheduled out
immediately after completing the call. When higher modified timing levels are used, the caller will also
sleep for awhile after being scheduled out.

Context reductions

The amount of reductions aprocessis a alowed to use before being scheduled out is increased or reduced.
Input reductions

The amount of reductions performed before checking I/O isincreased or reduced.

NOTE: Performance will suffer when modified timing is enabled. This flag is only intended for testing and
debugging. Also note that r et urn_t o and r et ur n_f r omtrace messages will be lost when tracing on the
spawn BIFs. This flag may be removed or changed at any time without prior notice.

+V

Makes the emulator print out its version number.
+v

Verbose.
+tWw | i | e

Sets the mapping of warning messages for er r or _| ogger . Messages sent to the error logger using one of
the warning routines can be mapped either to errors (+W e), warnings (+W wj), or info reports (+W i). The
default is warnings. The current mapping can be retrieved using er r or _| ogger : war ni ng_nmap/ 0. See
error_logger(3) for further information.

+zFl ag Val ue
Miscellaneous flags.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 259

erl

+zdbbl size

Set the distribution buffer busy limit (dist_buf_busy limit) in kilobytes. Valid range is 1-2097151. Default
is1024.

A larger buffer limit will allow processes to buffer more outgoing messages over the distribution. When
the buffer limit has been reached, sending processes will be suspended until the buffer size has shrunk. The
buffer limit is per distribution channel. A higher limit will give lower latency and higher throughput at the
expense of higher memory usage.

+zdntgc tine

Set the delayed node table garbage collection time (delayed_node_table gc) in seconds. Valid values are
either i nf i ni ty or aninteger in the range [0-100000000]. Default is 60.

Nodetableentriesthat are not referred will linger in thetablefor at |east the amount of timethat this parameter
determines. The lingering prevents repeated deletions and insertions in the tables from occurring.

Environment variables
ERL_CRASH_DUMWP

If the emulator needs to write a crash dump, the value of this variable will be thefile name of the crash dumpfile.
If the variableis not set, the name of the crash dump filewill beer | _cr ash. dunp inthe current directory.

ERL_CRASH_DUWP_NI CE

Unix systems: If the emulator needsto write acrash dump, it will use the value of thisvariableto set the nice value
for the process, thus lowering its priority. The allowable range is 1 through 39 (higher values will be replaced
with 39). The highest value, 39, will give the process the lowest priority.

ERL_CRASH_DUMP_SECONDS

Unix systems: Thisvariable givesthe number of secondsthat the emulator will be allowed to spend writing acrash
dump. When the given number of seconds have elapsed, the emulator will be terminated by a SIGALRM signal.

If the environment variableisnot set or it is set to zero seconds, ERL_ CRASH DUMP_SECONDS=0, the runtime
system will not even attempt to write the crash dump file. It will just terminate.

If the environment variableis set to negative valie, e.g. ERL_CRASH DUMP_SECONDS=- 1, the runtime system
will wait indefinitely for the crash dump file to be written.

This environment variableis used in conjuction with hear t if heart isrunning:
ERL_CRASH_DUMP_SECONDS=0

Suppresses the writing a crash dump file entirely, thus rebooting the runtime system immediately. Thisis
the same as not setting the environment variable.

ERL_CRASH DUVP_SECONDS=- 1

Setting the environment variable to anegative value will cause the termination of the runtime system to wait
until the crash dump file has been completly written.

ERL_CRASH_DUMP_SECONDS=S
Will wait for S seconds to complete the crash dump file and then terminate the runtime system.

ERL_AFLAGS

The content of this environment variable will be added to the beginning of the command linefor er | .

The - ext r a flag is treated specialy. Its scope ends at the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto the - ext r a section, i.e. the end of the command
line following after an - ext r a flag.

260 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

ERL_ZFLAGS and ERL_FLAGS
The content of these environment variables will be added to the end of the command linefor er | .

The - ext r a flag istreated specially. Its scope ends at the end of the environment variable content. Arguments
following an - ext r a flag aremoved on the command lineinto the- ext r a section, i.e. the end of the command
line following after an - ext r a flag.

ERL_LI BS

This environment variable contains a list of additional library directories that the code server will search for
applications and add to the code path. See code(3).

ERL_EPMD_ADDRESS

This environment variable may be set to acomma-separated list of |P addresses, in which case the epmd daemon
will listen only on the specified address(es) and on the loopback address (which is implicitly added to the list
if it has not been specified).

ERL_EPMD_PORT

This environment variable can contain the port number to use when communicating with epmd. The default port
will work finein most cases. A different port can be specified to allow nodes of independent clusters to co-exist
on the same host. All nodesin a cluster must use the same epmd port number.

Configuration
The standard Erlang/OTP system can be re-configured to change the default behavior on start-up.
The .erlang Start-up File

When Erlang/OTP is started, the system searches for a file named .erlang in the directory where Erlang/OTP is
started. If not found, the user's home directory is searched for an .erlang file.

If an .erlang fileis found, it is assumed to contain valid Erlang expressions. These expressions are evaluated as
if they wereinput to the shell.

A typica .erlang file contains a set of search paths, for example:

io:format("executing user profile in HOME/.erlang\n",[]).
code:add path("/home/calvin/test/ebin").

code:add path("/home/hobbes/bigappl-1.2/ebin").
io:format(".erlang rc finished\n",[]).

user_default and shell_default

Functions in the shell which are not prefixed by a module name are assumed to be functional objects (Funs),
built-in functions (BIFs), or belong to the module user_default or shell_default.

To include private shell commands, define them in amodule user_default and add the following argument asthe
first linein the .erlang file.

code:load abs("..../user default").

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 261

erl

erl

If the contents of .erlang are changed and a private version of user_default is defined, it is possible to customize
the Erlang/OTP environment. More powerful changes can be made by supplying command line argumentsin the
start-up script erl. Refer to erl(1) and init(3) for further information.

SEE ALSO

init(3), erl_prim loader(3), erl_boot_server(3), code(3), application(3), heart(3), net_kernel(3), auth(3), make(3),
epmd(1), erts_alloc(3)

262 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlc

erlc

Command

Theer | ¢ program provides a common way to run all compilersin the Erlang system. Depending on the extension
of each input file, er | ¢ will invoke the appropriate compiler. Regardless of which compiler is used, the same flags
are used to provide parameters such as include paths and output directory.

The current working directory, " . ", will not beincluded in the code path when running the compiler (to avoid loading
Beam files from the current working directory that could potentially be in conflict with the compiler or Erlang/OTP
system used by the compiler).

Exports

erlc flags filel.ext file2.ext...

Er | ¢ compilesone or morefiles. The files must include the extension, for example. er | for Erlang source code, or
. yrl for Yecc source code. Er | ¢ usesthe extension to invoke the correct compiler.

Generally Useful Flags
The following flags are supported:
-I directory

Instructs the compiler to search for include filesin the specified directory. When encountering an- i ncl ude or
-incl ude_lI i b directive, the compiler searches for header filesin the following directories:

. . ", the current working directory of the file server;

e the base name of the compiled file;

« thedirectories specified using the - | option. The directory specified last is searched first.
-o directory

The directory where the compiler should place the output files. If not specified, output fileswill be placed in the
current working directory.

-Dname
Defines a macro.
-Dname=value

Defines a macro with the given value. The value can be any Erlang term. Depending on the platform, the value
may need to be quoted if the shell itself interprets certain characters. On Unix, terms which contain tuples and
list must be quoted. Terms which contain spaces must be quoted on al platforms.

-Werror

Makes all warningsinto errors.
-Wnumber

Setswarning level to number. Defaultis 1. Use - WD to turn off warnings.
-W

Same as - WL.. Defaullt.

Enables verbose output.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 263

erlc

-b output-type

Specifies the type of output file. Generally, output-type is the same as the file extension of the output file but
without the period. This option will be ignored by compilers that have a a single output format.

_g’np

Compile using the SMP emulator. Thisis mainly useful for compiling native code, which needs to be compiled
with the same run-time system that it should be run on.

-M
Produces a Makefile rule to track headers dependencies. Theruleis sent to stdout. No object file is produced.
-MF Makefile
Like the - Moption above, except that the Makefile is written to Makefile. No object fileis produced.
-MD
Sameas- M - M- <Fi | e>. Pbeam
-MT Target
In conjunction with - Mor - MF, change the name of the rule emitted to Target.
-MQ Target
Likethe - MT option above, except that characters special to make(1) are quoted.
-MP
In conjunction with - Mor - M-, add a phony target for each dependency.
-MG
In conjunction with - Mor - MF, consider missing headers as generated files and add them to the dependencies.

Signals that no more options will follow. The rest of the arguments will be treated as file names, even if they
start with hyphens.

+term

A flag starting with a plus ('+") rather than a hyphen will be converted to an Erlang term and passed unchanged
to the compiler. For instance, the export _al | option for the Erlang compiler can be specified as follows:

erlc +export all file.erl

Depending on the platform, the value may need to be quoted if the shell itself interprets certain characters. On
Unix, terms which contain tuples and list must be quoted. Terms which contain spaces must be quoted on all
platforms.

Special Flags
The flagsin this section are useful in special situations such as re-building the OTP system.
-padirectory

Appendsdirectory to the front of the code path in theinvoked Erlang emulator. This can be used to invoke another
compiler than the default one.

-pz directory
Appends directory to the code path in the invoked Erlang emulator.

264 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlc

Supported Compilers
el
Erlang source code. It generates a. beamfile.

Theoptions-P, -E, and -Sare equivaent to +'P, +'E', and +'S, except that it is not necessary to include the single
quotes to protect them from the shell.

Supported options: -1, -0, -D, -v, -W, -b.

Erlang assembler source code. It generatesa. beamfile.
Supported options. same as for .erl.

.core
Erlang core source code. It generatesa. beamfile.
Supported options. same as for .erl.

yrl
Y ecc source code. It generatesan . er| file.
Usethe-I option with the name of afileto usethat file asacustomized prologuefile (thei ncl udefi | e option).
Supported options: -0, -v, -, -W (see above).

.mib
MIB for SNMP. It generatesa. bi n file.
Supported options: -1, -0, -W.

.bin
A compiled MIB for SNMP. It generatesa. hrl file.
Supported options: -0, -V.

el
Script file. It generates aboot file.

Use the -1 to name directories to be searched for application files (equivalent to the pat h in the option list for
syst ool s: make_scri pt/ 2).

Supported options: -o.
.asnl
ASN1file.

Createsan . erl, . hrl,and . asnldb file from an . asnl file. Also compilesthe. er| using the Erlang
compiler unlessthe +noobj optionsisgiven.

Supported options: -1, -0, -b, -W.
adl

ICfile.

Runsthe IDL compiler.

Supported options: -1, -0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 265

erlc

Environment Variables

ERLC_EMULATOR
The command for starting the emulator. Default is erl in the same directory asthe erlc program itself, or if it
doesn't exigt, erl in any of the directories given in the PATH environment variable.

SEE ALSO
erl(1), compile(3), yece(3), snmp(3)

266 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

werl

werl

Command

On Windows, the preferred way to start the Erlang system for interactive useis:
wer | <argunent s>

Thiswill start Erlang in its own window, with fully functioning command-line editing and scrollbars. All flags except
- ol dshel | work asthey do for the erl command.

Ctrl-C is reserved for copying text to the clipboard (Ctrl-V to paste). To interrupt the runtime system or the shell
process (depending on what has been specified with the +B system flag), you should use Ctrl-Break.

In cases where you want to redirect standard input and/or standard output or use Erlang in a pipeline, thewer | isnot
suitable, and the er | program should be used instead.

Thewer | window isin many ways modelled after the xt er mwindow present on other platforms, as the xt er m
model fits well with line oriented command based interaction. This means that selecting text is line oriented rather
than rectangle oriented.

To select textinthewer | window , simply press and hold the left mouse button and drag the mouse over the text you
want to select. If the selection crosses line boundaries, the selected text will consist of complete lines where applicable
(just like in aword processor). To select more text than fits in the window, start by selecting a small portion in the
beginning of the text you want, then use the scrollbar to view the end of the desired selection, point to it and press
the right mouse-button. The whole area between your first selection and the point where you right-clicked will be
included in the selection.

The selected text is copied to the clipboard by either pressing Ct r | - C, using the menu or pressing the copy button
in the toolbar.

Pasted text isalwaysinserted at the current prompt position and will be interpreted by Erlang as usual keyboard input.

Previous command lines can be retrieved by pressing the Up ar r owor by pressing Ct r | - P. Thereis also adrop
down box in the toolbar containing the command history. Selecting a command in the drop down box will insert it at
the prompt, just asif you used the keyboard to retrieve the command.

Closing thewer | window will stop the Erlang emulator.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 267

escript

escript

Command

escri pt provides support for running short Erlang programs without having to compile them first and an easy way
to retrieve the command line arguments.

Exports

script-name script-argl script-arg2...
escript escript-flags script-name script-argl script-arg2...

escri pt runsascript written in Erlang.
Here follows an example.

$ chmod u+x factorial
$ cat factorial
#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->
try
N = list to integer(String),
F = fac(N),
io:format("factorial ~w = ~w\n", [N,F])
catch

__->
usage()
end;
main(_) ->

usage() .

usage() ->
io:format("usage: factorial integer\n"),
halt(1).

fac(0) -> 1;

fac(N) -> N * fac(N-1).
$./factorial 5
factorial 5 = 120

$./factorial

usage: factorial integer
$./factorial five
usage: factorial integer

The header of the Erlang script in the example differs from anormal Erlang module. The first line is intended to be
the interpreter line, which invokesescr i pt . However if you invoketheescri pt likethis

$ escript factorial 5

the contents of the first line does not matter, but it cannot contain Erlang code as it will be ignored.

268 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

The second line in the example, contains an optional directive to the Emacs editor which causesit to enter the major
mode for editing Erlang source files. If the directiveis present it must be located on the second line.

If there is a comment selecting the encoding it can be located on the second line.

Note:

The encoding specified by the above mentioned comment applies to the script itself. The encoding of the 1/0-
server, however, has to be set explicitly like this:

io:setopts([{encoding, unicode}])

The default encoding of the I/O-server for st andar d_i o isl at i n1 since the script runsin a non-interactive
terminal (see Using Unicode in Erlang).

On the third line (or second line depending on the presence of the Emacs directive), it is possible to give arguments
to the emulator, such as

%%! -smp enable -sname factorial -mnesia debug verbose

Such an argument line must start with %84 and the rest of the line will interpreted as arguments to the emulator.
If you know thelocation of theescr i pt executable, thefirst linecandirectly givethepathtoescr i pt . Forinstance:

#!/usr/local/bin/escript

As any other kind of scripts, Erlang scripts will not work on Unix platforms if the execution bit for the script fileis
not set. (Usechnod +x scri pt - name to turn on the execution bit.)

The rest of the Erlang script file may either contain Erlang source code, aninlined beam file oran
inlined archive file.

An Erlang script file must aways contain the function main/1. When the script is run, the mai n/ 1 function will be
called with alist of strings representing the arguments given to the script (not changed or interpreted in any way).

If the mai n/ 1 function in the script returns successfully, the exit status for the script will be 0. If an exception is
generated during execution, a short message will be printed and the script terminated with exit status 127.

To return your own non-zero exit code, call hal t (Exi t Code) ; for instance:

halt(1).

Call escript: script_name() from your to script to retrieve the pathname of the script (the pathname is usually, but not
aways, absolute).

If the file contains source code (as in the example above), it will be processed by the preprocessor epp. This means
that you for example may use pre-defined macros (such as ?MODULE) as well as include directives like the -
i ncl ude_Ii b directive. For instance, use

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 269

escript

-include lib("kernel/include/file.hrl").

to include the record definitions for the records used by thefi | e: read_l i nk_i nf o/ 1 function. You can also
select encoding by including a encoding comment here, but if there is a valid encoding comment on the second line
it takes precedence.

The script will be checked for syntactic and semantic correctness before being run. If there are warnings (such as
unused variables), they will be printed and the script will still be run. If there are errors, they will be printed and the
script will not be run and its exit status will be 127.

Both the module declaration and the export declaration of the mai n/ 1 function are optional.

By default, the script will be interpreted. Y ou can force it to be compiled by including the following line somewhere
in the script file:

-mode(compile).

Execution of interpreted codeis slower than compiled code. If much of the execution takes place in interpreted code it
may be worthwhile to compileit, even though the compilation itself will take alittle while. It is al so possible to supply
nati ve instead of conpi | e, thiswill compile the script using the native flag, again depending on the characteristics
of the escript this could or could not be worth while.

As mentioned earlier, it is possible to have a script which contains precompiled beamcode. In a precompiled script,
the interpretation of the script header is exactly the same as in a script containing source code. That means that you
can make abeamfile executable by prepending the file with the lines starting with #! and %84 mentioned above. In
a precompiled script, the function mai n/ 1 must be exported.

Asyet another option it is possible to have an entire Erlang archive in the script. In aarchive script, the interpretation
of the script header is exactly the same asin a script containing source code. That means that you can make an archive
file executable by prepending the file with the lines starting with #! and %88 mentioned above. In an archive script,
the function mai n/ 1 must be exported. By default the mai n/ 1 function in the module with the same name as the
basenameof theescr i pt filewill beinvoked. Thisbehavior can be overridden by setting theflag- escri pt mai n
Modul e as one of the emulator flags. The Modul e must be the name of a module which has an exported nai n/ 1
function. See code(3) for more information about archives and code loading.

In many casesit is very convenient to have a header in the escript, especially on Unix platforms. But the header isin
fact optional. This means that you directly can "execute" an Erlang module, beam file or archive file without adding
any header to them. But then you have to invoke the script like this:

$ escript factorial.erl 5
factorial 5 = 120
$ escript factorial.beam 5
factorial 5 = 120
$ escript factorial.zip 5
factorial 5 = 120

escript:create(FileOrBin, Sections) -> ok | {ok, binary()} | {error, term()}
Types.

FileoBin = filenane() | 'binary'

Sections = [Header] Body | Body

Header = shebang | {shebang, Shebang} | conment | {comrent, Comment} |
{emu_args, EmuArgs}

270 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

Shebang = string() | 'default' | 'undefined
Commrent string() | 'default' | 'undefined
EmuArgs = string() | 'undefined

Body = {source, SourceCode} | {beam BeantCode} | {archive, Z pArchive}
{archive, ZipFiles, ZipOptions}

Sour ceCode = BeantCode = file:filenane() | binary()

Zi pArchive = zip:filenane() | binary()

ZipFiles = [Zi pFil €]

ZipFile = file:filenanme() | {file:filenane(), binary()}
{file:filename(), binary(), file:file_info()}

Zi pOptions = [zip:create_option()]

Thecr eat e/ 2 function creates an escript from alist of sections. The sections can be given in any order. An escript
begins with an optional Header followed by a mandatory Body. If the header is present, it does aways begin

with ashebang, possibly followed by acomrent and enu_ar gs. Theshebang defaultsto "/ usr/ bi

n/ env

escri pt".Thecomment defaultsto”" This is an -*- erlang -*- file". Thecreated escript can either

be returned as a binary or written to file.

As an example of how the function can be used, we create an interpreted escript which usesermu_ar gs to set some
emulator flag. In this case it happens to disable the smp_support. We do also extract the different sections from the

newly created script:

> Source = "%% Demo\nmain(_Args) ->\n io:format(erlang:system info(smp support)).\n".
"%% Demo\nmain(Args) ->\n io:format(erlang:system info(smp_support)).\n"
> io:format("~s\n", [Source]).
%% Demo
main(_Args) ->
io:format(erlang:system info(smp support)).

ok

> {ok, Bin} = escript:create(binary, [shebang, comment, {emu args, "-smp disable"},
{source, list to binary(Source)}]).

{ok,<<"#!/usr/bin/env escript\n%% This is an -*- erlang -*- file\n%%!-smp disabl"...>>}

> file:write file("demo.escript", Bin).

ok

> os:cmd("escript demo.escript").

"false"

> escript:extract("demo.escript", [1).
{ok, [{shebang,default}, {comment,default}, {emu args,"-smp disable"},
{source,<<"%% Demo\nmain(_Args) ->\n io:format(erlang:system info(smp su"...>>}1}

An escript without header can be created like this:

> file:write file("demo.erl",
["%% demo.erl\n-module(demo).\n-export([main/1]).\n\n", Sourcel]).
ok
> {ok, , BeamCode} = compile:file("demo.erl", [binary, debug info]).
{ok,demo,
<<70,79,82,49,0,0,2,208,66,69,65,77,65,116,111,169,0,0,0,

79,0,0,0,9,4,100,...>>}
> escript:create("demo.beam", [{beam, BeamCode}]).
ok
> escript:extract("demo.beam", [1).
{ok, [{shebang,undefined}, {comment,undefined}, {emu args,undefined},

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 271

escript

{beam,<<70,79,82,49,0,0,3,68,66,69,65,77,65,116,
111,109,0,0,0,83,0,0,0,9,...>>}1}
> os:cmd("escript demo.beam").
"true"

Here we create an archive script containing both Erlang code as well as beam code. Then we iterate over all filesin
the archive and collect their contents and some info about them.

> {ok, SourceCode} = file:read file("demo.erl").
{ok,<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(Arg"...>>}
> escript:create("demo.escript"”,
[shebang,
{archive, [{"demo.erl", SourceCode},
{"demo.beam", BeamCode}], [1}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_ args,undefined},
{archive, ArchiveBin}]} = escript:extract("demo.escript", [1).
{ok, [{shebang,default}, {comment,undefined}, {emu args,undefined},
{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60, 105,
152,61,93,107,0,0,0,118,0,...>>}1}
> file:write file("demo.zip", ArchiveBin).
ok
> zip:foldl(fun(N, I, B, A) -> [{N, I(), B()} | Al end, [], "demo.zip").
{ok, [{"demo.beam",
{file info,748,regular,read write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0%},
<<70,79,82,49,0,0,2,228,66,69,65,77,65,116,111,109,0,0,0,
83,0,0,...>>},
{"demo.erl",
{file info, 118, regular,read write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0%},
<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(Arg"...>>}]}

escript:extract(File, Options) -> {ok, Sections} | {error, term()}
Types:

File = fil enane()

Options =[] | [conpil e_source]

Sections = Headers Body

Headers = {shebang, Shebang} {comment, Conment} {emu_args, EnuArgs}

Shebang = string() | 'default' | 'undefined
Comment = string() | 'default' | 'undefined
EnmuArgs = string() | 'undefined'

Body = {source, SourceCode} | {source, BeanCode} | {beam BeanCode} |
{archive, Z pArchive}
Sour ceCode = BeantCode = Zi pArchive = binary()

Theext ract/ 2 function parses an escript and extracts its sections. Thisisthereverse of cr eat e/ 2.

272 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

All sections are returned even if they do not exist in the escript. If a particular section happens to have the same value
as the default value, the extracted value is set to the atom def aul t . If a section is missing, the extracted value is
set to the atom undef i ned.

The conpi | e_sour ce option only affects the result if the escript contains sour ce code. In that case the Erlang
code isautomatically compiled and{ sour ce, BeantCode} isreturned instead of { sour ce, Sour ceCode}.

> escript:create("demo.escript",
[shebang, {archive, [{"demo.erl", SourceCode},
{"demo.beam", BeamCode}l, [1}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined},
{archive, ArchiveBin}]} =
escript:extract("demo.escript", []).
{ok, [{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
152,61,93,107,0,0,0,118,0, ...>>}
{emu_args,undefined}]}

escript:script name() -> File
Types.
File = fil ename()

Thescri pt _name/ 0 function returns the name of the escript being executed. If the function isinvoked outside the
context of an escript, the behavior is undefined.

Options accepted by escript

-C
Compile the escript regardless of the value of the mode attribute.

-d
Debug the escript. Starts the debugger, 10ads the module containing the mai n/ 1 function into the debugger,
sets a breakpoint in mai n/ 1 and invokes mai n/ 1. If the module is precompiled, it must be explicitly
compiled with the debug_i nf o option.

-i
Interpret the escript regardless of the value of the mode attribute.

-S
Only perform a syntactic and semantic check of the script file. Warnings and errors (if any) are written to
the standard output, but the script will not be run. The exit status will be 0 if there were no errors, and 127
otherwise.

-n

Compile the escript using the +native flag.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 273

erlsrv

erlsrv

Command

This utility is specific to Windows NT/2000/XP® (and subsequent versions of Windows) It allows Erlang emulators
to run as services on the Windows system, allowing embedded systems to start without any user needing to log in.
The emulator started in this way can be manipulated through the Windows® services applet in a manner similar to
other services.

Note that erlsrv is not ageneral service utility for Windows, but designed for embedded Erlang systems.

As well as being the actual service, erlsrv also provides a command line interface for registering, changing, starting
and stopping services.

To manipulate services, the logged in user should have Administrator privileges on the machine. The Erlang machine
itself is (default) run asthe local administrator. This can be changed with the Services applet in Windows ®.

The processes created by the service can, as opposed to normal services, be "killed" with the task manager. Killing a
emulator that is started by a service will trigger the "OnFail" action specified for that service, which may be a reboot.

The following parameters may be specified for each Erlang service:

e StopAction: This tells erl srv how to stop the Erlang emulator. Default is to kill it (Win32
TerminateProcess), but this action can specify any Erlang shell command that will be executed in the emulator to
make it stop. The emulator is expected to stop within 30 seconds after the command isissued in the shell. If the
emulator is not stopped, it will report arunning state to the service manager.

e OnFai | : This can be either of r eboot , restart,restart_al ways ori gnor e (the default). In case of
r eboot , the NT system is rebooted whenever the emulator stops (a more simple form of watchdog), this could
be useful for lesscritical systems, otherwise use the heart functionality to accomplish this. Therestart value makes
the Erlang emulator be restarted (with whatever parameters are registered for the service at the occasion) when
it stops. If the emulator stops again within 10 seconds, it is not restarted to avoid an infinite loop which could
completely hangthe NT system. r est art _al ways issimilar to restart, but does not try to detect cyclic restarts,
it is expected that some other mechanism is present to avoid the problem. The default (ignore) just reports the
service as stopped to the service manager whenever it fails, it has to be manually restarted.

On a system where release handling is used, this should always be set to i gnor e. Use heart to restart the
service on failure instead.

* Machi ne: The location of the Erlang emulator. The default isthe er | . exe located in the same directory as
erlsrv.exe. Do not specify wer | . exe asthisemulator, it will not work.

If the system uses release handling, this should be set to aprogram similartost art _er| . exe.

e Env: Specifies an additional environment for the emulator. The environment variables specified here are added
to the system wide environment block that is normally present when a service starts up. Variables present in both
the system wide environment and in the service environment specification will be set to the value specified in
the service.

WorkDi r: Theworking directory for the Erlang emulator, hasto be on alocal drive (there are no network drives
mounted when a service starts). Default working directory for servicesis %8yst enDr i ve%®&yst enPat h%
Debug log fileswill be placed in this directory.

e« Priority: The processpriority of the emulator, this can be one of r eal ti e, hi gh, | owor def aul t (the
default). Real-time priority is not recommended, the machine will possibly be inaccessible to interactive users.
High priority could be used if two Erlang nodes should reside on one dedicated system and one should have
precedence over the other. Low process priority may be used if interactive performance should not be affected
by the emulator process.

274 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

SNarre or Nane: Specifiesthe short or long node-name of the Erlang emulator. The Erlang services are always
distributed, default is to use the service name as (short) node-name.

DebugType: Can be one of none (default), new, reuse or consol e. Specifies that output from
the Erlang shell should be sent to a "debug log". The log file is named <servicename>. debug or
<servicename>. debug. <N>, where <N> is an integer between 1 and 99. The log-file is placed in the
working directory of the service (as specified in WorkDir). The r euse option always reuses the same log
file (<servicename>. debug) and the new option uses a separate log file for every invocation of the service
(<servicename>. debug. <N>). The consol e option opens an interactive Windows® console window for the
Erlang shell of the service. The consol e option automatically disablesthe St opAct i on and a service started
with an interactive console window will not survive logouts, OnFai | actions do not work with debug-consoles
either. If no DebugType is specified (none), the output of the Erlang shell is discarded.

Theconsol eDebugType isnot inany way intended for production. It isonly aconvenient way to debug Erlang
services during development. Thenewandr eus e options might seem convenient to havein aproduction system,
but one has to take into account that the logs will grow indefinitely during the systems lifetime and there is no
way, short of restarting the service, to truncate those logs. In short, the DebugType isintended for debugging
only. Logs during production are better produced with the standard Erlang logging facilities.

Ar gs: Additional arguments passed to the emulator startup program erl . exe (or start_erl . exe).
Arguments that cannot be specified here are - noi nput (StopActions would not work), - nane and - snane
(they are specified in any way. The most common useisfor specifying cookies and flagsto be passed to init:boot()
(-s).

I nt er nal Ser vi ceNane: Specifies the Windows® internal service name (not the display name, which isthe
oneer | srv usesto identify the service).

This internal name can not be changed, it is fixed even if the service is renamed. Er | sr v generates a unique
internal name when a serviceis created, it is recommended to keep to the defaut if release-handling is to be used
for the application.

Theinternal service name can be seen in the Windows® service manager if viewing Pr operti es for an erlang
service.

Coment : A textual comment describing the service. Not mandatory, but shows up as the service description
in the Windows® service manager.

The naming of the service in a system that uses release handling has to follow the convention NodeName Release,
where NodeName is the first part of the Erlang nodename (up to, but not including the" @") and Release isthe current
release of the application.

Exports

erlsrv {set | add} <service-name> [<service options>]

The set and add commands adds or modifies a Erlang service respectively. The ssimplest form of an add command
would be completely without options in which case al default values (described above) apply. The service name is
mandatory.

Every option can be given without parameters, in which case the default value is applied. Values to the options are
supplied only when the default should not beused (i.e.er | srv set myservice -prio -ar g setsthedefault
priority and removes all arguments).

The following service options are currently available:

-st[opaction] [<erlang shell command>]

Defines the StopAction, the command given to the Erlang shell when the service is stopped. Default is none.

-on[fail] [{reboot | restart | restart_always}]

Specifies the action to take when the Erlang emulator stops unexpectedly. Default isto ignore.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 275

erlsrv

-m[achin€] [<erl-command>]
The complete path to the Erlang emulator, never use the werl program for this. Default istheer | . exe inthe
samedirectory aser | srv. exe. When release handling is used, this should be set to aprogram similar to
start _erl. exe.

-g[nv] [<variable>[=<value>]] ...
Edits the environment block for the service. Every environment variable specified will add to the system
environment block. If avariable specified here has the same name as a system wide environment variable,
the specified value overrides the system wide. Environment variables are added to thislist by specifying
<variable>=<value> and deleted from the list by specifying <variable> alone. The environment block is
automatically sorted. Any number of - env options can be specified in one command. Default isto use the
system environment block unmodified (except for two additions, see below).

-w[orkdir] [<directory>]
Theinitial working directory of the Erlang emulator. Default is the system directory.

-p[riority] [{low|high|realtime}]
The priority of the Erlang emulator. The default is the Windows® default priority.

{-sn[ame] | -n[ame]} [<node-name>]
The node-name of the Erlang machine, distribution is mandatory. Default is- snane <servi ce nane>.

-d[ebugtype] [{ new|reuse|console}]
Specifies where shell output should be sent, default is that shell output is discarded. To be used only for
debugging.

-ar[gs] [<limited erl arguments>]
Additional arguments to the Erlang emulator, avoid - noi nput , - noshel | and - snane/- nane. Default is
no additional arguments. Remember that the services cookie file is not necessarily the same as the interactive
users. The service runs as the local administrator. All arguments should be given together in one string, use
double quotes (") to give an argument string containing spaces and use quoted quotes (\") to give an quote
within the argument string if necessary.

-i[nternal servicename] [<internal name>]
Only allowed for add. Specifies a Windows® internal service name for the service, which by default is set to
something unique (prefixed with the original service name) by erlsrv when adding a new service. Specifying
thisis a purely cosmethic action and is not recommended if release handling isto be performed. The internal
service name cannot be changed once the service is created. The internal name is not to be confused with the
ordinary service name, which isthe name used to identify a service to erlsrv.

-c[omment] [<short description>]
Specifies atextual comment describing the service. This comment will show upp as the service description in
the Windows® service manager.

erlsrv {start | start disabled | stop | disable | enable} <service-name>

These commands are only added for convenience, the normal way to manipulate the state of a service is through the
control panelsservicesapplet. Thest art and st op commands communi cates with the service manager for stopping
and starting a service. The commands wait until the serviceis actually stopped or started. When disabling a service, it
is not stopped, the disabled state will not take effect until the service actually is stopped. Enabling a service setsit in
automatic mode, that is started at boot. This command cannot set the service to manual.

Thestart _di sabl ed command operates on a service regardless of if it's enabled/disabled or started/stopped. It
does this by first enabling it (regardless of if it's enabled or not), then starting it (if it's not already started) and then
disabling it. The result will be a disabled but started service, regardless of its earlier state. Thisis useful for starting
services temporarily during a release upgrade. The difference between using st art _di sabl ed and the sequence
enabl e,st art anddi sabl eisthat al other er | sr v commands arelocked out during the sequence of operations
instart _di sabl e, making the operation atomic froman er | sr v user's point of view.

276 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

erlsrv remove <service-name>
This command removes the service completely with all its registered options. It will be stopped before it is removed.

erlsrv list [<service-name>]

If no service name is supplied, a brief listing of al Erlang services is presented. If a service-name is supplied, all
options for that service are presented.

erlsrv help

ENVIRONMENT

The environment of an Erlang machine started as a service will contain two specia variables,
ERLSRV_SERVI CE_NAME, which is the name of the service that started the machine and ERLSRV_EXECUTABLE
which isthe full pathtotheer| srv. exe that can be used to manipulate the service. Thiswill come in handy when
defining a heart command for your service. A command file for restarting a service will smply look like this:

@echo off
%ERLSRV_EXECUTABLE% stop %ERLSRV_SERVICE NAMES
%ERLSRV_EXECUTABLE% start %ERLSRV_SERVICE NAMES

This command file is then set as heart command.

The environment variables can also be used to detect that we are running as a service and make port programs react
correctly to the control events generated on logout (see below).

PORT PROGRAMS

When a program runs in the service context, it has to handle the control events that is sent to every program in the
system when theinteractive user logs off. Thisisdonein different waysfor programs running in the consol e subsystem
and programs running as window applications. An application which runs in the console subsystem (normal for port
programs) uses the win32 function Set Consol eCt r | Handl er to register a control handler that returns TRUE
in answer to the CTRL_LOGOFF_EVENT and CTRL_SHUTDOAN _EVENT events. Other applications just forward
WM _ENDSESSI ON and WM_QUERYENDSESSI ON to the default window procedure. Here is a brief example in C of
how to set the console control handler:

#include <windows.h>

/*

** A Console control handler that ignores the log off events,
** and lets the default handler take care of other events.

*/
BOOL WINAPI service aware handler(DWORD ctrl){
if(ctrl == CTRL_LOGOFF EVENT)
return TRUE;
if(ctrl == CTRL_SHUTDOWN EVENT)
return TRUE;
return FALSE;
}

void initialize handler(void){
char buffer[2];
/*
* We assume we are running as a service if this
* environment variable is defined
*/

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 277

erlsrv

if(GetEnvironmentVariable ("ERLSRV_SERVICE NAME", buffer,
(DWORD) 2)){

/*
** Actually set the control handler
*/
SetConsoleCtrlHandler(&service aware handler, TRUE);
}
}
NOTES

Even though the options are described in a Unix-like format, the case of the options or commandsis not relevant, and
the"/" character for options can be used aswell asthe "-" character.

Note that the program resides in the emulators bi n-directory, not in the bi n-directory directly under the Erlang root.
The reasons for this are the subtle problem of upgrading the emulator on a running system, where a new version of
the runtime system should not need to overwrite existing (and probably used) executables.

To easily manipulate the Erlang services, put the <er| ang_r oot >\ ert s- <ver si on>\ bi n directory in the
path instead of <er | ang_r oot >\ bi n. The erlsrv program can be found from inside Erlang by using the
os: find_execut abl e/ 1 Erlang function.

For release handling to work, usest art _er | asthe Erlang machine. It is also worth mentioning again that the name
of the service is significant (see above).

SEE ALSO
start_erl(1), release_handler(3)

278 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

start_erl

start_erl

Command

This describesthe st art _er | program specific to Windows NT. Although there exists programs with the same
name on other platforms, their functionality is not the same.

Thestart _erl| program is distributed both in compiled form (under <Erlang root>\\erts-<version>\\bin) and in
source form (under <Erlang root>\\erts-<version>\\src). The purpose of the source codeisto make it possibleto easily
customize the program for local needs, such as cyclic restart detection etc. Thereis aso a"make"-file, written for the
nmake program distributed with Microsoft® Visual C++®. The program can however be compiled with any Win32
C compiler (possibly with dlight modifications).

The purpose of the programisto aid rel ease handling on Windows NT®. The program should becalled by theer | srv
program, read up the rel ease datafile start_erl.dataand start Erlang. Certain optionsto start_erl are added and removed
by the release handler during upgrade with emulator restart (more specifically the - dat a option).

Exports

start erl [<erl options>] ++ [<start erl options>]
Thestart _erl| programinitsorigina form recognizes the following options:

++
Mandatory, delimits start_erl options from normal Erlang options. Everything on the command line before
the ++ isinterpreted as options to be sent to theer | program. Everything after++ is interpreted as options to
start _erl itself.

-reldir <release root>
Mandatory if the environment variable RELDI Ris not specified and no - r oot di r optionisgiven. Tells
start_erl where the root of the release tree is placed in the file-system (typically <Erlang root>\\releases). The
start_erl . dat afileisexpected to be placed in this directory (if not otherwise specified). If only the -
r oot di r option isgiven, the directory is assumed to be <Erlang root>\\rel eases.

-rootdir <Erlang root directory>
Mandatory if - r el di r isnot given and thereis no RELDI R in the environment. This specifies the Erlang
installation root directory (under whichthel i b, r el eases and er t s- <Ver si on> directories are placed).
If only - r el di r (or the environment variable RELDI R) is given, the Erlang root is assumed to be the
directory exactly one level above the release directory.

-data <data file name>
Optional, specifies another data file than start_erl.datain the <release root>. It is specified relative to the
<release root> or absolute (including drive letter etc.). This option is used by the release handler during
upgrade and should not be used during normal operation. The release data file should not normally be named
differently.

-bootflags <boot flags file name>
Optional, specifies afile name relative to actual release directory (that is the subdirectory of <release root>
wherethe. boot fileetc. are placed). The contents of thisfile is appended to the command line when Erlang is
started. This makes it easy to start the emulator with different options for different releases.

NOTES

As the source code is distributed, it can easily be modified to accept other options. The program must still accept the
- dat a option with the semantics described above for the release handler to work correctly.

The Erlang emulator isfound by examining the registry keysfor the emulator version specified in the rel ease datafile.
The new emulator needs to be properly installed before the upgrade for this to work.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 279

start_erl

Although the program is located together with files specific to emulator version, it is not expected to be specific to
the emulator version. The release handler does not changethe - machi ne optionto er | sr v during emulator restart.
Place the (possibly customized) st art _er | program so that it is not overwritten during upgrade.

Theer | srv program's default options are not sufficient for release handling. The machineer | sr v starts should be
specified asthest art _er | program and the arguments should contain the ++ followed by desired options.

SEE ALSO

erlsrv(1), release_handler(3)

280 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

run_erl

run_erl

Command

Thisdescribesther un_er | program specific to Solaris/Linux. This program redirect the standard input and standard
output streams so that all output can be logged. It also let the programt o_er | connect to the Erlang console making
it possible to monitor and debug an embedded system remotely.

Y ou can read more about the use in the Enbedded System User's Cui de.

Exports

run_erl [-daemon] pipe dir/ log dir "exec command [command arguments]"
Therun_er| program arguments are;

-daemon
Thisoption is highly recommended. It makes run_erl run in the background completely detached from any
controlling terminal and the command returns to the caller immediately. Without this option, run_erl must be
started using several tricks in the shell to detach it completely from the terminal in use when starting it. The
option must be the first argument to run_erl on the command line.

pipe dir
Thisiswhere to put the named pipe, usualy / t np/ on Unix or / pi pe/ on OSE. It shall be suffixed by a/
(slash),i.e. not/ t np/ epi pi es, but/t mp/ epi pes/ .

log_dir
Thisiswhere the log files are written. There will be onelog file, run_er | . | og that log progress and
warningsfromther un_er | program itself and there will be up to fivelog files at maximum 100K B each
(both number of logs and sizes can be changed by environment variables, see below) with the content of the
standard streams from and to the command. When the logs are full r un_er | will delete and reuse the oldest
log file.

"exec command [command_arguments]”
In the third argument comand is the to execute where everything written to stdin and stdout is logged to
log dir.

Notes concerning the log files

While running, run_erl (as stated earlier) sends al output, uninterpreted, to a log file. The file is called
erl ang. | og. N, where N is a number. When the log is "full", default after 100KB, run_erl startsto log in file
erl ang. | og. (N+1), until N reaches a certain number (default 5), where after N starts at 1 again and the ol dest
files start getting overwritten. I1f no output comes from the erlang shell, but the erlang machine still seemsto be alive,
an "ALIVE" message is written to the log, it is atimestamp and is written, by default, after 15 minutes of inactivity.
Also, if output from erlang islogged but it's been more than 5 minutes (default) since last time we got anything from
erlang, atimestamp is written in the log. The "ALIVE" messages ook like this:

===== ALIVE <date-time-string>
while the other timestamps look like this:

===== <date-time-string>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 281

run_erl

Thedat e-ti me- st ri ng isthe date and time the message iswritten, default in local time (can be changed to GMT
if one wantsto) and is formatted with the ANSI-C function st r f t i me using the format string%a % % % %
%, which produces messages on the line of ===== ALI VE Thu May 15 10:13:36 MEST 2003, thiscan
be changed, see below.

Environment variables

The following environment variables are recognized by run_erl and change the logging behavior. Also see the notes
above to get more info on how the log behaves.

RUN_ERL_LOG _ALIVE_MINUTES
How long to wait for output (in minutes) before writing an "ALIVE" message to the log. Default is 15, can
never belessthan 1.

RUN_ERL_LOG_ACTIVITY_MINUTES
How long erlang need to be inactive before output will be preceded with atimestamp. Default is
RUN_ERL_LOG_ALIVE_MINUTESdiv 3, but never lessthan 1.

RUN_ERL_LOG_ALIVE_FORMAT
Specifies another format string to be used in the strftime C library call. i.e specifying thisto " %e- %b- %y, %
%" will give log messages with timestamps looking like 15- May- 2003, 10: 23: 04 MET etc. Seethe
documentation for the C library function strftime for more information. Defaultis” %a % % % % %™ .

RUN_ERL_LOG _ALIVE_IN_UTC
If set to anything else than "0", it will make all times displayed by run_erl to bein UTC (GMT,CET,MET,
without DST), rather than in local time. This does not affect data coming from erlang, only the logs output
directly by run_erl. The application sasl can be modified accordingly by setting the erlang application
variableut c_| ogtotrue.

RUN_ERL_LOG_GENERATIONS
Controls the number of log files written before older files are being reused. Default is 5, minimum is 2,
maximum is 1000.

RUN_ERL_LOG_MAXSIZE
The size (in bytes) of alog file before switching to anew log file. Default is 200000, minimum is 1000 and
maximum is approximately 2"30.

RUN_ERL_DISABLE_FLOWCNTRL
If defined, disablesinput and output flow control for the pty opend by run_erl. Useful if you want to remove
any risk of accidentally blocking the flow control by hit Ctrl-S (instead of Ctrl-D to detach). Which may result
in blocking of the entire beam process and in the case of running heart as supervisor even the heart process will
be blocked when writing log message to terminal. Leaving the heart process unable to do its work.

SEE ALSO
start(1), start_erl(1)

282 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

start

start

Command

This describes the st art script that is an example script on how to startup the Erlang system in embedded mode
on Unix.

Y ou can read more about the use in the Enbedded System User's Cui de.

Exports

start [data file]
In the example there is one argument

data file
Optional, specifieswhat st art _er | . dat a fileto use.

Thereisalso an environment variable RELDI Rthat can be set prior to calling this example that set the directory where
to find the release files.

SEE ALSO

run_erl(1), start_erl(1)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 283

erl_driver

erl_driver
C Library

An Erlang driver isalibrary containing a set of native driver callback functionsthat the Erlang VM callswhen certain
events occur. There may be multiple instances of adriver, each instance is associated with an Erlang port.

Warning:
Use this functionality with extreme care!

A driver callback is executed as a direct extension of the native code of the VM. Execution is not made in a
safe environment. The VM can not provide the same services as provided when executing Erlang code, such as
preemptive scheduling or memory protection. If the driver callback function doesn't behave well, the whole VM
will misbehave.

e A driver calback that crash will crash the whole VM.

e Aneroneously implemented driver callback might causeaVM internal state inconsistency which may cause
acrash of the VM, or miscellaneous misbehaviors of the VM at any point after the call to the driver callback.

e Adriver callback that dolengthy work beforereturning will degrade responsiveness of the VM, and may cause
miscellaneous strange behaviors. Such strange behaviors include, but are not limited to, extreme memory
usage, and bad load balancing between schedulers. Strange behaviors that might occur due to lengthy work
may also vary between OTP releases.

As of erts version 5.5.3 the driver interface has been extended (see extended marker). The extended interface
introduce ver sion management, the possibility to pass capability flags (see driver flags) to the runtime system at driver
initialization, and some new driver API functions.

Note:

As of erts version 5.9 old drivers have to be recompiled and have to use the extended interface. They aso have
to be adjusted to the 64-bit capable driver interface.

The driver calls back to the emulator, using the API functions declared in er| _dri ver. h. They are used for
outputting data from the driver, using timers, etc.

Each driver instance is associated with a port. Every port has a port owner process. Communication with the port
is normally done through the port owner process. Most of the functions take the por t handle as an argument. This
identifies the driver instance. Note that this port handle must be stored by the driver, it is not given when the driver
is called from the emulator (see driver_entry).

Some of the functionstake aparameter of type Er | Dr vBi nar y, adriver binary. It should be both all ocated and freed
by the caller. Using a binary directly avoids one extra copying of data.

Many of the output functions have a "header buffer", with hbuf and hl en parameters. This buffer is sent asalist
beforethe binary (or list, depending on port mode) that is sent. Thisis convenient when matching on messagesreceived
from the port. (Although in the latest versions of Erlang, there is the binary syntax, that enables you to match on the
beginning of abinary.)

In the runtime system with SMP support, drivers are locked either on driver level or port level (driver instance level).
By default driver level locking will be used, i.e., only one emulator thread will execute code in the driver at atime. If

284 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

port level locking is used, multiple emulator threads may execute code in the driver at the same time. There will only
be one thread at atime calling driver call-backs corresponding to the same port, though. In order to enable port level
locking set the ERL_DRV_FLAG USE_PORT_LOCKI NGdriver flag in the driver_entry used by the driver. When
port level locking is used it is the responsibility of the driver writer to synchronize all accesses to data shared by the
ports (driver instances).

Most drivers written before the runtime system with SMP support existed will be able to run in the runtime system
with SMP support without being rewritten if driver level locking is used.

Note:

It isassumed that drivers do not access other drivers. If drivers should access each other they haveto providetheir
own mechanism for thread safe synchronization. Such "inter driver communication™ is strongly discouraged.

Previously, in the runtime system without SMP support, specific driver call-backs were always called from the same
thread. Thisisnot the casein the runtime system with SMP support. Regardless of locking scheme used, callsto driver
call-backs may be made from different threads, e.g., two consecutive call s to exactly the same call-back for exactly the
same port may be made from two different threads. Thiswill for most drivers not be a problem, but it might. Drivers
that depend on all call-backs being called in the same thread, have to be rewritten before being used in the runtime
system with SMP support.

Note:
Regardless of locking scheme used, callsto driver call-backs may be made from different threads.

Most functionsin this API are not thread-safe, i.e., they may not be called from an arbitrary thread. Functions that are
not documented as thread-safe may only be called from driver call-backs or function calls descending from a driver
call-back call. Note that driver call-backs may be called from different threads. This, however, is not a problem for
any function in this API, since the emulator has control over these threads.

Warning:

Functions not explicitly documented as thread safe are not thread safe. Also note that some functions are only
thread safe when used in a runtime system with SMP support.

A function not explicitly documented as thread safe may at some point in time have athread safe implementation
in the runtime system. Such an implementation may however change to a thread unsafe implementation at any
time without any notice at all.

Only use functions explicitly documented as thread safe from arbitrary threads.

As mentioned in the warning text at the beginning of this document it is of vital importance that a driver callback
does return relatively fast. It is hard to give an exact maximum amount of time that a driver callback is allowed to
work, but as arule of thumb awell behaving driver callback should return before a millisecond has passed. This can
be achieved using different approaches. If you have full control over the code that are to execute in the driver callback,
the best approach is to divide the work into multiple chunks of work and trigger multiple calls to the timeout callback
using zero timeouts. Theer | _drv_consune_t i nesl i ce() function can be useful in order to determine when
to trigger such timeout callback calls. It might, however, not always be possible to implement it this way, e.g. when

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 285

erl_driver

calling third party libraries. In this case you typically want to dispatch the work to another thread. Information about
thread primitives can be found below.

FUNCTIONALITY

All functions that a driver needs to do with Erlang are performed through driver API functions. There are functions
for the following functionality:

Timer functions
Timer functions are used to control the timer that a driver may use. The timer will have the emulator call the
timeout entry function after a specified time. Only one timer is available for each driver instance.

Queue handling

Every driver instance has an associated queue. This queue is a Sys| OVec that works as a buffer. It's mostly
used for the driver to buffer data that should be written to a device, it is a byte stream. If the port owner process
closes the driver, and the queue is not empty, the driver will not be closed. This enables the driver to flush its
buffers before closing.

The queue can be manipulated from arbitrary threads if a port data lock is used. See documentation of the
ErlDrvPDL type for more information.

Output functions
With the output functions, the driver sends data back to the emulator. They will be received as messages by the
port owner process, see open_por t / 2. The vector function and the function taking adriver binary are faster,
because they avoid copying the data buffer. There is also afast way of sending terms from the driver, without
going through the binary term format.

Failure
The driver can exit and signal errors up to Erlang. Thisis only for severe errors, when the driver can't possibly
keep open.

Asynchronous calls
The latest Erlang versions (R7B and later) has provision for asynchronous function calls, using a thread pool
provided by Erlang. Thereis also aselect call, that can be used for asynchronous drivers.

Multi-threading

A POSIX thread like API for multi-threading is provided. The Erlang driver thread API only provide a subset of
the functionality provided by the POSIX thread API. The subset provided is more or less the basic functionality
needed for multi-threaded programming:

e Threads

e Mutexes

e Condition variables

e Read/Write locks

e Thread specific data

The Erlang driver thread API can be used in conjunction with the POSIX thread APl on UN-ices and with the
Windows native thread API on Windows. The Erlang driver thread APl has the advantage of being portable, but

there might exist situations where you want to use functionality from the POSIX thread APl or the Windows
native thread API.

The Erlang driver thread API only returns error codes when it is reasonable to recover from an error condition.
If it isn't reasonable to recover from an error condition, the whole runtime system is terminated. For example,
if a create mutex operation fails, an error code is returned, but if a lock operation on a mutex fails, the whole
runtime system is terminated.

Note that there exists no "condition variable wait with timeout" in the Erlang driver thread API. This is due
to issues with pt hr ead_cond_ti nedwai t () . When the system clock suddenly is changed, it isn't aways
guaranteed that you will wake up from the call as expected. An Erlang runtime system has to be able to cope

286 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

with sudden changes of the system clock. Therefore, we have omitted it from the Erlang driver thread API. Inthe
Erlang driver case, timeouts can and should be handled with the timer functionality of the Erlang driver API.

In order for the Erlang driver thread API to function, thread support hasto be enabled in the runtime system. An
Erlang driver can check if thread support is enabled by use of driver_system info(). Note that some functionsin
the Erlang driver API are thread-safe only when the runtime system has SMP support, also this information can
be retrieved via driver_system info(). Also note that alot of functions in the Erlang driver API are not thread-
safe regardless of whether SMP support is enabled or not. If a function isn't documented as thread-safe it is not
thread-safe.

NOTE: When executing in an emulator thread, it is very important that you unlock all locks you have locked
beforeletting the thread out of your control; otherwise, you are very likely to deadlock the whole emulator. If you
need to use thread specific data in an emulator thread, only have the thread specific data set while the thread is
under your control, and clear the thread specific data before you let the thread out of your control.

Inthefuturetherewill probably be debug functionality integrated with the Erlang driver thread API. All functions
that create entities take a nane argument. Currently the nane argument is unused, but it will be used when the
debug functionality has been implemented. If you name all entities created well, the debug functionality will be
able to give you better error reports.

Adding / removing drivers

A driver can add and later remove drivers.
Monitoring processes

A driver can monitor a process that does not own a port.
Version management

Version management is enabled for drivers that have set the
extended_marker field of their driver_entry to ERL_DRV_EXTENDED MARKER.
erl _driver. h definesERL_DRV_EXTENDED MARKER, ERL_DRV_EXTENDED MAJOR_VERSI ON, and
ERL_DRV_EXTENDED M NOR_VERSI ON. ERL_DRV_EXTENDED MAJOR_VERSI ONwill be incremented
when driver incompatible changes are made to the Erlang runtime system. Normally it will suffice to
recompile drivers when the ERL_DRV_EXTENDED MAJOR_VERSI ON has changed, but it could, under rare
circumstances, mean that drivers have to be dightly modified. If so, this will of course be documented.
ERL_DRV_EXTENDED M NOR_VERSI ON will be incremented when new features are added. The runtime
system uses the minor version of the driver to determine what features to use. The runtime system will normally
refuseto load adriver if the mgjor versions differ, or if the major versions are equal and the minor version used by
thedriver isgreater than the one used by the runtime system. Old drivers with lower major versionswill however
be allowed after a bump of the major version during a transition period of two major releases. Such old drivers
might however fail if deprecated features are used.

Theemulator will refuseto load adriver that does not use the extended driver interface, to allow for 64-bit capable
drivers, since incompatible type changes for the callbacks output, control and call were introduced in release
R15B. A driver written with the old types would compile with warnings and when called return garbage sizesto
the emulator causing it to read random memory and create huge incorrect result blobs.

Therefore it is not enough to just recompile drivers written with version management for pre-R15B types; the
types have to be changed in the driver suggesting other rewrites especialy regarding size variables. Investigate
al warnings when recompiling!

Also, the API driver functionsdri ver _out put*,driver_vec_to_buf,driver_alloc/reall oc*

and thedri ver _* queue functions were changed to have larger length arguments and return values. Thisisa
lesser problem since code that passes smaller types will get them auto converted in the calls and as long as the
driver does not handle sizes that overflow ani nt al will work as before.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 287

erl_driver

Time Measurement

Support for time measurement in drivers:

e FErlDrvTinme

e FErIDrvTimeUnit

e erl_drv_nonotonic_tine()

e erl_drv_tinme_offset()

e erl_drv_convert _tinme_unit()

REWRITES FOR 64-BIT DRIVER INTERFACE

For erts-5.9 two new integer types ErlDrvSzeT and ErIDrvSSzeT were introduced that can hold 64-bit sizes if
necessary.

To not update adriver and just recompile it probably works when building for a 32-bit machine creating afalse sense
of security. Hopefully that will generate many important warnings. But when recompiling the same driver later on for
a 64-bit machine there will be warnings and almost certainly crashes. So it is a BAD idea to postpone updating the
driver and not fixing the warnings!

When recompiling with gcc usethe- Wt ri ct - pr ot ot ypes flag to get better warnings. Try to find asimilar flag
if you are using some other compiler.

Here follows a checklist for rewriting a pre erts-5.9 driver, most important first.

Return types for driver callbacks
Rewrite driver callback cont r ol to usereturntypeEr | DrvSSi zeT instead of i nt .
Rewrite driver callback cal | tousereturntype Er| Dr vSSi zeT instead of i nt .

Note:

These changes are essential to not crash the emulator or worse cause malfunction. Without them a driver
may return garbage in the high 32 bits to the emulator causing it to build a huge result from random bytes
either crashing on memory allocation or succeeding with a random result from the driver call.

Arguments to driver callbacks
Driver callback out put now getsEr | Dr vSi zeT as 3rd argument instead of previously i nt .
Driver callback cont r ol now getsEr | Dr vSi zeT as 4th and 6th arguments instead of previously i nt .
Driver callback cal | now getsEr | Dr vSi zeT as 4th and 6th arguments instead of previously i nt .

Sane compiler's calling conventions probably make these changes necessary only for a driver to handle data
chunksthat require 64-bit size fields (mostly larger than 2 GB since that iswhat ani nt of 32 bits can hold). But
it is possible to think of non-sane calling conventions that would make the driver callbacks mix up the arguments
causing malfunction.

Note:

The argument type change is from signed to unsigned which may cause problems for e.g. loop termination
conditions or error conditions if you just change the types all over the place.

288 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Larger si ze fieldinEr | | OVec
Thesi ze fieldinEr | | OVec hasbeenchangedto Er | Dr vSi zeT fromi nt . Check all codethat usethat field.

Automatic type casting probably makes these changes necessary only for a driver that encounters sizes larger
than 32 bits.

Note:

The si ze field changed from signed to unsigned which may cause problems for e.g. loop termination
conditions or error conditions if you just change the types all over the place.

Arguments and return values in the driver API

Many driver API functions have changed argument type and/or return valueto Er | DrvSi zeT from mostly
i nt. Automatic type casting probably makes these changes necessary only for a driver that encounters sizes
larger than 32 bits.

driver_output

3rd argument
driver_output2

3rd and 5th arguments
driver_output_binary

3rd 5th and 6th arguments
driver_outputv

3rd and 5th arguments
driver_vec_to_buf

3rd argument and return value
driver_alloc

1st argument
driver_realloc

2nd argument
driver_alloc_binary

1st argument
driver_realloc_binary

2nd argument
driver_enq

3rd argument
driver_pushq

3rd argument
driver_deq

2nd argument and return value
driver_sizeq

return value
driver_enq bin

3rd and 4th argument
driver_pushq_bin

3rd and 4th argument
driver_enqv

3rd argument
driver_pushqv

3rd argument

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 289

erl_driver

driver_peekqv
return value

Note:

This is a change from signed to unsigned which may cause problems for e.g. loop termination conditions
and error conditionsif you just change the types all over the place.

DATA TYPES
ErlDrvSizeT

An unsigned integer typeto beused assi ze_t
ErIDrvSSizeT

A signed integer typethesizeof Er | DrvSi zeT
ErlDrvSysinfo

typedef struct ErlDrvSysInfo {
int driver major version;
int driver minor version;
char *erts version;
char *otp release;
int thread support;
int smp_support;
int async_threads;
int scheduler threads;
int nif major version;
int nif minor version;
int dirty scheduler support;
} ErlDrvSysInfo;

The Erl DrvSysl nfo structure is used for storage of information about the Erlang runtime system.
driver_system info() will writethe system information when passed areferencetoaEr | Dr vSys| nf o structure.
A description of the fields in the structure follows:

driver_maj or_version
The value of ERL_DRV_EXTENDED_MAJOR_VERS ON when the runtime system was compiled. This
value is the same asthe value of ERL_DRV_EXTENDED MAJOR_VERSON used when compiling the
driver; otherwise, the runtime system would have refused to load the driver.
driver_m nor_version
Thevalue of ERL_DRV_EXTENDED_MINOR VERS ON when the runtime system was compiled. This
value might differ from the value of ERL_DRV_EXTENDED_MINOR_VERS ON used when compiling
the driver.
erts_version
A string containing the version number of the runtime system (the same as returned by
erlang: system_info(version)).
otp_rel ease
A string containing the OTP release number (the same as returned by erlang: system info(otp_release)).
t hr ead_support
A vaue! = 0 if the runtime system has thread support; otherwise, 0.

290 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

snp_support
A vaue! = 0 if the runtime system has SMP support; otherwise, 0.

async_t hreads
The number of async threadsin the async thread pool used by driver_async() (the same as returned by
erlang: system info(thread pool_size)).
schedul er _t hreads
The number of scheduler threads used by the runtime system (the same as returned by
erlang: system info(schedulers)).
ni f_maj or_version
Thevalueof ERL_NI F_MAJOR_VERSI ONwhen the runtime system was compiled.
ni f_mnor_version
Thevalue of ERL_NI F_M NOR_VERSI ONwhen the runtime system was compiled.
dirty_schedul er _support
A value! = 0 if the runtime system has support for dirty scheduler threads; otherwise 0.

ErIDrvBinary

typedef struct ErlDrvBinary {
ErlDrvSint orig size;
char orig bytes[];

} ErlDrvBinary;

TheEr | Dr vBi nar y structureisabinary, as sent between the emulator and thedriver. All binariesarereference
counted; when dri ver _bi nary_free iscaled, the reference count is decremented, when it reaches zero,
the binary is deallocated. The ori g_si ze is the size of the binary, and ori g_byt es is the buffer. The
Er | Dr vBi nary does not have afixed size, itssizeisori g_size + 2 * sizeof (int).

Note:

The refc field has been removed. The reference count of an Erl DrvBi nary is now stored
elsewhere. The reference count of an Er | Dr vBi nary can be accessed via driver_binary get refc(),
driver_binary_inc_refc(), and driver_binary_dec refc().

Some driver calls, such asdri ver _enq_bi nary, increment the driver reference count, and others, such as
dri ver _deq decrement it.

Using adriver binary instead of anormal buffer, is often faster, since the emulator doesn't need to copy the data,
only the pointer is used.

A driver binary alocated in the driver, with dri ver _al | oc_bi nary, should be freed in the driver (unless
otherwise stated), with dri ver _free_bi nary. (Note that this doesn't necessarily deallocate it, if the driver
isdtill referred in the emulator, the ref-count will not go to zero.)

Driver binaries are used in the dr i ver _out put 2 and dri ver _out put v calls, and in the queue. Also the
driver call-back outputv uses driver binaries.

If the driver for some reason or another, wants to keep a driver binary around, in a static variable for instance,
the reference count should be incremented, and the binary can later be freed in the stop call-back, with
driver_free_binary.

Note that since adriver binary is shared by the driver and the emulator, a binary received from the emulator or
sent to the emulator, must not be changed by the driver.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 291

erl_driver

Since ertsversion 5.5 (OTPrelease R11B), orig_bytesis guaranteed to be properly aligned for storage of an array
of doubles (usually 8-byte aligned).

ErlDrvData

TheEr | Dr vDat a isahandle to driver-specific data, passed to the driver call-backs. It isapointer, and is most
often type cast to a specific pointer in the driver.

SyslOVec
Thisisasystem /O vector, asused by wr i t ev on unix and WSASend on Win32. Itisused in Er | | OVec.
ErliOVec

typedef struct ErlIOVec {
int vsize;
ErlDrvSizeT size;
SysIQVec* iov;
ErlDrvBinary** binv;

} ErlIOVec;

The 1/O vector used by the emulator and drivers, isalist of binaries, with a Sysl OVec pointing to the buffers
of the binaries. It isused indri ver _out put v and the outputv driver call-back. Also, the driver queue is an
Erll Ovec.

ErlDrvMonitor

When adriver createsamonitor for aprocess, aEr | Dr vMoni t or isfilledin. Thisisan opaque data-type which
can be assigned to but not compared without using the supplied compare function (i.e. it behaves like a struct).

The driver writer should provide the memory for storing the monitor when calling driver_monitor_process. The
address of the datais not stored outside of the driver, sothe Er | Dr vivbni t or can be used as any other datum,
it can be copied, moved in memory, forgotten etc.

ErIDrvNowData

The Er | Dr vNowDat a structure holds a timestamp consisting of three values measured from some arbitrary
point in the past. The three structure members are:

megasecs

The number of whole megaseconds elapsed since the arbitrary point in time
Secs

The number of whole seconds elapsed since the arbitrary point in time
MiCrosecs

The number of whole microseconds elapsed since the arbitrary point in time

ErlDrvPDL

If certain port specific data have to be accessed from other threads than those calling the driver call-backs, a port
data lock can be used in order to synchronize the operations on the data. Currently, the only port specific data
that the emulator associates with the port data lock isthe driver queue.

Normally a driver instance does not have a port data lock. If the driver instance wants to use a port data lock, it
has to create the port data lock by calling driver_pdl_create(). NOTE: Once the port data lock has been created,
every access to data associated with the port datalock hasto be done while having the port data lock locked. The
port data lock islocked, and unlocked, respectively, by use of driver_pdl_lock(), and driver_pdl_unlock().

A port datalock isreference counted, and when thereference count reaches zero, it will be destroyed. Theemulator
will at least increment the reference count once when the lock is created and decrement it once when the port
associated with the lock terminates. The emulator will also increment the reference count when an async job is

292 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

engueued and decrement it after an async job has been invoked. Besides this, it is the responsibility of the driver
to ensure that the reference count does not reach zero before the last use of the lock by the driver has been made.
The reference count can be read, incremented, and decremented, respectively, by use of driver_pdl_get refc(),
driver_pdl_inc_refc(), and driver_pdl_dec_refc().

ErlDrvTid
Thread identifier.

See also: erl_drv_thread_create(), erl_drv_thread_exit(), erl_drv_thread join(), erl_drv_thread self(), and
erl_drv_equal_tids().

ErlDrvThreadOpts

int suggested stack size;

Thread options structure passed to erl_drv_thread create(). Currently the following fields exist:

suggested stack size
A suggestion, in kilo-words, on how large a stack to use. A value less than zero means default size.

See also: erl_drv_thread opts create(), erl_drv_thread opts destroy(), and erl_drv_thread create().
ErlDrvMutex
Mutual exclusion lock. Used for synchronizing access to shared data. Only one thread at atime can lock amutex.

Seeadlso: erl_drv_mutex_create(), erl_drv_mutex_destroy(), erl_drv_mutex_lock(), erl_drv_mutex_trylock(), and
erl_drv_mutex_unlock().

ErlDrvCond

Condition variable. Used when threads need to wait for aspecific condition to appear before continuing execution.
Condition variables need to be used with associated mutexes.

See aso: erl_drv_cond_create(), erl_drv_cond_destroy(), erl_drv_cond_signal(), erl_drv_cond_broadcast(),
and erl_drv_cond wait().

ErlDrvRWL ock

Read/write lock. Used to allow multiple threads to read shared data while only allowing one thread to write the
same data. Multiple threads can read lock an rwlock at the same time, while only one thread can read/write lock
an rwlock at atime.

See also: erl_drv_rwlock _create(), erl_drv_rwlock_destroy(), erl_drv_rwlock_rlock(),
erl_drv_rwlock_tryrlock(), erl_drv_rwlock runlock(), erl_drv_rwlock rwlock(), erl_drv_rwlock_tryrwiock(),
and erl_drv_rwlock_rwunlock().

ErIDrvTSDKey

Key which thread specific data can be associated with.

Seealso: erl_drv_tsd _key create(), erl_drv_tsd key destroy(), erl_drv_tsd set(), and erl_drv_tsd_get().
ErlDrvTime

A signed 64-bit integer type for representation of time.
ErIDrvTimeUnit

An enumeration of time units supported by the driver API:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 293

erl_driver

ERL_DRV_SEC
Seconds
ERL_DRV_MSEC
Milliseconds
ERL_DRV_USEC
Microseconds
ERL_DRV_NSEC
Nanoseconds

Exports

void driver system info(ErlDrvSysInfo *sys info ptr, size t size)

This function will write information about the Erlang runtime system into the ErlDrvSysinfo structure referred
to by the first argument. The second argument should be the size of the ErlDrvSysinfo structure, i.e.,
si zeof (Erl DrvSysl nfo).

See the documentation of the ErlDrvSysInfo structure for information about specific fields.

int driver output(ErlDrvPort port, char *buf, ErlDrvSizeT len)

Thedri ver _out put functionisused to send data from the driver up to the emulator. The datawill be received as
terms or binary data, depending on how the driver port was opened.

The datais queued in the port owner process message queue. Note that this does not yield to the emulator. (Since the
driver and the emulator run in the same thread.)

The parameter buf pointsto the datato send, and | en isthe number of bytes.

The return value for al output functionsis 0. (Unless the driver is used for distribution, in which case it can fail and
return -1. For normal use, the output function always returns 0.)

int driver output2(ErlDrvPort port, char *hbuf, ErlDrvSizeT hlen, char *buf,
ErlDrvSizeT 1len)

Thedri ver _out put 2 function first sends hbuf (lengthin hl en) dataasalit, regardless of port settings. Then
buf issent asabinary or list. E.g. if hl en is 3 then the port owner process will receive[H1, H2, H3 | T].

The point of sending data as alist header, isto facilitate matching on the data received.
Thereturn valueis 0 for normal use.

int driver output binary(ErlDrvPort port, char *hbuf, ErlDrvSizeT hlen,
ErlDrvBinary* bin, ErlDrvSizeT offset, ErlDrvSizeT len)

This function sends data to port owner process from adriver binary, it has a header buffer (hbuf and hl en) just like
dri ver _out put 2. Thehbuf parameter can be NULL.

The parameter of f set isan offset into the binary and | en isthe number of bytesto send.
Driver binaries are created with dr i ver _al | oc_bi nary.

The datain the header is sent as alist and the binary as an Erlang binary in the tail of thelist.
E.g.if hl en is2, then the port owner processwill receive[HL, H2 | <<T>>].
Thereturn valueis 0 for normal use.

294 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Note that, using the binary syntax in Erlang, the driver application can match the header directly from the binary, so
the header can be put in the binary, and hlen can be set to 0.

int driver outputv(ErlDrvPort port, char* hbuf, ErlDrvSizeT hlen, ErlIQVec
*ev, ErlDrvSizeT skip)

This function sends data from an 10 vector, ev, to the port owner process. It has a header buffer (hbuf and hl en),
justlikedri ver _out put 2.

Theski p parameter is a number of bytesto skip of the ev vector from the head.

You get vectors of Er | | OVec type from the driver queue (see below), and the outputv driver entry function. You
can also make them yourself, if you want to send several Er | Dr vBi nary buffers at once. Often it is faster to use
driver_output ordriver_out put_binary.

E.g.if hl enis2andev pointstoanarray of threebinaries, the port owner processwill receive[HL, H2, <<Bl1>>,
<<B2>> | <<B3>>].

The return value is O for normal use.
The comment for dri ver _out put _bi nary appliesfor dri ver _out put v too.

ErlDrvSizeT driver vec to buf(ErlIOVec *ev, char *buf, ErlDrvSizeT len)

This function collects several segments of data, referenced by ev, by copying them in order to the buffer buf , of
thesizel en.

If the datais to be sent from the driver to the port owner process, it isfaster tousedri ver _out put v.

The return value is the space left in the buffer, i.e. if the ev contains less than | en bytes it's the difference, and if
ev contains| en bytes or more, it's 0. Thisisfaster if there is more than one header byte, since the binary syntax can
construct integers directly from the binary.

int driver set timer(ErlDrvPort port, unsigned long time)

This function sets a timer on the driver, which will count down and call the driver when it is timed out. Thet i ne
parameter isthe time in milliseconds before the timer expires.

When the timer reaches 0 and expires, the driver entry function timeout is called.
Note that thereis only one timer on each driver instance; setting a new timer will replace an older one.
Return valueis 0 (-1 only when thet i meout driver function is NULL).

int driver cancel timer(ErlDrvPort port)
Thisfunction cancelsatimer set withdri ver _set _ti ner.
Thereturn valueisO.

int driver read timer(ErlDrvPort port, unsigned long *time left)

This function reads the current time of atimer, and placestheresultinti me_| ef t . Thisisthetimein milliseconds,
before the timeout will occur.

The return valueis 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 295

erl_driver

int driver get now(ErlDrvNowData *now)

Warning:

Thisfunction isdeprecated! Do not useit! Useer| _drv_nonot oni c_t i me() (perhapsin combination with
erl _drv_time_of fset())instead.

This function reads a timestamp into the memory pointed to by the parameter now. See the description of
ErIDrvNowData for specification of itsfields.

The return value is 0 unless the now pointer is not valid, in which caseitis<0.

int driver select(ErlDrvPort port, ErlDrvEvent event, int mode, int on)

Thisfunction is used by driversto provide the emulator with events to check for. This enables the emulator to call the
driver when something has happened asynchronously.

Theevent argument identifies an OS-specific event object. On Unix systems, thefunctionssel ect /pol | areused.
The event object must be a socket or pipe (or other object that sel ect /pol | can use). On windows, the Win32
API function Wai t For Mul ti pl eCbj ect s isused. This places other restrictions on the event object. Refer to the
Win32 SDK documentation. On Enea OSE, the receive function is used. See the for more details.

The on parameter should be 1 for setting events and O for clearing them.

The node argument is a bitwise-or combination of ERL_DRV_READ, ERL_DRV_WRI TE and ERL_DRV_USE. The
first two specify whether to wait for read events and/or write events. A fired read event will call ready input while
afired write event will call ready_output.

Note:

Some OS (Windows and Enea OSE) do not differentiate between read and write events. The call-back for afired
event then only depends on the value of node.

ERL_DRV_USE specifiesif weare using the event object or if wewant to closeit. On an emulator with SMP support, it
isnot safeto clear all eventsand then closethe event object after dri ver _sel ect hasreturned. Another thread may
still be using the event object internally. To safely close an event object call dri ver _sel ect withERL_DRV_USE
and on==0. That will clear all eventsand then call stop_select whenitissafeto closetheevent object. ERL_DRV_USE
should be set together with the first event for an event object. It is harmless to set ERL_DRV_USE even though it
already has been done. Clearing all events but keeping ERL_DRV_USE set will indicate that we are using the event
object and probably will set eventsfor it again.

Note:
ERL_DRV_USE was added in OTP release R13. Old drivers will still work as before. But it is recommended to
updatethemtouse ERL_DRV_USE and st op_sel ect tomake surethat event objects are closed in asafe way.

Thereturn valueis O (failure, -1, only if ther eady_i nput /r eady_out put isNULL).

296 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

void *driver_ alloc(ErlDrvSizeT size)

Thisfunction allocates amemory block of the size specifiedinsi ze, and returnsit. Thisonly fails on out of memory,
in that case NULL isreturned. (Thisis most often awrapper for nal | oc).

Memory allocated must be explicitly freed with a corresponding call todr i ver _f r ee (unless otherwise stated).
Thisfunction is thread-safe.

void *driver realloc(void *ptr, ErlDrvSizeT size)

This function resizes a memory block, either in place, or by allocating a new block, copying the data and freeing the
old block. A pointer is returned to the reallocated memory. On failure (out of memory), NULL is returned. (Thisis
most often awrapper forr eal | oc.)

This function is thread-safe.

void driver free(void *ptr)

This function frees the memory pointed to by pt r . The memory should have been allocated with dr i ver _al | oc.
All alocated memory should be deallocated, just once. There is no garbage collection in drivers.

Thisfunction is thread-safe.

ErlDrvBinary *driver alloc_binary(ErlDrvSizeT size)

This function allocates a driver binary with a memory block of at least si ze bytes, and returns a pointer to it, or
NULL on failure (out of memory). When a driver binary has been sent to the emulator, it must not be atered. Every
alocated binary should be freed by a corresponding call todr i ver _f r ee_bi nary (unless otherwise stated).

Note that a driver binary has an internal reference counter, this meansthat calling dri ver _free_bi nary it may
not actually dispose of it. If it's sent to the emulator, it may be referenced there.

Thedriver binary hasafield, ori g_byt es, which marks the start of the datain the binary.
This function is thread-safe.

ErlDrvBinary *driver realloc binary(ErlDrvBinary *bin, ErlDrvSizeT size)

This function resizes a driver binary, while keeping the data. The resized driver binary is returned. On failure (out
of memory), NULL is returned.

This function is only thread-safe when the emulator with SMP support is used.

void driver free binary(ErlDrvBinary *bin)

This function frees a driver binary bi n, allocated previously with dri ver _al | oc_bi nary. Since binaries in
Erlang are reference counted, the binary may still be around.

This function is only thread-safe when the emulator with SMP support is used.

long driver binary get refc(ErlDrvBinary *bin)
Returns current reference count on bi n.
Thisfunction is only thread-safe when the emulator with SMP support is used.

long driver binary inc refc(ErlDrvBinary *bin)
Increments the reference count on bi n and returns the reference count reached after the increment.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 297

erl_driver

This function is only thread-safe when the emulator with SMP support is used.

long driver binary dec_refc(ErlDrvBinary *bin)
Decrements the reference count on bi n and returns the reference count reached after the decrement.
Thisfunction is only thread-safe when the emulator with SMP support is used.

Note:

You should normally decrement the reference count of a driver binary by calling driver_free binary().
driver_binary dec_refc() does not free the binary if the reference count reaches zero. Only use
driver_binary_dec_refc() whenyou are sure not to reach areference count of zero.

int driver _enq(ErlDrvPort port, char* buf, ErlDrvSizeT len)

This function enqueues datain the driver queue. The datain buf is copied (I en bytes) and placed at the end of the
driver queue. The driver queue is normally used in a FIFO way.

The driver queue is available to queue output from the emulator to the driver (data from the driver to the emulator is
gueued by the emulator in normal erlang message queues). This can be useful if the driver hasto wait for slow devices
etc, and wants to yield back to the emulator. The driver queue isimplemented as an ErlIOVec.

When the queue contains data, the driver won't close, until the queue is empty.
Thereturn valueisO.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver pushq(ErlDrvPort port, char* buf, ErlDrvSizeT len)

This function puts data at the head of the driver queue. The data in buf is copied (I en bytes) and placed at the
beginning of the queue.

The return valueis 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

ErlDrvSizeT driver deq(ErlDrvPort port, ErlDrvSizeT size)

This function dequeues data by moving the head pointer forward in the driver queue by si ze bytes. The datain the
gueue will be deallocated.

Thereturn value is the number of bytes remaining in the queue or -1 on failure.

This function can be called from an arbitrary thread if a port data lock associated with the por t is locked by the
calling thread during the call.

ErlDrvSizeT driver sizeq(ErlDrvPort port)
This function returns the number of bytes currently in the driver queue.

This function can be called from an arbitrary thread if a port data lock associated with the port islocked by the
calling thread during the call.

298 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver _enq bin(ErlDrvPort port, ErlDrvBinary *bin, ErlDrvSizeT offset,
ErlDrvSizeT 1len)

This function engqueues a driver binary in the driver queue. The datain bi n at of f set with length | en isplaced at
the end of the queue. Thisfunctionismost often faster thandr i ver _enq, because the datadoesn't haveto be copied.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
caling thread during the call.

The return valueis 0.

int driver pushq bin(ErlDrvPort port, ErlDrvBinary *bin, ErlDrvSizeT offset,
ErlDrvSizeT 1len)

Thisfunction puts datain the binary bi n, at of f set withlength| en at the head of the driver queue. It is most often
faster thandri ver _pushq, because the data doesn't have to be copied.

This function can be called from an arbitrary thread if a port data lock associated with the port islocked by the
caling thread during the call.

The return valueis 0.

ErlDrvSizeT driver peekqgv(ErlDrvPort port, ErlIOVec *ev)

This function retrieves the driver queue into a supplied Er | | OVec ev. It aso returns the queue size. Thisis one of
two ways to get data out of the queue.

If ev isNULL &l onesi.e. - 1 typecastto Er | Dr vSi zeT isreturned.
Nothing is removed from the queue by this function, that must be donewith dr i ver _deq.

This function can be called from an arbitrary thread if a port data lock associated with the por t is locked by the
calling thread during the call.

SysIOVec *driver peekq(ErlDrvPort port, int *vlen)

Thisfunction retrievesthe driver queue as apointer to an array of Sys| OVecs. It also returns the number of elements
invl en. Thisisone of two waysto get data out of the queue.

Nothing is removed from the queue by this function, that must be donewith dr i ver _deq.
Thereturned array is suitable to use with the Unix system call wri t ev.

This function can be called from an arbitrary thread if a port data lock associated with the port islocked by the
calling thread during the call.

int driver enqv(ErlDrvPort port, ErlIOVec *ev, ErlDrvSizeT skip)

This function enqueues the data in ev, skipping the first ski p bytes of it, at the end of the driver queue. It is faster
thandri ver _enq, because the data doesn't have to be copied.

The return valueis 0.

This function can be called from an arbitrary thread if a port data lock associated with the port islocked by the
calling thread during the call.

int driver pushqv(ErlDrvPort port, ErlIOVec *ev, ErlDrvSizeT skip)

This function puts the datain ev, skipping the first ski p bytes of it, at the head of the driver queue. It is faster than
dri ver _pushq, because the data doesn't have to be copied.

The return valueis 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 299

erl_driver

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

ErlDrvPDL driver pdl create(ErlDrvPort port)

This function creates a port data lock associated with the por t . NOTE: Once a port data lock has been created, it has
to be locked during all operations on the driver queue of the port .

On success a newly created port datalock is returned. On failure NULL isreturned. dri ver _pdl _creat e() will
fail if port isinvalid or if aport datalock already has been associated with the port .

void driver pdl lock(ErlDrvPDL pdl)
This function locks the port data lock passed as argument (pdl).
Thisfunction is thread-safe.

void driver pdl unlock(ErlDrvPDL pdl)
This function unlocks the port data lock passed as argument (pdl).
This function is thread-safe.

long driver pdl get refc(ErlDrvPDL pdl)
This function returns the current reference count of the port data lock passed as argument (pdl).
This function is thread-safe.

long driver pdl inc refc(ErlDrvPDL pdl)

This function increments the reference count of the port data lock passed as argument (pdl).
The current reference count after the increment has been performed is returned.

This function is thread-safe.

long driver pdl dec refc(ErlDrvPDL pdl)

This function decrements the reference count of the port data lock passed as argument (pdl).
The current reference count after the decrement has been performed is returned.

This function is thread-safe.

int driver _monitor process(ErlDrvPort port, ErlDrvTermData process,
ErlDrvMonitor *monitor)

Start monitoring aprocessfrom adriver. When aprocessis monitored, aprocessexit will result in acall to the provided
process _exit call-back in the ErlDrvEntry structure. The Er | Dr viVbni t or structure isfilled in, for later removal
or compare.

Thepr ocess parameter should be the return value of an earlier call to driver_caller or driver_connected call.
The function returns 0 on success, < 0 if no call-back is provided and > O if the processis no longer dive.

int driver _demonitor _process(ErlDrvPort port, const ErlDrvMonitor *monitor)
This function cancels a monitor created earlier.
The function returns O if a monitor was removed and > 0 if the monitor did no longer exist.

300 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

ErlDrvTermData driver get monitored process(ErlDrvPort port, const
ErlDrvMonitor *monitor)

The function returns the process id associated with aliving monitor. It can be used inthe pr ocess_exi t cal-back
to get the process identification for the exiting process.

Thefunctionreturnsdri ver _t erm ni | if the monitor no longer exists.

int driver _compare monitors(const ErlDrvMonitor *monitorl, const
ErlDrvMonitor *monitor2)

This function is used to compare two Er | Dr vMoni t or s. It can also be used to imply some artificial order on
monitors, for whatever reason.

The function returns O if noni t or 1 and noni t or 2 are equal, < 0 if noni t or 1 islessthan noni t or2 and >0
if moni t or 1 isgreater than noni t or 2.

void add driver entry(ErlDrvEntry *de)
Thisfunction addsadriver entry to thelist of driversknown by Erlang. Theinit function of the de parameter is called.

Note:

To usethisfunction for adding driversresiding in dynamically loaded code is dangerous. If the driver codefor the
added driver residesin the same dynamically loaded module(i.e. . so file) asanormal dynamically |oaded driver
(loaded withtheer | _ddl | interface), the caller should call driver_lock_driver before adding driver entries.

Use of thisfunction is generally deprecated.

int remove driver entry(ErlDrvEntry *de)
This function removes adriver entry de previously added with add_dri ver _entry.
Driver entries added by theer | _ddl | erlang interface can not be removed by using thisinterface.

char *erl errno id(int error)

Thisfunction returns the atom name of the erlang error, given the error number iner r or . Error atoms are: ei nval ,
enoent , etc. It can be used to make error terms from the driver.

void erl drv busy msgq limits(ErlDrvPort port, ErlDrvSizeT *low, ErlDrvSizeT
*high)
Sets and gets limits that will be used for controling the busy state of the port message queue.

The port message queue will be set into a busy state when the amount of command data queued on the message queue
reaches the hi gh limit. The port message queue will be set into a not busy state when the amount of command data
gueued on the message queue falls below the | ow limit. Command data is in this context data passed to the port
using either Port ! {Omner, {command, Data}},orport_command/[2, 3] . Notethat theselimitsonly
concerns command datathat have not yet reached the port. The busy port feature can be used for data that has reached
the port.

Validlimitsarevaluesintherange[ERL_DRV_BUSY_MSGQ LIM M N, ERL_DRV_BUSY_MsSGQ LI M MAX] .
Limits will be automatically adjusted to be sane. That is, the system will adjust values so that the low limit used is
lower than or equal to the high limit used. By default the high limit will be 8 kB and the low limit will be 4 kB.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 301

erl_driver

By passing a pointer to an integer variable containing the value ERL_DRV_BUSY_MSGQ READ ONLY, currently
used limit will be read and written back to the integer variable. A new limit can be set by passing a pointer to an
integer variable containing avalid limit. The passed value will be written to the internal limit. The internal limit will
then be adjusted. After this the adjusted limit will be written back to the integer variable from which the new value
wasread. Vaues arein bytes.

The busy message queue feature can be disabled either by settingthe ERL_DRV_FLAG _NO BUSY_MsSGQdriver flag
inthedriver_entry used by thedriver, or by calling thisfunction with ERL_DRV_BUSY_ MSGQ DI SABLEDasalimit
(either low or high). When this feature has been disabled it cannot be enabled again. When reading the limits both of
them will be ERL_DRV_BUSY_MSGQ DI SABLED, if this feature has been disabled.

Processes sending command data to the port will be suspended if either the port is busy or if the port message queue
is busy. Suspended processes will be resumed when neither the port is busy, nor the port message queue is busy.

For information about busy port functionality see the documentation of the set_busy port() function.

void set busy port(ErlDrvPort port, int on)

This function set and unset the busy state of the port. If on isnon-zero, the port is set to busy, if it's zero the port is set
to not busy. You typically want to combine this feature with the busy port message queue functionality.

Processes sending command data to the port will be suspended if either the port is busy or if the port message queue
is busy. Suspended processes will be resumed when neither the port is busy, nor the port message queue is busy.
Command datais in this context data passed to the port using either Port ! {Owner, {comand, Data}},
orport_conmmand/ [2, 3] .

If the ERL_DRV_FLAG_SOFT BUSY has been set in the driver_entry, data can be forced into the driver via
port_command(Port, Data, [force]) even though the driver has signaled that it is busy.

For information about busy port message queue functionality seethe documentation of theerl_drv_busy msgq_limits()
function.

void set port control flags(ErlDrvPort port, int flags)

This function sets flags for how the control driver entry function will return data to the port owner process. (The
cont r ol functioniscalled fromport _control /3 inerlang.)

Currently there are only two meaningful values for fl ags: O means that data is returned in a list, and
PORT_CONTROL_FLAG Bl NARY means datais returned as abinary fromcont r ol .

int driver failure eof(ErlDrvPort port)

Thisfunction signalsto erlang that the driver has encountered an EOF and should be closed, unlessthe port was opened
with theeof option, in that case eof is sent to the port. Otherwise, the portisclosed andan' EXI T' messageis sent
to the port owner process.

The return valueis 0.

int driver failure_atom(ErlDrvPort port, char *string)

int driver failure posix(ErlDrvPort port, int error)

int driver failure(ErlDrvPort port, int error)

These functions signal to Erlang that the driver has encountered an error and should be closed. The port is closed

and the tuple {' EXIT', error, Err}, issentto the port owner process, where error is an error atom
(driver _failure_atomanddriver failure_posix),oraninteger (dri ver _fail ure).

302 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

The driver should fail only when in severe error situations, when the driver cannot possibly keep open, for
instance buffer allocation gets out of memory. For normal errors it is more appropriate to send error codes with
driver _out put.

Thereturn valueisO.

ErlDrvTermData driver connected(ErlDrvPort port)
This function returns the port owner process.
Note that this function is not thread-safe, not even when the emulator with SMP support is used.

ErlDrvTermData driver caller(ErlDrvPort port)

This function returns the process id of the process that made the current call to the driver. The process id can be
used withdr i ver _send_t er mto send back datatothecaler.dri ver _cal | er () only returnsvalid datawhen
currently executing in one of the following driver callbacks:

start

Cdled fromopen_port/ 2.
output

Cdledfromer| ang: send/ 2,ander | ang: port _conmmand/ 2
outputv

Cdledfromer| ang: send/ 2,ander | ang: port _conmmand/ 2
control

Cdledfromer | ang: port _control /3
call

Cdledfromerl ang: port _call/3

Note that this function is not thread-safe, not even when the emulator with SMP support is used.

int erl drv output term(ErlDrvTermData port, ErlDrvTermData* term, int n)

This functions sends datain the special driver term format to the port owner process. Thisisafast way to deliver term
datafrom adriver. It also needs no binary conversion, so the port owner process receives data as normal Erlang terms.
Theerl_drv_send_term() functions can be used for sending to any arbitrary process on the local node.

Note:

Note that the port parameter is not an ordinary port handle, but a port handle converted using
driver_nk_port ().

Thet er mparameter pointsto an array of Er | Dr vTer nDat a, with n elements. This array contains terms described
in the driver term format. Every term consists of one to four elementsin the array. The term first has aterm type, and
then arguments. The por t parameter specifies the sending port.

Tuples, maps and lists (with the exception of strings, see below), are built in reverse polish notation, so that to build a
tuple, the elements are given first, and then the tuple term, with a count. Likewise for lists and maps.

A tuple must be specified with the number of elements. (The elements precede the ERL_DRV_TUPLE term.)

A list must be specified with the number of elements, including the tail, which is the last term preceding
ERL_DRV_LI ST.

A map must be specified with the number of key-value pairs N. The key-value pairs must precedethe ERL_DRV_ VAP
inthisorder: key1, val uel, key2, val ue2, ..., keyN, val ueN. Duplicate keys are not allowed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 303

erl_driver

The special term ERL_DRV_STRI NG_CONS is used to "splice" in astring in alist, a string given thisway is not a
list per se, but the elements are elements of the surrounding list.

Term type Argument(s)

ERL DRV _NIL

ERL DRV_ATOM ErlDrvTermData atom (from driver mk atom(char *string))
ERL DRV _INT ErlDrvSInt integer

ERL_DRV_UINT ErlDrvUInt integer

ERL DRV_INT64 ErlDrvSInt64 *integer ptr

ERL DRV_UINT64 ErlDrvUInt64 *integer ptr

ERL DRV_PORT ErlDrvTermData port (from driver mk port(ErlDrvPort port))
ERL DRV _BINARY ErlDrvBinary *bin, ErlDrvUInt len, ErlDrvUInt offset

ERL DRV _BUF2BINARY char *buf, ErlDrvUInt len

ERL DRV_STRING char *str, int len

ERL DRV _TUPLE int sz

ERL DRV LIST int sz

ERL _DRV_PID ErlDrvTermData pid (from driver connected(ErlDrvPort port) or driver caller(ErlDrvPort por
ERL DRV_STRING CONS char *str, int len

ERL DRV _FLOAT double *dbl

ERL DRV_EXT2TERM char *buf, ErlDrvUInt len

ERL DRV_MAP int sz

The unsigned integer data type Er | Dr vUI nt and the signed integer data type Er | Dr vSI nt are 64 bits wide on
a 64 bit runtime system and 32 bits wide on a 32 bit runtime system. They were introduced in erts version 5.6, and
replaced some of thei nt argumentsin the list above.

The unsigned integer data type Er | Dr vUI nt 64 and the signed integer data type Er | Dr vSI nt 64 are aways 64
bits wide. They were introduced in erts version 5.7.4.

Tobuildthetuple{tcp, Port, [100 | Bi nary]},thefollowing cal could be made.

ErlDrvBinary* bin = ...
ErlDrvPort port = ...
ErlDrvTermData spec[] = {
ERL_DRV_ATOM, driver mk atom("tcp"),
ERL_DRV_PORT, driver mk port(drvport),
ERL DRV_INT, 100,
ERL DRV_BINARY, bin, 50, 0,
ERL DRV_LIST, 2,
ERL DRV_TUPLE, 3,
}i
erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

Where bi n is adriver binary of length at least 50 and dr vport isaport handle. Note that the ERL_DRV_LI ST
comes after the elements of thelist, likewisethe ERL_DRV_TUPLE.

Theterm ERL_DRV_STRI NG_CONSisaway to construct strings. It worksdifferently fromhow ERL_DRV_STRI NG
works. ERL_DRV_STRI NG_CONS buildsastring list in reverse order, (asopposed to how ERL_DRV_LI ST works),
concatenating the strings added to alist. Thetail must be given before ERL_DRV_STRI NG_CONS.

The ERL_DRV_STRI NG constructs a string, and ends it. (So it's the same as ERL_DRV_NI L followed by
ERL_DRV_STRI NG_CONS.)

304 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

/* to send [x, "abc", yl] to the port: */
ErlDrvTermData spec[] = {
ERL DRV_ATOM, driver mk atom("x"),
ERL DRV_STRING, (ErlDrvTermData)"abc", 3,
ERL DRV_ATOM, driver mk atom("y"),
ERL DRV NIL,
ERL DRV LIST, 4
]

erl drv _output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

/* to send "abcl123" to the port: */

ErlDrvTermData spec[] = {
ERL DRV NIL, /* with STRING CONS, the tail comes first */
ERL DRV _STRING CONS, (ErlDrvTermData)"123", 3,
ERL DRV _STRING CONS, (ErlDrvTermData)"abc", 3,

}s

erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

TheERL_DRV_EXT2TERMterm typeisused for passing aterm encoded with the external format, i.e., aterm that has
been encoded by erlang:term to_binary, erl_interface, etc. For example, if bi np isapointertoan Er | Dr vBi nary
that containstheterm {17, 4711} encoded with the external format and you want to wrap it in a two tuple with
thetagny_tag,i.e,{nmy_tag, {17, 4711}}, youcando asfollows:

ErlDrvTermData spec[] = {
ERL DRV_ATOM, driver mk atom("my tag"),
ERL DRV _EXT2TERM, (ErlDrvTermData) binp->orig bytes, binp->orig size
ERL DRV_TUPLE, 2,
}i
erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

To buildthemap #{ keyl => 100, key2 => {200, 300}}, thefollowing cal could be made.

ErlDrvPort port = ...
ErlDrvTermData spec[] = {
ERL DRV_ATOM, driver mk atom("keyl"),
ERL DRV _INT, 100,
ERL DRV_ATOM, driver mk atom("key2"),
ERL DRV _INT, 200,
ERL DRV _INT, 300,
ERL DRV TUPLE, 2,
ERL DRV _MAP, 2
]

erl drv _output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

If you want to pass a binary and don't already have the content of the binary inan Er | Dr vBi nar y, you can benefit
from using ERL_DRV_BUF2BI NARY instead of creating an Er | Dr vBi nary viadri ver _al | oc_bi nary()
and then pass the binary via ERL_DRV_BI NARY. The runtime system will often allocate binaries smarter
if ERL_DRV_BUF2BI NARY is used. However, if the content of the binary to pass aready resides in an

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 305

erl_driver

Erl DrvBi nary, it is normally better to pass the binary using ERL_DRV_BI NARY and the Er | Dr vBi nary in
question.

TheERL_DRV_UI NT, ERL_DRV_BUF2BI NARY, and ERL_DRV_EXT2TERMterm typeswereintroduced inthe 5.6
version of erts.

This function is only thread-safe when the emulator with SMP support is used.

int driver output term(ErlDrvPort port, ErlDrvTermData* term, int n)

Warning:

driver_output_tern() is deprecated and will be removed in the OTP-R17 release. Use
erl_drv_output_term() instead.

The parameterst er mand n do the same thing asin erl_drv_output_term().
Note that this function is not thread-safe, not even when the emulator with SM P support is used.

ErlDrvTermData driver mk atom(char* string)

This function returns an atom given aname st r i ng. The atom is created and won't change, so the return value may
be saved and reused, which is faster than looking up the atom several times.

Note that this function is not thread-safe, not even when the emulator with SMP support is used.

ErlDrvTermData driver mk port(ErlDrvPort port)

This function converts a port handle to the erlang term format, usable in the erl_drv_output_term(), and
erl_drv_send term() functions.

Note that this function is not thread-safe, not even when the emulator with SMP support is used.

int erl drv_send term(ErlDrvTermData port, ErlDrvTermData receiver,
ErlDrvTermData* term, int n)

Thisfunctionisthe only way for adriver to send datato other processes than the port owner process. Ther ecei ver
parameter specifies the process to receive the data.

Note:

Note that the port parameter is not an ordinary port handle, but a port handle converted using
driver_nk _port().

The parameterspor t , t er mand n do the samething asin erl_drv_output_term().
Thisfunction is only thread-safe when the emulator with SMP support is used.

306 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver send term(ErlDrvPort port, ErlDrvTermData receiver,
ErlDrvTermData* term, int n)

Warning:
driver_send_t ern() isdeprecated and will be removed inthe OTP-R17 release. Use erl_drv_send_term()
instead.

Also note that parametersof dri ver _send_t er n() cannot be properly checked by the runtime system when
executed by arbitrary threads. This may causethedri ver _send_t er m() function not to fail when it should.

The parameterst er mand n do the samething asin erl_drv_output_term().
This function is only thread-safe when the emulator with SMP support is used.

long driver async (ErlDrvPort port, unsigned int* key, void (*async invoke)
(void*), void* async data, void (*async free)(void*))

This function performs an asynchronous call. The function async_i nvoke isinvoked in a thread separate from
the emulator thread. This enables the driver to perform time-consuming, blocking operations without blocking the
emulator.

Theasync thread pool size can be set with the + Acommand line argument of erl(1). If no async thread pool isavailable,
the call is made synchronously in the thread calling dri ver _async() . The current number of async threadsin the
async thread pool can be retrieved viadriver_system info().

If thereisathread pool available, athread will be used. If thekey argument is null, the threads from the pool are used
in around-robin way, each call todr i ver _async usesthe next thread in the pool. With the key argument set, this
behaviour is changed. The two same values of * key always get the same thread.

To make sure that adriver instance always uses the same thread, the following call can be used:

unsigned int myKey = driver async port key(myPort);

r = driver _async(myPort, &myKey, myData, myFunc);

It is enough to initialize my Key once for each driver instance.

If athread is already working, the callswill be queued up and executed in order. Using the same thread for each driver
instance ensures that the calls will be made in sequence.

Theasync_dat a istheargument to the functionsasync_i nvoke andasync_fr ee. It'stypically apointer to a
structure that contains a pipe or event that can be used to signal that the async operation completed. The data should
befreedinasync_free.

When the async operation is done, ready_async driver entry functioniscalled. If r eady_async isnull in the driver
entry, theasync_f r ee function is called instead.

Thereturnvalueis-1if thedri ver _async cal fails.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 307

erl_driver

Note:

Asof ertsversion 5.5.4.3 the default stack sizefor threadsin the async-thread pool is 16 kilowords, i.e., 64 kilobyte
on 32-hit architectures. This small default size has been chosen since the amount of async-threads might be quite
large. The default stack size is enough for drivers delivered with Erlang/OTP, but might not be sufficiently large
for other dynamically linked in driversthat usethedriver_async() functionality. A suggested stack sizefor threads
in the async-thread pool can be configured via the +a command line argument of erl(1).

unsigned int driver async port key (ErlDrvPort port)

This function calculates akey for later use in driver_async(). The keys are evenly distributed so that a fair mapping
between port id's and async thread id'sis achieved.

Note:

Before OTP-R16, the actual port id could be used as a key with proper casting, but after the rewrite of the port
subsystem, this is no longer the case. With this function, you can achieve the same distribution based on port
id's as before OTP-R16.

int driver lock driver(ErlDrvPort port)

This function locks the driver used by the port por t in memory for the rest of the emulator process' lifetime. After
this call, the driver behaves as one of Erlang's statically linked in drivers.

ErlDrvPort driver create port(ErlDrvPort port, ErlDrvTermData owner pid,
char* name, ErlDrvData drv_data)

This function creates a new port executing the same driver code as the port creating the new port. A short description
of the arguments;

port
The port handle of the port (driver instance) creating the new port.

owner _pid
The processid of the Erlang process which will be owner of the new port. This process will be linked to the
new port. You usually wanttousedri ver _cal |l er (port) asowner _pi d.

name
The port name of the new port. Y ou usually want to use the same port name as the driver name (driver_name
field of the driver_entry).

drv_data
The driver defined handle that will be passed in subsequent callsto driver call-backs. Note, that the driver start
call-back will not be called for this new driver instance. The driver defined handle is normally created in the
driver start call-back when a port is created via erlang: open_port/2.

The caler of driver_create port() is alowed to manipulate the newly created port when
driver_create_port () hasreturned. When portlevel lockingisused, the creating port is, however, only allowed
to manipulate the newly created port until the current driver call-back that was called by the emulator returns.

308 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Note:

When port level locking is used, the creating port is only allowed to manipulate the newly created port until the
current driver call-back returns.

int erl drv thread create(char *name, ErlDrvTid *tid, void * (*func)(void *),
void *arg, ErlDrvThreadOpts *opts)

Arguments:

name
A string identifying the created thread. It will be used to identify the thread in planned future debug
functionality.

tid
A pointer to athread identifier variable.

func
A pointer to afunction to execute in the created thread.

arg
A pointer to argument to the f unc function.

opts
A pointer to thread options to use or NULL.

This function creates a new thread. On success O is returned; otherwise, an er r no value is returned to indicate the
error. The newly created thread will begin executing in the function pointed to by f unc, and f unc will be passed
ar g asargument. Whener| _drv_t hread_creat e() returns the thread identifier of the newly created thread
will beavailablein*t i d. opt s canbeeither aNULL pointer, or apointer to an ErIDrvThreadOpts structure. If opt s
isaNULL pointer, default options will be used; otherwise, the passed options will be used.

Warning:

Y ou are not allowed to allocate the ErlDrvThreadOpts structure by yourself. It has to be allocated and initialized
by erl_drv_thread opts create().

The created thread will terminate either whenf unc returnsor if erl_drv_thread exit() iscalled by thethread. The exit
value of the thread is either returned from f unc or passed as argument to erl_drv_thread_exit(). The driver creating
the thread has the responsibility of joining the thread, via erl_drv_thread join(), before the driver is unloaded. It is
not possible to create "detached" threads, i.e., threads that don't need to be joined.

Warning:

All created threads need to be joined by the driver before it is unloaded. If the driver fails to join all threads
created before it is unloaded, the runtime system will most likely crash when the code of the driver is unloaded.

This function is thread-safe.

ErlDrvThreadOpts *erl drv _thread opts create(char *name)
Arguments:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 309

erl_driver

name
A string identifying the created thread options. It will be used to identify the thread options in planned future
debug functionality.

This function allocates and initialize a thread option structure. On failure NULL is returned. A thread option
structure is used for passing options to erl_drv_thread create(). If the structure isn't modified before it is passed to
erl_drv_thread_create(), the default values will be used.

Warning:

Y ou are not alowed to alocate the ErlDrvThreadOpts structure by yourself. It hasto be alocated and initialized
byerl drv_thread opts create().

This function is thread-safe.

void erl drv thread opts destroy(ErlDrvThreadOpts *opts)
Arguments:
opts
A pointer to thread options to destroy.
This function destroys thread options previously created by erl_drv_thread opts create().

This function is thread-safe.

void erl drv_thread exit(void *exit value)
Arguments:

exit_val ue
A pointer to an exit value or NULL.

This function terminates the calling thread with the exit value passed as argument. You are only allowed to
terminate threads created with erl_drv_thread create(). The exit value can later be retrieved by another thread via
erl_drv_thread join().

Thisfunction is thread-safe.

int erl drv_thread join(ErlDrvTid tid, void **exit value)
Arguments:
tid

Thethread identifier of the thread to join.

exit_val ue
A pointer to apointer to an exit value, or NULL.

This function joins the calling thread with another thread, i.e., the calling thread is blocked until the thread identified
by ti d has terminated. On success 0 is returned; otherwise, an er r no value is returned to indicate the error. A
thread can only be joined once. The behavior of joining more than once is undefined, an emulator crash is likely. If
exit_val ue == NULL, the exit value of the terminated thread will be ignored; otherwise, the exit value of the
terminated thread will be stored at *exi t _val ue.

This function is thread-safe.

310 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

ErlDrvTid erl drv_thread self(void)
This function returns the thread identifier of the calling thread.
This function is thread-safe.

int erl drv_equal tids(ErlDrvTid tidl, ErlDrvTid tid2)
Arguments:

tidl

A thread identifier.
tid2

A thread identifier.

This function compares two thread identifiers for equality, and returns O it they aren't equal, and a value not equal
to O if they are equal.

Note:

A Thread identifier may bereused very quickly after athread hasterminated. Therefore, if athread corresponding
to one of the involved thread identifiers has terminated since the thread identifier was saved, the result of
erl _drv_equal tids() mightnot give the expected result.

This function is thread-safe.

ErlDrvMutex *erl drv_mutex create(char *name)
Arguments:

name
A string identifying the created mutex. It will be used to identify the mutex in planned future debug
functionality.

This function creates a mutex and returns a pointer to it. On failure NULL is returned. The driver creating the mutex
has the responsibility of destroying it before the driver is unloaded.

Thisfunction is thread-safe.

void erl drv _mutex destroy(ErlDrvMutex *mtx)
Arguments:

nm x
A pointer to amutex to destroy.

This function destroys a mutex previously created by erl_drv_mutex_create(). The mutex has to be in an unlocked
state before being destroyed.

This function is thread-safe.

void erl drv_mutex lock(ErlDrvMutex *mtx)
Arguments:

nt x
A pointer to amutex to lock.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 311

erl_driver

This function locks a mutex. The calling thread will be blocked until the mutex has been locked. A thread which
currently has locked the mutex may not lock the same mutex again.

Warning:

If you leave amutex locked in an emulator thread when you let the thread out of your control, you will very likely
deadlock the whole emulator.

This function is thread-safe.

int erl drv mutex trylock(ErlDrvMutex *mtx)
Arguments:

nm x
A pointer to amutex to try to lock.

Thisfunctiontriesto lock amutex. If successful 0, isreturned; otherwise, EBUSY isreturned. A thread which currently
has locked the mutex may not try to lock the same mutex again.

Warning:

If you leave amutex locked in an emulator thread when you | et the thread out of your control, you will very likely
deadlock the whole emulator.

This function is thread-safe.

void erl drv_mutex unlock(ErlDrvMutex *mtx)
Arguments:

nt x
A pointer to amutex to unlock.

This function unlocks a mutex. The mutex currently has to be locked by the calling thread.
This function is thread-safe.

ErlDrvCond *erl drv_cond create(char *name)
Arguments:

nane
A string identifying the created condition variable. It will be used to identify the condition variable in planned
future debug functionality.

This function creates a condition variable and returns a pointer to it. On failure NULL isreturned. The driver creating
the condition variable has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl drv cond destroy(ErlDrvCond *cnd)
Arguments:

312 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

cnd
A pointer to a condition variable to destroy.

This function destroys a condition variable previously created by erl_drv_cond create().
This function is thread-safe.

void erl _drv_cond_signal(ErlDrvCond *cnd)
Arguments:

cnd
A pointer to a condition variable to signal on.

This function signals on a condition variable. That is, if other threads are waiting on the condition variable being
signaled, one of them will be woken.

This function is thread-safe.

void erl drv_cond broadcast(ErlDrvCond *cnd)
Arguments:

cnd
A pointer to a condition variable to broadcast on.

This function broadcasts on a condition variable. That is, if other threads are waiting on the condition variable being
broadcast on, all of them will be woken.

This function is thread-safe.

void erl drv _cond wait(ErlDrvCond *cnd, ErlDrvMutex *mtx)
Arguments:

cnd

A pointer to a condition variable to wait on.
nm x

A pointer to a mutex to unlock while waiting.

This function waits on a condition variable. The calling thread is blocked until another thread wakes it by signaling or
broadcasting on the condition variable. Before the calling thread is blocked it unlocks the mutex passed as argument,
and when the calling thread is woken it locks the same mutex before returning. That is, the mutex currently hasto be
locked by the calling thread when calling this function.

Note:

er|l _drv_cond_wait () might return even though no-one has signaled or broadcast on the condition
variable. Code callinger| _drv_cond_wai t () should always be prepared for er| _drv_cond_wai t ()
returning even though the condition that the thread was waiting for hasn't occurred. That is, when
returning from er| _drv_cond_wai t () aways check if the condition has occurred, and if not cal
erl _drv_cond_wait () again.

This function is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 313

erl_driver

ErlDrvRWLock *erl drv_rwlock create(char *name)
Arguments:

nane
A string identifying the created rwlock. It will be used to identify the rwlock in planned future debug
functionality.

Thisfunction creates an rwlock and returns apointer to it. On failure NULL isreturned. The driver creating the rwlock
has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl drv_ rwlock destroy(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to destroy.

This function destroys an rwlock previously created by erl_drv_rwlock create(). The rwlock hasto bein an unlocked
state before being destroyed.

This function is thread-safe.

void erl drv_rwlock rlock(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to read lock.

Thisfunction read locks an rwlock. The calling thread will be blocked until the rwlock has been read locked. A thread
which currently has read or read/write locked the rwlock may not lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl drv_rwlock tryrlock(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to try to read lock.

Thisfunction triesto read lock an rwlock. If successful 0, isreturned; otherwise, EBUSY is returned. A thread which
currently has read or read/write locked the rwlock may not try to lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

314 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

This function is thread-safe.

void erl drv_rwlock runlock(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to read unlock.

This function read unlocks an rwlock. The rwlock currently hasto be read locked by the calling thread.
Thisfunction is thread-safe.

void erl drv_rwlock rwlock(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to read/write lock.

This function read/write locks an rwlock. The calling thread will be blocked until the rwlock has been read/write
locked. A thread which currently has read or read/write locked the rwlock may not lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl drv_rwlock tryrwlock(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to try to read/write lock.

This function tries to read/write lock an rwlock. If successful 0, is returned; otherwise, EBUSY is returned. A thread
which currently has read or read/write locked the rwlock may not try to lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

void erl drv_rwlock rwunlock(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an rwlock to read/write unlock.

This function read/write unlocks an rwlock. The rwlock currently has to be read/write locked by the calling thread.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 315

erl_driver

This function is thread-safe.

int erl drv_tsd key create(char *name, ErlDrvTSDKey *key)
Arguments:

name
A string identifying the created key. It will be used to identify the key in planned future debug functionality.
key
A pointer to athread specific data key variable.

This function creates a thread specific data key. On success 0 is returned; otherwise, an er r no value is returned to
indicate the error. The driver creating the key has the responsibility of destroying it before the driver is unloaded.

Thisfunction is thread-safe.

void erl drv_tsd key destroy(ErlDrvTSDKey key)
Arguments:

key
A thread specific data key to destroy.

This function destroys a thread specific data key previously created by erl drv_tsd key create(). All thread
specific data using this key in al threads have to be cleared (see erl_drv tsd set()) prior to the cal to
erl _drv_tsd key destroy().

Warning:

A destroyed key isvery likely to be reused soon. Therefore, if you fail to clear the thread specific data using this
key in athread prior to destroying the key, you will very likely get unexpected errorsin other parts of the system.

This function is thread-safe.

void erl drv tsd set(ErlDrvTSDKey key, void *data)
Arguments:

key
A thread specific data key.
dat a
A pointer to data to associate with key in calling thread.

This function sets thread specific data associated with key for the calling thread. Y ou are only allowed to set thread
specific datafor threads while they are fully under your control. For example, if you set thread specific datain athread
calling a driver call-back function, it has to be cleared, i.e. set to NULL, before returning from the driver call-back
function.

Warning:
If you fail to clear thread specific datain an emulator thread before letting it out of your control, you might not
ever be able to clear this data with later unexpected errorsin other parts of the system as aresult.

This function is thread-safe.

316 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

void *erl drv_tsd get(ErlDrvTSDKey key)
Arguments:

key
A thread specific data key.

Thisfunction returns the thread specific data associated with key for the calling thread. If no data has been associated
with key for the calling thread, NULL is returned.

This function is thread-safe.

int erl drv putenv(const char *key, char *value)
Arguments:

key
A null terminated string containing the name of the environment variable.
val ue
A null terminated string containing the new value of the environment variable.

This function sets the value of an environment variable. It returns O on success, and avalue! = 0 on failure.

Note:

The result of passing the empty string ("") as avalue is platform dependent. On some platforms the value of the
variableis set to the empty string, on others, the environment variable is removed.

Warning:

Do not uselibc's put env or similar C library interfaces from a driver.

This function is thread-safe.

int erl drv getenv(const char *key, char *value, size t *value size)
Arguments:

key
A null terminated string containing the name of the environment variable.
val ue
A pointer to an output buffer.
val ue_si ze
A pointer to an integer. The integer is both used for passing input and output sizes (see below).

This function retrieves the value of an environment variable. When called, * val ue_si ze should contain the size
of theval ue buffer. On success 0 isreturned, the value of the environment variable has been written to the val ue
buffer, and * val ue_si ze contains the string length (excluding the terminating null character) of the value written
totheval ue buffer. On failure, i.e., no such environment variable was found, a value less than O is returned. When
the size of the val ue buffer istoo small, avalue greater than O is returned and * val ue_si ze has been set to the
buffer size needed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 317

erl_driver

Warning:

Do not uselibc'sget env or similar C library interfaces from a driver.

This function is thread-safe.

int erl drv_consume timeslice(ErlDrvPort port, int percent)
Arguments:

port
Port handle of the executing port.
per cent
Approximate consumed fraction of afull time-slicein percent.

Give the runtime system a hint about how much CPU time the current driver callback call has consumed since last
hint, or since the start of the callback if no previous hint has been given. The time is given as a fraction, in percent,
of afull time-dice that a port is allowed to execute before it should surrender the CPU to other runnable ports or
processes. Validrangeis[1, 100] . The scheduling time-sliceisnot an exact entity, but can usually be approximated
to about 1 millisecond.

Note that it is up to the runtime system to determine if and how to use this information. Implementations on some
platforms may use other meansin order to determine the consumed fraction of thetime-slice. Lengthy driver callbacks
should regardless of thisfrequently call theer| _drv_consune_ti nesl i ce() functionin order to determine if
it isalowed to continue execution or not.

erl _drv_consune_tineslice() returnsanon-zero valueif the time-dice has been exhausted, and zero if the
callback is allowed to continue execution. If anon-zero value is returned the driver callback should return as soon as
possiblein order for the port to be able to yield.

This function is provided to better support co-operative scheduling, improve system responsiveness, and to make it
easier to prevent misbehaviors of the VM due to a port monopolizing a scheduler thread. It can be used when dividing
length work into a number of repeated driver callback calls without the need to use threads. Also see the important
warning text at the beginning of this document.

char *erl drv_cond name(ErlDrvCond *cnd)
Arguments:

cnd
A pointer to an initialized condition.

Returns a pointer to the name of the condition.

Note:
This function isintended for debugging purposes only.

char *erl drv_mutex name(ErlDrvMutex *mtx)
Arguments:

nt x
A pointer to an initialized mutex.

318 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Returns a pointer to the name of the mutex.

Note:
This function isintended for debugging purposes only.

char *erl drv_rwlock name(ErlDrvRWLock *rwlck)
Arguments:

rw ck
A pointer to an initialized r/w-lock.

Returns a pointer to the name of the r/w-lock.

Note:
This function isintended for debugging purposes only.

char *erl drv_thread name(ErlDrvTid tid)
Arguments:
tid
A thread identifier.
Returns a pointer to the name of the thread.

Note:
This function isintended for debugging purposes only.

ErlDrvTime erl drv_monotonic time(ErlDrvTimeUnit time unit)
Arguments:

time_unit
Time unit of returned value.

Returns Erlang monotonic time. Note that it is not uncommon with negative values.

Returns ERL_DRV_TI ME_ERRORif called with an invalid time unit argument, or if called from athread that is not
a scheduler thread.

See also:

e ErlDrvTine
e FErlDrvTineUnit

ErlDrvTime erl drv_time offset(ErlDrvTimeUnit time unit)
Arguments:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 319

erl_driver

tinme_unit
Time unit of returned value.

Returnsthe current time of fset between Erlang monotonic timeand Erlang systemtimeconvertedintothet i me_uni t
passed as argument.

Returns ERL_DRV_TI ME_ERRORif called with an invalid time unit argument, or if called from a thread that is not
a scheduler thread.

See also:

e ErlDrvTine
e ErlDrvTi nmeUnit

ErlDrvTime erl drv_convert time unit(ErlDrvTime val, ErlDrvTimeUnit from,
ErlDrvTimeUnit to)

Arguments:

val

Value to convert time unit for.
from

Timeunit of val .
to

Time unit of returned value.

Converts the val value of time unit f r omto the corresponding value of time unit t 0. The result is rounded using
the floor function.

Returns ERL_DRV_TI ME_ERRCRif called with an invalid time unit argument.
See also:

e ErlDrvTine
e ErlDrvTi neUnit

SEE ALSO
driver_entry(3), erl_ddlI(3), erlang(3)
An Alternative Distribution Driver (ERTS User's Guide Ch. 3)

320 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

driver_entry
C Library

Warning:
Use this functionality with extreme care!

A driver callback is executed as a direct extension of the native code of the VM. Execution is not made in a
safe environment. The VM can not provide the same services as provided when executing Erlang code, such as
preemptive scheduling or memory protection. If the driver callback function doesn't behave well, the whole VM
will misbehave.

e A driver callback that crash will crash the whole VM.

e Anerroneously implemented driver callback might causeaVM internal stateinconsistency which may cause
acrash of the VM, or miscellaneous misbehaviors of the VM at any point after the call to the driver callback.

e Adriver callback that do lengthy work before returning will degraderesponsiveness of the VM, and may cause
miscellaneous strange behaviors. Such strange behaviors include, but are not limited to, extreme memory
usage, and bad |oad balancing between schedulers. Strange behaviors that might occur due to lengthy work
may also vary between OTP releases.

As of erts version 5.9 (OTP release R15B) the driver interface has been changed with larger types for the callbacks
output, control and call. See driver version management in erl_driver.

Note:

Old drivers (compiled with an er| _dri ver. h from an earlier erts version than 5.9) have to be updated and
have to use the extended interface (with version management).

Thedri ver _ent ry structureisaC struct that all erlang drivers define. It contains entry points for the erlang driver
that are called by the erlang emulator when erlang code accesses the driver.

Theerl_driver driver API functions need aport handle that identifies the driver instance (and the port in the emul ator).
This is only passed to the st art function, but not to the other functions. The st art function returns a driver-
defined handle that is passed to the other functions. A common practiceisto havethe st art function allocate some
application-defined structure and stash thepor t handlein it, to use it later with the driver API functions.

The driver call-back functions are called synchronously from the erlang emulator. If they take too long before
completing, they can cause timeouts in the emulator. Use the queue or asynchronous calls if necessary, since the
emulator must be responsive.

Thedriver structure containsthe name of the driver and some 15 function pointers. These pointersare called at different
times by the emulator.

The only exported function from the driver is dri ver _init. This function returns the dri ver_entry
structure that points to the other functions in the driver. The dri ver _i ni t function is declared with a macro
DRI VER | NI T(dri ver nane) . (Thisis because different OS's have different namesfor it.)

When writing a driver in C++, the driver entry should be of " C" linkage. One way to do this is to put this line
somewhere before the driver entry: ext ern "C' DRI VER_I NI T(dri ver nane); .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 321

driver_entry

When the driver has passed the dri ver _ent ry over to the emulator, the driver is not alowed to modify the
driver_entry.

If compiling adriver for static inclusion via --enable-static-drivers you have to define STATIC_ERLANG_DRIVER
beforethe DRIVER _INIT declaration.

Note:

Do not declare the dri ver _entry const . This since the emulator needs to modify the handl e, and the
handl e2 fields. A statically allocated, and const declared dri ver _entry may be located in read only
memory which will cause the emulator to crash.

DATA TYPES
ErIDrvEntry

typedef struct erl drv_entry {
int (*init) (void); /* called at system start up for statically
linked drivers, and after loading for
dynamically loaded drivers */

#ifndef ERL SYS DRV
ErlDrvData (*start)(ErlDrvPort port, char *command);
/* called when open port/2 is invoked.
return value -1 means failure. */
#else
ErlDrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);
/* special options, only for system driver */
#endif
void (*stop) (ErlDrvData drv _data);
/* called when port is closed, and when the
emulator is halted. */
void (*output) (ErlDrvData drv_data, char *buf, ErlDrvSizeT len);
/* called when we have output from erlang to
the port */
void (*ready input) (ErlDrvData drv_data, ErlDrvEvent event);
/* called when we have input from one of
the driver's handles */
void (*ready output) (ErlDrvData drv_data, ErlDrvEvent event);
/* called when output is possible to one of
the driver's handles */

char *driver name; /* name supplied as command
in open port XXX ? */

void (*finish) (void); /* called before unloading the driver -
DYNAMIC DRIVERS ONLY */

void *handle; /* Reserved -- Used by emulator internally */

ErlDrvSSizeT (*control) (ErlDrvData drv_data, unsigned int command,
char *buf, ErlDrvSizeT len,
char **rbuf, ErlDrvSizeT rlen);
/* "ioctl" for drivers - invoked by
port control/3 */
void (*timeout) (ErlDrvData drv_data); /* Handling of timeout in driver */
void (*outputv) (ErlDrvData drv_data, ErlIOVec *ev);
/* called when we have output from erlang
to the port */
void (*ready async) (ErlDrvData drv_data, ErlDrvThreadData thread data);
void (*flush)(ErlDrvData drv_data);
/* called when the port is about to be

322 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

closed, and there is data in the
driver queue that needs to be flushed
before 'stop' can be called */
ErlDrvSSizeT (*call) (ErlDrvData drv_data, unsigned int command,
char *buf, ErlDrvSizeT len,
char **rbuf, ErlDrvSizeT rlen, unsigned int *flags);
/* Works mostly like 'control', a synchronous
call into the driver. */
void (*event) (ErlDrvData drv_data, ErlDrvEvent event,
ErlDrvEventData event data);
/* Called when an event selected by
driver event() has occurred */

int extended marker; /* ERL_DRV_EXTENDED MARKER */

int major version; /* ERL DRV_EXTENDED MAJOR VERSION */

int minor version; /* ERL DRV_EXTENDED MINOR VERSION */

int driver flags; /* ERL_DRV_FLAGs */

void *handle2; /* Reserved -- Used by emulator internally */

void (*process exit) (ErlDrvData drv_data, ErlDrvMonitor *monitor);
/* Called when a process monitor fires */
void (*stop select) (ErlDrvEvent event, void* reserved);
/* Called to close an event object */
} ErlDrvEntry;

int (*init)(void)
Thisiscalled directly after the driver hasbeen loaded by er | _ddl | : | oad_dri ver/ 2. (Actualy when
the driver is added to the driver list.) The driver should return O, or if the driver can't initialize, -1.
ErIDrvData (* start)(ErlDrvPort port, char* command)

This is called when the driver is instantiated, when open_port/ 2 is caled. The driver should return a
number >= 0 or a pointer, or if the driver can't be started, one of three error codes should be returned:

ERL_DRV_ERROR_GENERAL - genera error, no error code
ERL_DRV_ERROR_ERRNO - error with error codeiner r no
ERL_DRV_ERROR_BADARG - error, badarg
If an error code is returned, the port isn't started.

void (*stop)(ErIDrvData drv_data)

Thisiscalled when the port isclosed, withport _cl ose/ LorPort ! {self(), cl ose}.Notethat
terminating the port owner process also closes the port. If dr v_dat a is a pointer to memory allocated in
st art, then st op isthe place to deallocate that memory.

void (*output)(ErIDrvData drv_data, char *buf, ErIDrvSizeT len)

Thisiscalled when an erlang process has sent datato the port. Thedataispointed to by buf , andisl en bytes.
Datais sent to the port with Port ! {sel f(), {comand, Data}},orwithport_ comuand/ 2.
Depending on how the port was opened, it should be either a list of integers 0...255 or a binary. See
open_port/3andport_comrand/ 2.

void (*ready_input)(ErIDrvDatadrv_data, ErIDrvEvent event)
void (*ready_output)(ErlDrvData drv_data, ErIDrvEvent event)

This is called when a driver event (given in the event parameter) is signaled. This is used to help
asynchronous drivers "wake up” when something happens.

On unix theevent isapipe or socket handle (or something that the sel ect system call understands).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 323

driver_entry

On Windowstheevent isan Event or Semaphore (or something that theWai t For Mul ti pl eCbj ect s
API function understands). (Sometrickery in the emulator allows more than the built-in limit of 64 Event s
to be used.)

On Enea OSE the event isone or more signals that can be retrieved using erl_drv_ose get _signal.

To use thiswith threads and asynchronous routines, create a pipe on unix, an Event on Windows or aunique
signal number on Enea OSE. When the routine compl etes, write to the pipe (use Set Event on Windows
or send a message to the emulator process on Enea OSE), this will make the emulator call r eady i nput
orready_out put .

Spurious events may happen. That is, callsto r eady_i nput or r eady_out put even though no real
events are signaled. In reality it should be rare (and OS dependant), but a robust driver must nevertheless
be able to handle such cases.

char *driver_name

This is the name of the driver, it must correspond to the atom used in open_por t , and the name of the
driver library file (without the extension).

void (*finish)(void)

Thisfunction is called by theer | _ddl | driver when the driver is unloaded. (It is only called in dynamic
drivers.)

Thedriver is only unloaded as aresult of calling unl oad_dri ver/ 1, or when the emulator halts.
void *handle

This field is reserved for the emulator's internal use. The emulator will modify this field; therefore, it is
important that thedr i ver _ent ry isn't declared const .

ErIDrvSSizeT (* control)(ErlDrvData drv_data, unsigned int command, char *buf, ErlDrvSizeT len, char
**rpuf, ErlIDrvSizeT rlen)

Thisisaspecial routineinvoked withtheerlang functionport _cont r ol / 3. Itworksalittlelikean "ioctl"
for erlang drivers. The data given to port _control / 3 arrivesin buf and | en. The driver may send
data back, using *r buf andr | en.

Thisisthe fastest way of calling adriver and get aresponse. It won't make any context switch in the erlang
emulator, and requires no message passing. It is suitable for calling C function to get faster execution, when
erlang istoo slow.

If the driver wants to return data, it should returnitinr buf . Whencont r ol iscaled, * r buf pointstoa
default buffer of r | en bytes, which can be used to return data. Data is returned different depending on the
port control flags (those that are set with set_port_control_flags).

If the flag is set to PORT_CONTRCL_FLAG BI NARY, a binary will be returned. Small binaries can be
returned by writing the raw data into the default buffer. A binary can also be returned by setting * r buf to
point to abinary allocated with driver_alloc_binary. Thisbinary will befreed automatically after cont r ol
has returned. The driver can retain the binary for read only access with driver_binary_inc_refc to be freed
later with driver_free binary. It is never allowed to alter the binary after cont r ol hasreturned. If *r buf
isset to NULL, an empty list will be returned.

If the flag is set to O, data is returned as a list of integers. Either use the default buffer or set *r buf to
point to alarger buffer allocated with driver_alloc. The buffer will be freed automatically after cont r ol
has returned.

Using binariesis faster if more than afew bytes are returned.
The return value is the number of bytesreturnedin *r buf .

324 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

void (*timeout)(ErlDrvDatadrv_data)

This function is called any time after the driver's timer reaches 0. The timer is activated with
driver_set _timer. Thereareno prioritiesor ordering among drivers, so if severa driverstime out at
the same time, any one of them is called first.

void (*outputv)(ErlIDrvData drv_data, ErllOVec *ev)

Thisfunction is called whenever the port iswritten to. If it iSNULL, the out put function is called instead.
Thisfunction isfaster than out put , becauseit takesan Er | | Ovec directly, which requires no copying of
the data. The port should be in binary mode, seeopen_port/ 2.

The Erl | OVec contains both a Sysl OVec, suitable for writ ev, and one or more binaries. If
these binaries should be retained, when the driver returns from out put v, they can be queued (using
driver_enq_bin for instance), or if they are kept in a static or global variable, the reference counter can be
incremented.

void (*ready_async)(ErlDrvDatadrv_data, ErlDrvThreadDatathread data)

This function is called after an asynchronous call has completed. The asynchronous call is started with
driver_async. This function is called from the erlang emulator thread, as opposed to the asynchronous
function, which is called in some thread (if multithreading is enabled).

ErIDrvSSizeT (*call)(ErlDrvDatadrv_data, unsigned int command, char *buf, ErlDrvSizeT len, char **rbuf,
ErIDrvSizeT rlen, unsigned int *flags)

Thisfunctioniscaledfromer | ang: port _cal | / 3. Itworksalot likethecont r ol call-back, but uses
the external term format for input and output.

comuand is an integer, obtained from the call from erlang (the second argument to
erl ang: port_cal |/ 3).

buf and | en provide the arguments to the call (the third argument to er | ang: port _cal |1/ 3). They
can be decoded using ei functions.

r buf points to a return buffer, r | en bytes long. The return data should be a valid erlang term in the
externa (binary) format. Thisis converted to an erlang term and returned by er | ang: port _cal 1l /3 to
the caller. If more spacethanr | en bytesis needed to return data, * r buf can be set to memory allocated
withdri ver _al | oc. Thismemory will be freed automatically after cal | hasreturned.

The return value is the number of bytes returned in *r buf . If ERL_DRV_ERROR GENERAL is returned
(or infact, anything < 0), er | ang: port _cal | / 3 will throw aBAD_ARG.

void (*event)(ErIDrvDatadrv_data, ErlDrvEvent event, ErlDrvEventData event_data)
Intentionally left undocumented.
int extended _marker

Thisfield should either be equal to ERL_DRV_EXTENDED MARKER or 0. An old driver (not aware of the
extended driver interface) should set this field to 0. If this field is equal to 0, all the fields following this
field a'so haveto be 0, or NULL in caseit isapointer field.

int mgjor_version

This field should equal ERL_DRV_EXTENDED MAJOR VERSI ON if the ext ended_mar ker field
equals ERL_DRV_EXTENDED MARKER.

int minor_version

This field should equal ERL_DRV_EXTENDED M NOR_VERSI ON if the ext ended_nar ker field
equalsERL_DRV_EXTENDED MARKER.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 325

driver_entry

int driver_flags

This field is used to pass driver capability and other information to the runtime system. If the
ext ended_nar ker field equals ERL_DRV_EXTENDED MARKER, it should contain O or driver flags
(ERL_DRV_FLAG *) ored bitwise. Currently the following driver flags exist:

ERL_DRV_FLAG USE_PORT_LOCKI NG
The runtime system will use port level locking on all ports executing this driver instead of driver
level locking when the driver is run in aruntime system with SMP support. For more information see
the erl_driver documentation.
ERL_DRV_FLAG SOFT_BUSY
Marks that driver instances can handle being called in the output and/or outputv callbacks even
though a driver instance has marked itself as busy (see set_busy port()). Since ertsversion 5.7.4 this
flag isrequired for drivers used by the Erlang distribution (the behaviour has aways been required by
drivers used by the distribution).
ERL_DRV_FLAG NO BUSY_MSGQQ
Disable busy port message queue functionality. For more information, see the documentation of the
erl_drv_busy msgq_limits() function.
void *handle2

This field is reserved for the emulator's internal use. The emulator will modify this field; therefore, it is
important that thedr i ver _ent ry isn't declared const .

void (* process_exit)(ErlDrvData drv_data, ErlDrvMonitor * monitor)

This callback is called when a monitored process exits. The dr v_dat a is the data associated with the
port for which the process is monitored (using driver_monitor_process) and the noni t or corresponds
to the Er | Dr vivbni t or structure filled in when creating the monitor. The driver interface function
driver_get _monitored_process can be used to retrieve the process id of the exiting process as an
Er| DrvTer nDat a.

void (*stop_select)(ErlDrvEvent event, void* reserved)
Thisfunction is called on behalf of driver_select when it is safe to close an event object.
A typical implementation on Unix istodo cl ose((i nt)event).
Argument r eser ved isintended for future use and should be ignored.

In contrast to most of the other call-back functions, st op_sel ect is caled independent of any port. No
Er | Dr vDat a argument is passed to the function. No driver lock or port lock is guaranteed to be held. The
port that called dr i ver _sel ect might even be closed at thetime st op_sel ect iscalled. But it could
also bethe casethat st op_sel ect iscalled directly by dri ver _sel ect .

It is not allowed to call any functionsin the driver API from st op_sel ect . This strict limitation is due
to the volatile context that st op_sel ect may be called.

SEE ALSO
erl_driver(3), erl_ddlI(3), erlang(3), kernel(3)

326 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

erts_alloc
C Library

erts_al | oc isan Erlang Run-Time System internal memory allocator library. ert s_al | oc provides the Erlang
Run-Time System with a number of memory alocators.

Allocators
Currently the following allocators are present:

tenp_all oc
Allocator used for temporary allocations.
eheap_al | oc
Allocator used for Erlang heap data, such as Erlang process heaps.
bi nary_al | oc
Allocator used for Erlang binary data.
ets_alloc
Allocator used for ETS data.
driver_alloc
Allocator used for driver data.

sl _alloc
Allocator used for memory blocks that are expected to be short-lived.
I1_alloc

Allocator used for memory blocks that are expected to be long-lived, for example Erlang code.
fix_alloc
A fast alocator used for some frequently used fixed size data types.
std_all oc
Allocator used for most memory blocks not alocated via any of the other allocators described above.
sys_all oc
Thisis normally the default mal | oc implementation used on the specific OS.
nmseg_al | oc
A memory segment allocator. nseg_al | oc isused by other allocators for allocating memory segmentsand is
currently only available on systems that have the mmap system call. Memory segments that are deallocated are
kept for awhile in a segment cache before they are destroyed. When segments are allocated, cached segments
areused if possible instead of creating new segments. Thisin order to reduce the number of system calls made.

sys_al | oc is always enabled and cannot be disabled. nseg_al | oc is aways enabled if it is available and an
allocator that usesit is enabled. All other allocators can be enabled or disabled. By default all allocators are enabled.
When an allocator isdisabled, sys_al | oc isused instead of the disabled allocator.

The main ideawith the ert s_al | oc library is to separate memory blocks that are used differently into different
memory areas, and by thisachieving lessmemory fragmentation. By putting lesseffort in finding agood fit for memory
blocks that are frequently allocated than for those less frequently allocated, a performance gain can be achieved.

The alloc_util framework

Internally aframework called al | oc_ut i | isused for implementing allocators. sys_al | oc,andmseg_al | oc
do not use this framework; hence, the following does not apply to them.

An alocator manages multiple areas, caled carriers, in which memory blocks are placed. A carrier is either placed
in a separate memory segment (allocated vianseg_al | oc), or in the heap segment (allocated viasys_al | oc).
Multiblock carriersare used for storage of several blocks. Singleblock carriersare used for storage of oneblock. Blocks
that are larger than the value of the singleblock carrier threshold (sbct) parameter are placed in singleblock carriers.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 327

erts_alloc

Blocksthat are smaller than the value of thesbct parameter are placed in multiblock carriers. Normally an allocator
creates a"main multiblock carrier”. Main multiblock carriers are never deallocated. The size of the main multiblock
carrier is determined by the value of the mmbcs parameter.

Sizes of multiblock carriers allocated vianseg_al | oc are decided based on the values of the largest multiblock
carrier size (Imbcs), the smallest multiblock carrier size (smbcs), and the multiblock carrier growth stages (mbcgs)
parameters. If nc is the current number of multiblock carriers (the main multiblock carrier excluded) managed by
an allocator, the size of the next nseg_al | oc multiblock carrier allocated by this alocator will roughly be snbcs
+nc* (| mbcs-snbcs) / nbcgs whennc <= nbcgs, and| nbcs whennc > nbcgs. If thevaue of thesbct

parameter should belarger than the value of thel mbcs parameter, the allocator may haveto create multiblock carriers
that are larger than the value of the | mbcs parameter, though. Singleblock carriers allocated vianseg_al | oc are
sized to whole pages.

Sizes of carriers adlocated via sys_al | oc are decided based on the value of the sys_al | oc carrier size (ycs)
parameter. The size of a carrier is the least number of multiples of the value of the ycs parameter that satisfies the
request.

Coalescing of free blocks are always performed immediately. Boundary tags (headers and footers) in free blocks are
used which makes the time complexity for coalescing constant.

The memory allocation strategy used for multiblock carriers by an allocator is configurable via the as parameter.
Currently the following strategies are available:

Best fit
Strategy: Find the smallest block that satisfies the requested block size.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
isthe number of sizes of free blocks.

Address order best fit

Strategy: Find the smallest block that satisfies the requested block size. If multiple blocks are found, choose the
one with the lowest address.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Address order first fit
Strategy: Find the block with the lowest address that satisfies the requested block size.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Address order first fit carrier best fit

Strategy: Find the carrier with the lowest address that can satisfy the requested block size, then find a block
within that carrier using the "best fit" strategy.

Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N
is the number of free blocks.

Address order first fit carrier address order best fit

Strategy: Find the carrier with the lowest address that can satisfy the requested block size, then find a block
within that carrier using the "adress order best fit" strategy.

Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N
is the number of free blocks.

Good fit
Strategy: Try to find the best fit, but settle for the best fit found during alimited search.

328 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

Implementation: Theimplementation uses segregated free lists with a maximum block search depth (in each list)
in order to find agood fit fast. When the maximum block search depth is small (by default 3) thisimplementation
has atime complexity that is constant. The maximum block search depth is configurable viathe mbsd parameter.

A fit
Strategy: Do not search for afit, inspect only one free block to seeiif it satisfies the request. This strategy isonly
intended to be used for temporary allocations.

Implementation: Inspect the first block in afree-list. If it satisfies the request, it is used; otherwise, anew carrier
is created. The implementation has a time complexity that is constant.

Asof ertsversion 5.6.1 the emulator will refuse to use this strategy on other allocatorsthant enp_al | oc. This
sinceit will only cause problems for other allocators.

Apart from the ordinary allocators described above a number of pre-allocators are used for some specific data types.
These pre-alocators pre-allocate a fixed amount of memory for certain data types when the run-time system starts.
As long as pre-allocated memory is available, it will be used. When no pre-allocated memory is available, memory
will be alocated in ordinary alocators. These pre-allocators are typically much faster than the ordinary allocators, but
can only satisfy alimited amount of requests.

System Flags Effecting erts_alloc

Warning:

Only use these flags if you are absolutely sure what you are doing. Unsuitable settings may cause serious
performance degradation and even a system crash at any time during operation.

Memory allocator system flags have the following syntax: +M<S><P> <V> where <S> is a letter identifying a
subsystem, <P> is a parameter, and <V> is the value to use. The flags can be passed to the Erlang emulator (erl) as
command line arguments.

System flags effecting specific allocators have an upper-case letter as <S>. The following letters are used for the
currently present alocators:

e B: binary_alloc
e D std alloc

- E ets_alloc

« F fix_ alloc

e« H eheap_alloc
e« L: Il _alloc

« M nseg_alloc

e R driver_alloc
« S sl _alloc

e T:. tenp_alloc

e Y. sys_ alloc

Thefollowing flags are available for configuration of nseg_al | oc:

+Mvanchbf <size>
Absolute max cache bad fit (in kilobytes). A segment in the memory segment cache is not reused if its size
exceeds the requested size with more than the value of this parameter. Default value is 4096.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 329

erts_alloc

+MVF ncbf <rati o>
Relative max cache bad fit (in percent). A segment in the memory segment cache is not reused if its size
exceeds the requested size with more than relative max cache bad fit percent of the requested size. Default
valueis 20.

+Mvsco true|fal se
Set super carrier only flag. Thisflag defaultstot r ue. When a super carrier is used and thisflagist r ue,
nseg_al | oc will only create carriersin the super carrier. Note that theal | oc_ut i | framework may create
sys_al | oc carriers, so if you want all carriersto be created in the super carrier, you therefore want to disable
useof sys_al | oc carriersby also passing +Musac f al se. Whentheflagisf al se,nseg_al | oc will
try to create carriers outside of the super carrier when the super carrier isfull.
NOTE: Setting thisflagto f al se may not be supported on all systems. This flag will in that case be ignored.
NOTE: The super carrier cannot be enabled nor disabled on halfword heap systems. This flag will be ignored
on halfword heap systems.

+Mvscr f sd <anount >
Set super carrier reserved free segment descriptors. This parameter defaultsto 65536. This parameter
determines the amount of memory to reserve for free segment descriptors used by the super carrier. If the
system runs out of reserved memory for free segment descriptors, other memory will be used. This may
however cause fragmentation issues, so you want to ensure that this never happens. The maximum amount
of free segment descriptors used can be retrieved fromtheer t s_nmap tuple part of the result from calling
erlang:system info({allocator, mseg_alloc}).

+Mvscrpm true| fal se
Set super carrier reserve physical memory flag. Thisflag defaultstot r ue. When thisflagist r ue, physical
memory will be reserved for the whole super carrier at once when it is created. The reservation will after that
be left unchanged. When thisflag isset tof al se only virtual address space will be reserved for the super
carrier upon creation. The system will attempt to reserve physical memory upon carrier creations in the super
carrier, and attempt to unreserve physical memory upon carrier destructions in the super carrier.
NOTE: What reservation of physical memory actually means highly depends on the operating system, and
how it is configured. For example, different memory overcommit settings on Linux drastically change the
behaviour. Also note, setting thisflagto f al se may not be supported on all systems. Thisflag will in that case
be ignored.
NOTE: The super carrier cannot be enabled nor disabled on halfword heap systems. This flag will be ignored
on halfword heap systems.

+MVBCs <size in MB>
Set super carrier size (in MB). The super carrier size defaults to zero; i.e, the super carrier is by default
disabled. The super carrier is alarge continuous areain the virtual address space. nseg_al | oc will always
try to create new carriersin the super carrier if it exists. Notethat theal | oc_ut i | framework may create
sys_al | oc carriers. For moreinformation on this, see the documentation of the +Mvsco flag.
NOTE: The super carrier cannot be enabled nor disabled on halfword heap systems. This flag will be ignored
on halfword heap systems.

+Mvhcs <anount >
Max cached segments. The maximum number of memory segments stored in the memory segment cache. Valid
range is 0-30. Default valueis 10.

The following flags are available for configuration of sys_al | oc:

+MYe true
Enablesys_al | oc. Note: sys_al | oc cannot be disabled.

+MYm | i bc
mal | oc library to use. Currently only | i bc isavailable. | i bc enablesthe standard | i bc malloc
implementation. By default | i bc is used.

+Mytt <size>
Trim threshold size (in kilobytes). Thisis the maximum amount of free memory at the top of the heap
(allocated by sbr k) that will be kept by mal | oc (not released to the operating system). When the amount of

330 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

free memory at the top of the heap exceeds the trim threshold, mal | oc will releaseit (by calling sbr k). Trim
threshold is given in kilobytes. Default trim threshold is 128. Note: Thisflag will only have any effect when the
emulator has been linked with the GNU C library, and usesits nal | oc implementation.

+MYtp <size>
Top pad size (in kilobytes). This is the amount of extra memory that will be allocated by mal | oc when
sbr k is called to get more memory from the operating system. Default top pad size is 0. Note: Thisflag
will only have any effect when the emulator has been linked with the GNU C library, and usesitsnal | oc
implementation.

The following flags are available for configuration of allocators based onal | oc_uti | . If u isused as subsystem
identifier (i.e., <S> = u) adl alocatorsbasedonal | oc_uti | will beeffected. If B,D,E,F,H,L, RS, or T isused
as subsystem identifier, only the specific allocator identified will be effected:

+MkS>acul <utilization>|de
Abandon carrier utilization limit. A valid<ut i | i zati on>isaninteger intherange[0, 100]
representing utilization in percent. When a utilization value larger than zero is used, allocator instances are
alowed to abandon multiblock carriers. If de (default enabled) is passed instead of a<uti | i zati on>, a
recomended non zero utilization value will be used. The actual value chosen depend on allocator type and may
be changed between ERTS versions. Currently the default equals de, but this may be changed in the future.
Carriers will be abandoned when memory utilization in the alocator instance falls below the utilization value
used. Once a carrier has been abandoned, no new alocations will be made in it. When an allocator instance gets
an increased multiblock carrier need, it will first try to fetch an abandoned carrier from an allocator instances of
the same alocator type. If no abandoned carrier could be fetched, it will create anew empty carrier. When an
abandoned carrier has been fetched it will function as an ordinary carrier. This feature has specia requirements
on the allocation strategy used. Currently only the strategies aof f , aof f cbf and aof f caobf support
abandoned carriers. This feature also requires multiple thread specific instances to be enabled. When enabling
this feature, multiple thread specific instances will be enabled if not already enabled, and the aof f cbf
strategy will be enabled if current strategy does not support abandoned carriers. This feature can be enabled on
al alocatorsbased ontheal | oc_uti | framework with the exception of t enp_al | oc (which would be
pointless).

+MkS>as bf | aobf | aof f | aof f cbf | aof f caobf | gf | af
Allocation strategy. Valid strategies are bf (best fit), aobf (address order best fit), aof f (address order first
fit), aof f cbf (addressorder first fit carrier best fit), aof f caobf (address order first fit carrier address
order best fit), gf (good fit), and af (afit). Seethe description of allocation strategiesin "theal | oc_ut i |
framework" section.

+M<S>asbcst <si ze>
Absolute singleblock carrier shrink threshold (in kilobytes). When ablock located inannseg_al | oc
singleblock carrier is shrunk, the carrier will be left unchanged if the amount of unused memory isless than this
threshold; otherwise, the carrier will be shrunk. See also rsbest.

+MkS>e true| fal se
Enable allocator <S>.

+M<S>| nbes <si ze>
Largest (mseg_al | oc) multiblock carrier size (in kilobytes). See the description on how sizes for mseg_alloc
multiblock carriersare decided in "theal | oc_uti | framework" section. On 32-bit Unix style OS this limit
can not be set higher than 128 megabyte.

+MkS>nbegs <rati o>
(mseg_al | oc) multiblock carrier growth stages. See the description on how sizes for mseg_alloc multiblock
carriersaredecided in"theal | oc_ut i | framework" section.

+McS>nmbsd <dept h>
Max block search depth. This flag has effect only if the good fit strategy has been selected for alocator <S>.
When the good fit strategy is used, free blocks are placed in segregated free-lists. Each free list contains blocks
of sizesin a specific range. The max block search depth sets alimit on the maximum number of blocks to
inspect in afreelist during a search for suitable block satisfying the request.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 331

erts_alloc

+McS>mbces <si ze>
Main multiblock carrier size. Sets the size of the main multiblock carrier for allocator <S>. The main
multiblock carrier isallocated viasys_al | oc and is never deall ocated.

+McS>mmbce <anount >
Max nseg_al | oc multiblock carriers. Maximum number of multiblock carriers allocated vianseg_al | oc
by alocator <S>. When this limit has been reached, new multiblock carriers will be allocated via
sys_al |l oc.

+McS>msbe <anount >
Max nseg_al | oc singleblock carriers. Maximum number of singleblock carriers allocated via
nseg_al | oc by alocator <S>. When this limit has been reached, new singleblock carriers will be allocated
viasys_al |l oc.

+MS>ranv <bool >
Realloc always moves. When enabled, reallocate operations will more or less be trandated into an allocate,
copy, free sequence. This often reduce memory fragmentation, but costs performance.

+M&S>rnbenmt <rati o>
Relative multiblock carrier move threshold (in percent). When a block located in amultiblock carrier is shrunk,
the block will be moved if the ratio of the size of the returned memory compared to the previous sizeis more
than this threshold; otherwise, the block will be shrunk at current location.

+M<S>rsbenmt <rati o>
Relative singleblock carrier move threshold (in percent). When a block located in a singleblock carrier is
shrunk to a size smaller than the value of the shct parameter, the block will be left unchanged in the singleblock
carrier if theratio of unused memory is less than this threshold; otherwise, it will be moved into a multiblock
carrier.

+M<S>r sbest <rati o>
Relative singleblock carrier shrink threshold (in percent). When ablock located inannseg_al | oc
singleblock carrier is shrunk, the carrier will be left unchanged if the ratio of unused memory islessthan this
threshold; otherwise, the carrier will be shrunk. See a so asbcst.

+McS>sbcet <si ze>
Singleblock carrier threshold. Blocks larger than this threshold will be placed in singleblock carriers. Blocks
smaller than this threshold will be placed in multiblock carriers. On 32-bit Unix style OS this threshold can not
be set higher than 8 megabytes.

+McS>snbcs <si ze>
Smallest (nseg_al | oc) multiblock carrier size (in kilobytes). See the description on how sizes for
mseg_alloc multiblock carriersare decided in "theal | oc_ut i | framework" section.

+McS>t true|fal se

Multiple, thread specific instances of the allocator. This option will only have any effect on the runtime system
with SMP support. Default behaviour on the runtime system with SMP supportisNoSchedul er s+1 instances.
Each scheduler will use alock-free instance of its own and other threads will use a common instance.

It was previoudly (before ERTS version 5.9) possible to configure a smaller amount of thread specific instances
than schedulers. Thisis, however, not possible any more.

Currently the following flags are available for configuration of al l oc_util, i.e. al alocators based on
al 1 oc_util will beeffected:

+Muycs <size>
sys_al | oc carrier size. Carriers allocated viasys_al | oc will be allocated in sizes which are multiples
of thesys_al | oc carrier size. Thisis not true for main multiblock carriers and carriers allocated during a
memory shortage, though.

+Mummt <anount >
Max mseg_al | oc carriers. Maximum number of carriers placed in separate memory segments. When this
limit has been reached, new carriers will be placed in memory retrieved fromsys_al | oc.

332 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

+Musac <bool >
Allow sys_al | oc carriers. By defaultt r ue. If settof al se, sys_al | oc carrierswill never be created by
dlocatorsusing theal | oc_uti | framework.

Instrumentation flags:

+M mtrue|fal se
A map over current allocations is kept by the emulator. The allocation map can be retrieved viathe
i nstrument module. +M m true implies+M s true.+M m true isthesameas-instr.
+M s true|fal se
Status over allocated memory is kept by the emulator. The allocation status can be retrieved viathe
i nstrument module.
+Mt X
Reserved for future use. Do not use this flag.

Note:

When instrumentation of the emulator is enabled, the emulator uses more memory and runs slower.

Other flags:

+Mea min| max| r9c| r10b|r11b| config
nmn
Disables all allocators that can be disabled.
max
Enables all allocators (currently default).
r9c| r10bjr11b
Configures all allocators as they were configured in respective OTP release. These will eventualy be
removed.
config
Disables features that cannot be enabled while creating an allocator configuration with
erts alloc_config(3). Note, this option should only be used whilerunningert s_al | oc_confi g, not
when using the created configuration.
+M pm al || no
Lock physical memory. The default valueisno, i.e., no physical memory will be locked. If settoal | , all
memory mappings made by the runtime system, will be locked into physical memory. If settoal | , the
runtime system will fail to start if this feature is not supported, the user has not got enough privileges, or the
user is not allowed to lock enough physical memory. The runtime system will also fail with an out of memory
condition if the user limit on the amount of locked memory is reached.

Only some default values have been presented here. erlang: system info(allocator), and erlang: system_info({allocator,
Alloc}) can be used in order to obtain currently used settings and current status of the allocators.

Note:

Most of these flags are highly implementation dependent, and they may be changed or removed without prior
notice.

erts_al | oc isnot obliged to strictly use the settings that have been passed to it (it may even ignore them).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 333

erts_alloc

erts alloc_config(3) is atool that can be used to aid creation of anert s_al | oc configuration that is suitable for
alimited number of runtime scenarios.

SEE ALSO
erts alloc_config(3), erl(1), instrument(3), erlang(3)

334 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

erl_nif
C Library

A NIF library contains native implementation of some functions of an Erlang module. The native implemented
functions (NIFs) are called like any other functions without any difference to the caller. Each NIF must also
have an implementation in Erlang that will be invoked if the function is called before the NIF library has been
successfully loaded. A typical such stub implementation isto throw an exception. But it can also be used as afallback
implementation if the NIF library is not implemented for some architecture.

Warning:

Use this functionality with extreme care!

A native function is executed as a direct extension of the native code of the VM. Execution is not made in a
safe environment. The VM can not provide the same services as provided when executing Erlang code, such
as preemptive scheduling or memory protection. If the native function doesn't behave well, the whole VM will
misbehave.

* A native function that crash will crash the whole VM.

* Anerroneously implemented native function might causeaVVM internal state inconsistency which may cause
acrash of the VM, or miscellaneous misbehaviors of the VM at any point after the call to the native function.

« A native function that do lengthy work before returning will degrade responsiveness of the VM, and may
cause miscellaneous strange behaviors. Such strange behaviors include, but are not limited to, extreme
memory usage, and bad |oad bal ancing between schedul ers. Strange behaviorsthat might occur dueto lengthy
work may also vary between OTP releases.

A minimal example of aNIF library can look like this:

/* niftest.c */
#include "erl nif.h"

static ERL_NIF TERM hello(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{

}

return enif make string(env, "Hello world!", ERL NIF LATIN1);

static ErlNifFunc nif funcs[] =

{"hello", 0, hello}
}i
ERL NIF INIT(niftest,nif funcs,NULL,NULL,NULL,NULL)

and the Erlang module would have to look something like this:

-module(niftest).

-export([init/0, hello/0]).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 335

erl_nif

init() ->
erlang:load nif("./niftest", 0).

hello() ->
"NIF library not loaded".

and compile and test something like this (on Linux):

$> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL ROOT/usr/include/
$> erl

1> c(niftest).
{ok,niftest}

2> niftest:hello().

"NIF library not loaded"
3> niftest:init().

ok

4> niftest:hello().
"Hello world!"

A better solution for areal module is to take advantage of the new directive on_load to automatically load the NIF
library when the module is loaded.

Note:

A NIF does not have to be exported, it can be local to the module. Note however that unused local stub functions
will be optimized away by the compiler causing loading of the NIF library to fail.

A loaded NIF library istied to the Erlang module code version that loaded it. If the module is upgraded with a new
version, the new Erlang code will have to load its own NIF library (or maybe choose not to). The new code version
can however choose to load the exact same NIF library asthe old codeif it wantsto. Sharing the same dynamic library
will mean that static data defined by the library will be shared as well. To avoid unintentionally shared static data,
each Erlang module code can keep its own private data. This private data can be set when the NIF library is loaded
and then retrieved by calling enif_priv_data.

There is no way to explicitly unload a NIF library. A library will be automatically unloaded when the module code
that it belongsto is purged by the code server.

As mentioned in the warning text at the beginning of this document it is of vital importance that a native function
return relatively quickly. It ishard to give an exact maximum amount of time that a native function is allowed to work,
but as arule of thumb awell-behaving native function should return to its caller before a millisecond has passed. This
can be achieved using different approaches. If you have full control over the code to execute in the native function,
the best approach isto divide the work into multiple chunks of work and call the native function multiple times, either
directly from Erlang code or by having a native function schedule afuture NIF call viathe enif _schedule nif function.
Function enif_consume_timeslice can be used to help with such work division. In some cases, however, this might not
be possible, e.g. when calling third-party libraries. Then you typically want to dispatch the work to another thread,
return from the native function, and wait for the result. The thread can send the result back to the calling thread using
message passing. Information about thread primitives can be found below. If you have built your system with the
currently experimental support for dirty schedulers, you may want to try out this functionality by dispatching the work
to adirty NIF, which does not have the same duration restriction as a normal NIF.

336 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

FUNCTIONALITY

All functions that a NIF library needs to do with Erlang are performed through the NIF API functions. There are
functions for the following functionality:

Read and write Erlang terms

Any Erlang terms can be passed to a NIF as function arguments and be returned as function return values.
The terms are of C-type ERL_NIF_TERM and can only be read or written using API functions. Most functions
to read the content of a term are prefixed eni f _get _ and usualy return true (or false) if the term was
of the expected type (or not). The functions to write terms are al prefixed eni f_nake_ and usualy
return the created ERL_NI F_TERM There are also some functions to query terms, like eni f _i s_atom
enif _is identical andenif_conpare.

All terms of type ERL_NI F_TERM belong to an environment of type ErINifEnv. The lifetime of a term is
controlled by thelifetime of itsenvironment object. All API functionsthat read or writeterms hasthe environment,
that the term belongs to, as the first function argument.

Binaries
Terms of type binary are accessed with the help of the struct type ErINifBinary that contains a pointer (dat a) to
the raw binary data and the length (si ze) of the datain bytes. Both dat a and si ze are read-only and should

only bewritten using callsto API functions. Instances of Er | Ni f Bi nar y are however always allocated by the
user (usualy aslocal variables).

The raw data pointed to by dat a is only mutable after a call to enif_alloc_binary or enif_realloc_binary. All
other functionsthat operates on abinary will leave the data as read-only. A mutable binary must in the end either
be freed with enif_release_binary or made read-only by transferring it to an Erlang term with enif _make_binary.
But it does not have to happen in the same NIF call. Read-only binaries do not have to be released.

enif_make _new_binary can be used as a shortcut to allocate and return a binary in the same NIF call.
Binaries are sequences of whole bytes. Bitstrings with an arbitrary bit length have no support yet.
Resource objects

The use of resource objectsis asafe way to return pointersto native data structuresfromaNIF. A resource object
isjust ablock of memory allocated with enif_alloc_resource. A handle ("safe pointer") to this memory block can
then be returned to Erlang by the use of enif_make resource. Thetermreturned by eni f _rmake_r esour ceis
totally opaque in nature. It can be stored and passed between processes on the same node, but the only real end
usage isto passit back as an argument to aNIF. The NIF can then call enif_get resource and get back a pointer
to the memory block that is guaranteed to still be valid. A resource object will not be deallocated until the last
handle term has been garbage collected by the VM and the resource has been released with enif_release resource
(not necessarily in that order).

All resource objects are created asinstances of some resour ce type. This makes resources from different modules
to be distinguishable. A resource type is created by calling enif_open_resource type when a library is loaded.
Objects of that resource type can then later be alocated and eni f _get _r esour ce verifies that the resource
is of the expected type. A resource type can have a user supplied destructor function that is automatically called
when resources of that type are released (by either the garbage collector or eni f _r el ease_r esour ce).
Resource types are uniquely identified by a supplied name string and the name of the implementing module.

Here is atemplate example of how to create and return a resource object.

ERL_NIF TERM term;
MyStruct* obj = enif alloc resource(my resource type, sizeof(MyStruct));

/* initialize struct ... */

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 337

erl_nif

term = enif make resource(env, obj);

if (keep _a reference of our own) {
/* store 'obj' in static variable, private data or other resource object */

}
else {

enif release resource(obj);

/* resource now only owned by "Erlang" */
}

return term;

Notethat onceeni f _make_r esour ce createstheterm to return to Erlang, the code can chooseto either keep
its own native pointer to the allocated struct and release it later, or release it immediately and rely solely on the
garbage collector to eventually deallocate the resource object when it collects the term.

Another usage of resource objects is to create binary terms with user defined memory management.
enif_make resource_binary will create abinary term that is connected to a resource object. The destructor of the
resource will be called when the binary is garbage collected, at which time the binary data can be released. An
example of this can be abinary term consisting of datafrom anmrap'ed file. The destructor can then do munmap
to release the memory region.

Resource types support upgrade in runtime by allowing a loaded NIF library to takeover an already existing
resourcetypeand thereby "inherit" all existing objectsof that type. The destructor of the new library will thereafter
be called for theinherited objects and the library with the old destructor function can be safely unloaded. Existing
resource objects, of amodule that is upgraded, must either be deleted or taken over by the new NIF library. The
unloading of alibrary will be postponed as long as there exist resource objects with a destructor function in the
library.

Threads and concurrency

A NIF isthread-safe without any explicit synchronization aslong asit acts as a pure function and only reads the
supplied arguments. As soon as you write towards a shared state either through static variables or enif _priv_data
you need to supply your own explicit synchronization. Thisincludes termsin process independent environments
that are shared between threads. Resource objects will also require synchronization if you treat them as mutable.

Thelibrary initiaization callbacks| oad, r el oad and upgr ade are al thread-safe even for shared state data.
Version Management

When a NIF library is built, information about NIF API version is compiled into the library. When a NIF
library is loaded the runtime system verifies that the library is of a compatible version. er | _ni f . h defines
ERL_NI F_MAJOR VERSI ON, and ERL_NI F_M NOR_VERSI ON. ERL_NI F_MAJOR_VERSI ON will be
incremented when NIF library incompatible changes are made to the Erlang runtime system. Normally it will
suffice to recompile the NIF library when the ERL_NI F_MAJOR_VERSI ON has changed, but it could, under
rare circumstances, mean that NIF libraries have to be slightly modified. If so, thiswill of course be documented.
ERL_NI F_M NOR_VERSI ONwill be incremented when new features are added. The runtime system uses the
minor version to determine what features to use.

The runtime system will normally refuseto load aNIF library if the major versions differ, or if the major versions
are equal and the minor version used by the NIF library is greater than the one used by the runtime system. Old
NIF libraries with lower major versions will however be allowed after a bump of the major version during a
transition period of two major releases. Such old NIF libraries might however fail if deprecated features are used.

Time Measurement

Support for time measurement in NIF libraries:
e ErINfTinme
e ErINfTimeUnit

338 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

e enif_nonotonic_tinme()

« enif_time_offset()

e enif_convert tinme_unit()
Long-running NIFs

Nativefunctions must normally run quickly, asexplained earlier in thisdocument. They generally should execute
for no more than a millisecond. But not all native functions can execute so quickly; for example, functions that
encrypt large blocks of data or perform lengthy file system operations can often run for tens of seconds or more.

If the functionality of along-running NIF can be split so that its work can be achieved through a series of shorter
NIF calls, the application can either make that series of NIF calls from the Erlang level, or it can call a NIF
that first performs a chunk of the work, then invokes the enif_schedule_nif function to schedule another NIF call
to perform the next chunk. The final call scheduled in this manner can then return the overall result. Breaking
up along-running function in this manner enables the VM to regain control between calls to the NIFs, thereby
avoiding degraded responsiveness, scheduler load balancing problems, and other strange behaviours.

A NIF that cannot be split and cannot execute in amillisecond or lessiscalled a"dirty NIF" because it performs
work that the Erlang runtime cannot handle cleanly. Note that the dirty NIF functionality described here is
experimental and that you have to enable support for dirty schedulers when building OTP in order to try the
functionality out. Applications that make use of such functions must indicate to the runtime that the functions
are dirty so they can be handled specially. To schedule adirty NIF for execution, the appropriate flags value can
be set for the NIF in its ErINifFunc entry, or the application can call enif_schedule nif, passing to it a pointer
to the dirty NIF to be executed and indicating with the f | ags argument whether it expects the operation to be
CPU-bound or 1/0-bound.

Note:

Dirty NIF support is available only when the emulator is configured with dirty schedulers enabled. This
featureiscurrently disabled by default. To determine whether the dirty NIF APl isavailable, native code can
check to seeif the C preprocessor macro ERL_NI F_DI RTY_SCHEDULER_SUPPORT is defined. Also, if
the Erlang runtime was built without threading support, dirty schedulers are disabled. To check at runtime
for the presence of dirty scheduler threads, code can usethe eni f _syst em i nf o() API function.

INITIALIZATION
ERL_NIF_INIT(MODULE, ErINifFunc funcq], load, reload, upgrade, unload)
Thisisthe magic macro to initialize aNIF library. It should be evaluated in global file scope.

MODULE is the name of the Erlang module as an identifier without string quotations. It will be stringified by
the macro.

f uncs isastatic array of function descriptors for al theimplemented NIFsin thislibrary.

| oad, r el oad,upgr ade and unl oad are pointersto functions. Oneof | oad, r el oad or upgr ade will be
caledtoinitialize thelibrary. unl oad iscalled to release the library. They are all described individually below.

If compiling anif for static inclusion via --enable-static-nifs you have to define STATIC_ERLANG_NIF before
the ERL_NIF_INIT declaration.

int (*load)(ErINifEnv* env, void** priv_data, ERL_NIF_TERM load_info)
| oad iscaled when the NIF library isloaded and there is no previously loaded library for this module.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 339

erl_nif

*priv_dat a can be set to point to some private data that the library needs in order to keep a state between
NIF cals. eni f _priv_dat a will return this pointer. * pri v_dat a will beinitialized to NULL when | oad
iscalled.

| oad_i nf o isthe second argument to erlang:load_nif/2.

The library will fail to load if | oad returns anything other than 0. | oad can be NULL in case no initialization
is needed.

int (*upgrade)(ErINifEnv* env, void** priv_data, void** old_priv_data, ERL_NIF_TERM load_info)
upgr ade iscalled whenthe NIF library isloaded and thereis old code of this module with aloaded NIF library.

Worksthe same as| oad. Theonly differenceisthat * ol d_pri v_dat a aready contains the value set by the
lastcall tol oad orr el oad fortheold modulecode. * pri v_dat a will beinitializedto NULL whenupgr ade
iscalled. It isalowed to write to both *priv_dataand *old_priv_data.

The library will fail to load if upgr ade returns anything other than O or if upgr ade isNULL.
void (*unload)(ErINifEnv* env, void* priv_data)

unl oad is called when the module code that the NIF library belongs to is purged as old. New code of the same
module may or may not exist. Notethat unl oad isnot called for areplaced library asaconsequence of r el oad.

int (*reload)(ErINifEnv* env, void** priv_data, ERL_NIF_TERM load_info)

Note:

The reload mechanism is deprecated. It was only intended as a development feature. Do not use it as an upgrade
method for live production systems. It might be removed in future releases. Be sure to pass r el oad as NULL
to ERL_NIF_INIT to disable it when not used.

r el oad iscalled when the NIF library isloaded and there is already a previously loaded library for this module
code.

Worksthesameas| oad. Theonly differenceisthat* pri v_dat a already containsthe value set by the previous
call tol oad orr el oad.

The library will fail to load if r el oad returns anything other than O or if r el oad isNULL.

DATA TYPES
ERL_NIF_TERM

Variablesof type ERL_NI F_TERMcan refer to any Erlang term. Thisis an opaque type and values of it can only
by used either as argumentsto API functions or asreturn valuesfrom NIFs. All ERL_NI F_ TERMs belong to an
environment (ErINifEnv). A term can not be destructed individually, it isvalid until its environment is destructed.

ErINifEnv

Er | Ni f Env represents an environment that can host Erlang terms. All terms in an environment are valid as
long as the environment isvalid. Er I Ni f Env isan opague type and pointers to it can only be passed on to API
functions. There are two types of environments; process bound and process independent.

A process bound environment is passed as the first argument to all NIFs. All function arguments passed to a
NIF will belong to that environment. The return value from a NIF must also be a term belonging to the same
environment. In addition a process bound environment contains transient information about the calling Erlang
process. The environment is only valid in the thread where it was supplied as argument until the NIF returns. It
is thus useless and dangerous to store pointers to process bound environments between NIF calls.

340 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

A process independent environment is created by calling enif_alloc_env. It can be used to store terms between
NIF calls and to send terms with enif_send. A process independent environment with all its termsis valid until
you explicitly invalidates it with enif free envoreni f _send.

All contained terms of alist/tuple/map must belong to the same environment as the list/tuple/map itself. Terms
can be copied between environments with enif_make copy.

ErINifFunc

typedef struct {
const char* ;
unsigned ;
ERL NIF TERM (*)(ErINifEnv* env, int argc, const ERL_NIF TERM argv[]);
unsigned flags;
} ErlNifFunc;

Describes a NIF by its name, arity and implementation. f pt r is a pointer to the function that implements the
NIF. Theargument ar gv of aNIF will contain the function arguments passed to the NIF and ar gc isthelength
of the array, i.e. the function arity. ar gv[N- 1] will thus denote the Nth argument to the NIF. Note that the
ar gc argument allows for the same C function to implement several Erlang functions with different arity (but
same name probably). For aregular NIF, f | ags is 0 (and so its value can be omitted for statically initialized
Er | Ni f Func instances), or it can be used to indicate that the NIF is a dirty NIF that should be executed on a
dirty scheduler thread (note that the dirty NIF functionality described here is experimental and that you have to
enable support for dirty schedulers when building OTP in order to try the functionality out). If the dirty NIF is
expected to be CPU-bound, itsf | ags field should be set to ERL_NI F_DI RTY_JOB_CPU_BQOUND, or for I/
O-bound jobs, ERL_NI F_DI RTY_JOB_| O_BOUND.

ErINifBinary

typedef struct {
unsigned ;
unsigned char* ;
} ErlNifBinary;

Er | Ni f Bi nary contains transient information about an inspected binary term. dat a is a pointer to a buffer
of si ze byteswith the raw content of the binary.

Notethat Er | Ni f Bi nary isasemi-opague type and you are only allowed to read fields si ze and dat a.
ErINifPid

Er | Ni f Pi disaprocessidentifier (pid). Incontrast to pid terms(instancesof ERL_NI F_TERM), Er | Ni f Pi d's
are self contained and not bound to any environment. Er | Ni f Pi d isan opaque type.

ErINifResourceType

Each instance of Er | Ni f Resour ceType represent a class of memory managed resource objects that can be
garbage collected. Each resource type has a unique name and a destructor function that is called when objects
of itstype are released.

ErINifResourceDtor

typedef void ErlNifResourceDtor(ErlNifEnv* env, void* obj);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 341

erl_nif

The function prototype of aresource destructor function. A destructor function is not allowed to call any term-
making functions.

ErINifCharEncoding

typedef enum {
ERL_NIF LATIN1
}ErlNifCharEncoding;

The character encoding used in strings and atoms. The only supported encodingiscurrently ERL_NI F_LATI N1
for iso-latin-1 (8-bit ascii).

ErINifSysinfo

Used by enif_system info to return information about the runtime system. Contains currently the exact same
content as ErlDrvSysinfo.

ErINifSInt64
A native signed 64-bit integer type.
ErINifUInt64
A native unsigned 64-bit integer type.
ErINifTime
A signed 64-bit integer type for representation of time.
ErINif TimeUnit
An enumeration of time units supported by the NIF API:
ERL_NI F_SEC
Seconds
ERL_NI F_MSEC
Milliseconds
ERL_NI F_USEC
Microseconds
ERL_NI F_NSEC
Nanoseconds

Exports

void *enif alloc(size t size)
Allocate memory of si ze bytes. Return NULL if allocation failed.

int enif alloc binary(size t size, ErlNifBinary* bin)

Allocate a new binary of size si ze bytes. Initialize the structure pointed to by bi n to refer to the allocated
binary. The binary must either be released by enif release binary or ownership transferred to an Erlang term with
enif_make binary. An alocated (and owned) Er | Ni f Bi nar y can be kept between NIF calls.

Return true on success or falseif allocation failed.

342 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ErlNifEnv *enif alloc _env()

Allocate a new process independent environment. The environment can be used to hold terms that is not bound to
any process. Such terms can later be copied to a process environment with enif_make _copy or be sent to a process
as amessage with enif_send.

Return pointer to the new environment.

void *enif alloc resource(ErlNifResourceType* type, unsigned size)
Allocate a memory managed resource object of typet ype and size si ze bytes.

void enif clear env(ErlNifEnv* env)
Freeall termsin an environment and clear it for reuse. The environment must have been allocated with enif_alloc_env.

int enif compare(ERL NIF TERM lhs, ERL NIF TERM rhs)

Return an integer lessthan, equal to, or greater than zeroif | hs isfound, respectively, to belessthan, equal, or greater
thanr hs. Corresponds to the Erlang operators ==, / =, =<, <, >=and > (but not =: = or =/ =).

void enif cond broadcast(ErlNifCond *cnd)
Sameaserl_drv_cond broadcast.

ErlNifCond *enif cond create(char *name)
Sameaserl_drv_cond create.

void enif cond destroy(ErlNifCond *cnd)
Same as erl_drv_cond_destroy.

void enif cond signal(ErlNifCond *cnd)
Sameaserl_drv_cond signal.

void enif cond wait(ErlNifCond *cnd, ErlNifMutex *mtx)

Sameaserl_drv_cond wait.

int enif consume timeslice(ErlNifEnv *env, int percent)

Give the runtime system a hint about how much CPU time the current NIF call has consumed since last hint, or since
the start of the NIF if no previous hint has been given. Thetimeisgiven asaper cent of thetimeslice that a process
isalowed to execute Erlang code until it may be suspended to give time for other runnable processes. The scheduling
timesliceis not an exact entity, but can usually be approximated to about 1 millisecond.

Note that it is up to the runtime system to determine if and how to use this information. Implementations on some
platforms may use other means in order to determine consumed CPU time. Lengthy NIFs should regardless of this
frequently call eni f _consume_ti nmesl i ce in order to determineif it is allowed to continue execution or not.

Returns 1 if the timedlice is exhausted, or O otherwise. If 1 is returned the NIF should return as soon as possible in
order for the process to yield.

Argument per cent must be an integer between 1 and 100. This function must only be called from a NIF-calling
thread and argument env must be the environment of the calling process.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 343

erl_nif

Thisfunctionis provided to better support co-operative scheduling, improve system responsiveness, and makeit easier
to prevent misbehaviors of the VM due to a NIF monopolizing a scheduler thread. It can be used to divide length work
into a number of repeated NIF-calls without the need to create threads. See also the warning text at the beginning
of this document.

int enif equal tids(ErlNifTid tidl, ErNifTid tid2)
Sameaserl_drv_equal_tids.

void enif free(void* ptr)
Free memory alocated by eni f _al | oc.

void enif free env(ErlNifEnv* env)
Free an environment allocated with enif_alloc_env. All terms created in the environment will be freed as well.

int enif get atom(ErlNifEnv* env, ERL NIF TERM term, char* buf, unsigned
size, ErlNifCharEncoding encode)

Write a null-terminated string, in the buffer pointed to by buf of size si ze, consisting of the string representation
of the atom t er mwith encoding encode. Return the number of bytes written (including terminating null character)
or Oif t er misnot an atom with maximum length of si ze- 1.

int enif get atom length(ErlNifEnv* env, ERL NIF TERM term, unsigned* len,
ErlNifCharEncoding encode)

Set *| en to the length (number of bytes excluding terminating null character) of the atom t er mwith encoding
encode. Return true on success or falseif t er misnot an atom.

int enif get double(ErlNifEnv* env, ERL NIF TERM term, double* dp)
Set * dp to the floating point value of t er m Return true on success or false if t er mis not afloat.

int enif get int(ErlNifEnv* env, ERL NIF TERM term, int* ip)

Set *i p totheinteger value of t er m Return true on success or falseif t er misnot aninteger or is outside the bounds
of typei nt .

int enif get int64(ErlNifEnv* env, ERL NIF TERM term, ErlNifSInt64* ip)

Set*i p totheinteger value of t er m Return true on success or falseif t er misnot an integer or is outside the bounds
of asigned 64-bit integer.

int enif get local pid(ErlNifEnv* env, ERL_NIF TERM term, ErlNifPid* pid)

If t er misthe pid of anode local process, initialize the pid variable * pi d from it and return true. Otherwise return
false. No check if the processis aliveis done.

int enif get list cell(ErlNifEnv* env, ERL NIF TERM list, ERL_NIF TERM* head,
ERL_NIF TERM* tail)

Set*head and*tai | froml i st andreturntrue, or returnfalseif | i st isnot anon-empty list.

344 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

int enif get list length(ErlINifEnv* env, ERL NIF TERM term, unsigned* len)
Set *| en tothe length of list t er mand return true, or return false if t er misnot alist.

int enif get long(ErlNifEnv* env, ERL NIF TERM term, long int* ip)

Set *i p to the long integer value of t er mand return true, or return false if t er mis not an integer or is outside the
bounds of typel ong i nt.

int enif get map size(ErINifEnv* env, ERL _NIF TERM term, size t *size)
Set * si ze to the number of key-value pairsin the map t er mand return true, or return false if t er mis not amap.

int enif get map value(ErlNifEnv* env, ERL NIF TERM map, ERL NIF TERM key,
ERL_NIF TERM* value)

Set *val ue to the value associated with key in the map map and return true. Return false if map is not a map or
if map does not contain key.

int enif get resource(ErINifEnv* env, ERL_NIF TERM term, ErlNifResourceType*
type, void** objp)

Set * obj p to point to the resource object referredtoby t er m
Return true on success or falseif t er misnot a handle to aresource object of typet ype.

int enif get string(ErlNifEnv* env, ERL NIF TERM list, char* buf, unsigned
size, ErlNifCharEncoding encode)

Write anull-terminated string, in the buffer pointed to by buf withsizesi ze, consisting of the charactersin the string
| i st . The characters are written using encoding encode. Return the number of bytes written (including terminating
null character), or - si ze if the string was truncated due to buffer space, or 0 if | i st is not a string that can be
encoded with encode or if si ze wasless than 1. The written string is always null-terminated unless buffer si ze
islessthan 1.

int enif get tuple(ErlNifEnv* env, ERL NIF TERM term, int* arity, const
ERL NIF TERM** array)

Ift er misatuple, set* ar r ay to point to an array containing the elements of thetupleand set * ar i t y to the number
of elements. Note that the array isread-only and (*ar ray) [N- 1] will be the Nth element of the tuple. *ar r ay
isundefined if the arity of the tupleis zero.

Return true on success or falseif t er misnot atuple.

int enif get uint(ErlNifEnv* env, ERL NIF TERM term, unsigned int* ip)

Set *i p to the unsigned integer value of t er mand return true, or return falseif t er mis not an unsigned integer or
is outside the bounds of type unsi gned i nt.

int enif get uint64(ErlNifEnv* env, ERL NIF TERM term, ErlNifUInt64* ip)

Set *i p to the unsigned integer value of t er mand return true, or return false if t er mis not an unsigned integer or
is outside the bounds of an unsigned 64-hit integer.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 345

erl_nif

int enif get ulong(ErlNifEnv* env, ERL NIF TERM term, unsigned long* ip)

Set *i p to the unsigned long integer value of t er mand return true, or return falseif t er mis not an unsigned integer
or is outside the bounds of typeunsi gned | ong.

int enif getenv(const char* key, char* value, size t *value size)
Sameaserl_drv_getenv.

int enif has pending exception(ErlNifEnv* env, ERL NIF TERM* reason)

Return true if a pending exception is associated with the environment env. If r eason isanull pointer, ignore it.
Otherwise, if there's a pending exception associated with env, set the ERL_NIF_TERM to whichr eason pointsto
the value of the exception's term. For example, if enif_make badarg is called to set a pending badar g exception, a
subsequent call toeni f _has_pendi ng_excepti on(env, & eason) will setr eason totheatombadar g
then return true.

See also: enif_make_badarg and enif_raise_exception.
int enif inspect binary(ErlNifEnv* env, ERL NIF TERM bin term, ErlNifBinary*
bin)

Initialize the structure pointed to by bi n with information about the binary term bi n_t er m Return true on success
or falseif bi n_t er misnot abinary.

int enif inspect iolist as binary(ErlNifEnv* env, ERL_NIF TERM term,

ErlNifBinary* bin)

Initialize the structure pointed to by bi n with one continuous buffer with the same byte content asi ol i st . Aswith
inspect_binary, the data pointed to by bi n is transient and does not need to be released. Return true on success or
faseifi ol i st isnotaniolist.

int enif_is atom(ErlNifEnv* env, ERL_NIF TERM term)
Return trueif t er misan atom.

int enif is binary(ErlNifEnv* env, ERL NIF TERM term)
Return trueif t er misabinary

int enif is empty list(ErlNifEnv* env, ERL_NIF TERM term)
Return trueif t er misan empty list.

int enif _is exception(ErlNifEnv* env, ERL_NIF TERM term)
Return trueif t er mis an exception.

int enif is map(ErlNifEnv* env, ERL NIF TERM term)
Return trueif t er misamap, false otherwise.

int enif_is number (ErlNifEnv* env, ERL_NIF TERM term)
Return trueif t er misanumber.

346 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

int enif is fun(ErlNifEnv* env, ERL NIF TERM term)
Return trueif t er misafun.

int enif is identical(ERL_NIF TERM lhs, ERL _NIF TERM rhs)
Return trueif the two terms are identical. Corresponds to the Erlang operators =: = and =/ =.

int enif _is on_dirty scheduler(ErlNifEnv* env)

Check to seeif the current NIF is executing on adirty scheduler thread. If the emulator is built with threading support,
calingeni f _is_on_dirty_schedul er from within adirty NIF returns true. It returns false when the calling
NIF isaregular NIF running on anormal scheduler thread, or when the emulator is built without threading support.

Note:

This function is available only when the emulator is configured with dirty schedulers enabled. This feature is
currently disabled by default. To determine whether the dirty NIF API is available, native code can check to see
if the C preprocessor macro ERL_NI F_DI RTY_SCHEDULER SUPPORT is defined.

int enif is pid(ErNifEnv* env, ERL _NIF TERM term)
Return trueif t er misapid.

int enif is port(ErlNifEnv* env, ERL NIF TERM term)
Return trueif t er misaport.

int enif is ref(ErNifEnv* env, ERL_NIF TERM term)
Return trueif t er misareference.

int enif is tuple(ErlNifEnv* env, ERL NIF TERM term)
Return trueif t er misatuple.

int enif is list(ErlNifEnv* env, ERL NIF TERM term)
Return trueif t er misalist.

int enif keep resource(void* obj)

Add a reference to resource object obj obtained from enif_alloc_resource. Each call to eni f _keep_r esource
for an object must be balanced by a call to enif _release resource before the object will be destructed.

ERL NIF TERM enif make atom(ErlNifEnv* env, const char* name)

Create an atom term from the null-terminated C-string nane with iso-latin-1 encoding. If the length of name exceeds
the maximum length allowed for an atom (255 characters), eni f _make_at ominvokes enif_make badarg.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 347

erl_nif

ERL_NIF TERM enif make atom len(ErlNifEnv* env, const char* name, size t len)

Create an atom term from the string nane with length | en. Null-characters are treated as any other characters.
If | en is greater than the maximum length allowed for an atom (255 characters), eni f _nmake_at ominvokes
enif_make badarg.

ERL NIF TERM enif make badarg(ErINifEnv* env)

Make a badarg exception to be returned from a NIF, and associate it with the environment env. Once a NIF
or any function it calls invokes eni f _nake_badar g, the runtime ensures that a badar g exception is raised
when the NIF returns, even if the NIF attempts to return a non-exception term instead. The return value from
eni f _nmake_badar g may be used only as the return value from the NIF that invoked it (directly or indirectly) or
be passed to enif_is_exception, but not to any other NIF API function.

See also: enif_has pending_exception and enif raise_exception

Note:

In earlier versions (older than erts-7.0, OTP 18) the return value from eni f _make_badar g had to be returned
fromthe NIF. Thisrequirement isnow lifted asthereturn valuefromtheNIFisignoredif eni f _nmake_badar g
has been invoked.

ERL NIF TERM enif make binary(ErlNifEnv* env, ErlNifBinary* bin)

Make a binary term from bi n. Any ownership of the binary data will be transferred to the created term and bi n
should be considered read-only for the rest of the NIF call and then as released.

ERL NIF TERM enif make copy(ErlNifEnv* dst _env, ERL_NIF TERM src_term)

Makeacopy of termsr c_t er m The copy will be created in environment dst _env. The source term may belocated
in any environment.

ERL NIF TERM enif make double(ErlNifEnv* env, double d)

Create afloating-point term from adoubl e. If thedoubl e argument isnot finiteor isNaN, eni f _make_doubl e
invokes enif_make badarg.

int enif make existing atom(ErlNifEnv* env, const char* name, ERL NIF TERM*
atom, ErlNifCharEncoding encode)

Try to create the term of an aready existing atom from the null-terminated C-string nane with encoding encode. If
the atom already exists storetheterm in * at omand return true, otherwise return false. If the length of nane exceeds
the maximum length allowed for an atom (255 characters), eni f _rmake_exi st i ng_at omreturnsfalse.

int enif make existing atom_ len(EriNifEnv* env, const char* name, size t len,
ERL NIF TERM* atom, ErlNifCharEncoding encoding)

Try to create the term of an aready existing atom from the string nane with length | en and encoding encode.
Null-characters are treated as any other characters. If the atom aready exists store the term in * at omand return
true, otherwise return false. If | en is greater than the maximum length alowed for an atom (255 characters),
eni f _make_exi sting_atom | en returnsfase.

348 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ERL NIF TERM enif make int(ErINifEnv* env, int i)
Create an integer term.

ERL NIF TERM enif make int64 (ErlNifEnv* env, ErlNifSInt64 1i)
Create an integer term from a signed 64-bit integer.

ERL NIF TERM enif make list(ErlNifEnv* env, unsigned cnt, ...)

Create an ordinary list term of length cnt . Expectscnt number of arguments (after cnt) of type ERL_NIF_TERM
asthe elements of thelist. An empty list isreturned if cnt isO.

ERL NIF TERM enif make listl(ErlNifEnv* env, ERL_NIF TERM el)

ERL_NIF TERM enif make list2(ErlNifEnv* env, ERL NIF TERM el, ERL NIF_TERM
e2)

ERL NIF TERM enif make list3(ErlNifEnv* env, ERL NIF TERM el, ERL NIF TERM
e2, ERL_NIF TERM e3)

ERL NIF TERM enif make list4(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL_NIF TERM e4)

ERL NIF TERM enif make 1list5(ErlNifEnv* env, ERL _NIF TERM el, ...,
ERL NIF TERM e5)

ERL NIF TERM enif make list6(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e6)

ERL NIF TERM enif make list7(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e7)

ERL NIF TERM enif make list8(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e8)

ERL NIF TERM enif make 1ist9(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL_NIF TERM e9)

Create an ordinary list term with length indicated by the function name. Prefer these functions (macros) over the
variadiceni f _nmake_| i st to get acompiletime error if the number of arguments does not match.

ERL NIF TERM enif make list cell(ErlNifEnv* env, ERL _NIF TERM head,
ERL NIF TERM tail)

Createalistcell [head | tail].

ERL_NIF TERM enif make list from array(ErlNifEnv* env, const ERL NIF TERM
arr[], unsigned cnt)

Create an ordinary list containing the elements of array ar r of length cnt . An empty listisreturned if cnt isO.

ERL NIF TERM enif make long(ErlNifEnv* env, long int i)
Create an integer term fromal ong i nt.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 349

erl_nif

unsigned char *enif make new binary(ErlNifEnv* env, size t size,
ERL_NIF TERM* termp)

Allocate a binary of size si ze bytes and create an owning term. The binary data is mutable until the calling NIF
returns. Thisis a quick way to create a new binary without having to use ErINifBinary. The drawbacks are that the
binary can not be kept between NIF calls and it can not be reallocated.

Return a pointer to the raw binary dataand set *t er np to the binary term.

ERL NIF TERM enif make new map (ErlNifEnv* env)
Make an empty map term.

int enif make map put(EriINifEnv* env, ERL_NIF TERM map_in, ERL_NIF TERM key,
ERL NIF TERM value, ERL NIF TERM* map out)

Makeacopy of mapmap_i nandinsertkey withval ue. If key already existsinmap_i n, theold associated valueis
replaced by val ue. If successful set * map_out tothenew map and returntrue. Returnfalseif map_i nisnot amap.

Themap_i n term must belong to the environment env.

int enif make map update(ErlNifEnv* env, ERL NIF TERM map in, ERL NIF TERM
key, ERL NIF TERM new value, ERL NIF TERM* map out)

Make a copy of map map_i n and replace the old associated value for key with new_val ue. If successful set
*map_out to the new map and return true. Return falseif map_i n isnot amap or if it does no contain key.

Themap_i n term must belong to the environment env.

int enif make map remove(ErlNifEnv* env, ERL NIF TERM map in, ERL NIF TERM
key, ERL NIF TERM* map out)

If map map_i n containskey, makeacopy of map_i nin*map_out and removekey and associated value. If map
map_i n does not contain key, set * map_out tomap_i n. Return true for success or falseif map_i n isnot amap.

The map_i n term must belong to the environment env.

ERL_NIF TERM enif make pid(ErlNifEnv* env, const ErlNifPid* pid)
Make a pid term from * pi d.

ERL NIF TERM enif make ref(ErlNifEnv* env)
Create areference like erlang: make _ref/0.

ERL NIF TERM enif make_ resource(ErlNifEnv* env, void* obj)

Create an opaque handle to a memory managed resource object obtained by enif alloc_resource. No ownership
transfer is done, as the resource object still needs to be released by enif _release resource, but note that the call to
eni f _rel ease_resour ce can occur immediately after obtaining the term from eni f _make_r esour ce, in
which case the resource object will be deallocated when the term is garbage collected. See the example of creating
and returning a resour ce object for more details.

Note that the only defined behaviour of using a resource term in an Erlang program is to store it and send it between
processes on the same node. Other operations such as matching or t er m t o_bi nar y will have unpredictable (but
harmless) results.

350 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ERL_NIF TERM enif make resource binary(ErlNifEnv* env, void* obj, const void*
data, size t size)

Create abinary term that is memory managed by aresource object obj obtained by enif _alloc_resource. The returned
binary term will consist of si ze bytespointed to by dat a. Thisraw binary datamust be kept readable and unchanged
until the destructor of the resource is called. The binary data may be stored external to the resource object in which
case it isthe responsibility of the destructor to release the data.

Severa binary terms may be managed by the same resource object. The destructor will not be called until the last
binary is garbage collected. This can be useful as away to return different parts of alarger binary buffer.

As with enif_make resource, no ownership transfer is done. The resource still needs to be released with
enif_release resource.

int enif make reverse list(ErlNifEnv* env, ERL NIF TERM list in, ERL NIF TERM
*1list out)

Set*| i st_out tothereverselist of thelist| i st i n andreturntrue, or returnfalseif | i st _i nisnotalist. This
function should only be used on short lists as a copy will be created of the list which will not be released until after
the nif returns.

Thel i st _i n term must belong to the environment env.

ERL NIF TERM enif make string(ErlNifEnv* env, const char* string,
ErlNifCharEncoding encoding)

Create alist containing the characters of the null-terminated string st r i ng with encoding encoding.

ERL NIF TERM enif make string len(ErlNifEnv* env, const char* string, size t
len, ErlNifCharEncoding encoding)

Create alist containing the characters of the string st r i ng with length | en and encoding encoding. Null-characters
aretreated as any other characters.

ERL NIF TERM enif make sub binary(ErlNifEnv* env, ERL NIF TERM bin term,
size t pos, size t size)

Make asubbinary of binary bi n_t er m starting at zero-based position pos with alength of si ze bytes. bi n_t erm
must be abinary or bitstring and pos+si ze must be less or equal to the number of whole bytesinbi n_t erm

ERL_NIF TERM enif make tuple(ErlNifEnv* env, unsigned cnt, ...)

Create a tuple term of arity cnt . Expects cnt number of arguments (after cnt) of type ERL_NIF_TERM as the
elements of the tuple.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 351

erl_nif

ERL _NIF TERM enif make tuplel(ErlNifEnv* env, ERL NIF TERM el)

ERL NIF TERM enif make tuple2(ErlNifEnv* env, ERL_NIF TERM el, ERL NIF TERM
e2)

ERL NIF TERM enif make tuple3(ErlNifEnv* env, ERL NIF TERM el, ERL NIF TERM
e2, ERL_NIF TERM e3)

ERL NIF TERM enif make tuple4(ErINifEnv* env, ERL_NIF TERM el, ...,
ERL_NIF TERM e4)

ERL NIF TERM enif make tuple5(ErINifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e5)

ERL NIF TERM enif make tuple6(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e6)

ERL NIF TERM enif make tuple7(ErINifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e7)

ERL NIF TERM enif make tuple8(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e8)

ERL NIF TERM enif make tuple9(ErINifEnv* env, ERL_NIF TERM el, ...,
ERL_NIF TERM e9)

Create a tuple term with length indicated by the function name. Prefer these functions (macros) over the variadic
eni f _nmake_t upl e to get acompile time error if the number of arguments does not match.

ERL NIF TERM enif make tuple from array(ErlNifEnv* env, const ERL NIF TERM
arr[], unsigned cnt)

Create atuple containing the elements of array ar r of lengthcnt .

ERL NIF TERM enif make uint(ErINifEnv* env, unsigned int i)
Create an integer term from anunsi gned i nt.

ERL NIF TERM enif make uint64 (ErlNifEnv* env, ErlNifUInt64 i)
Create an integer term from an unsigned 64-hit integer.

ERL NIF TERM enif make ulong(ErlNifEnv* env, unsigned long i)
Create an integer term fromanunsi gned | ong i nt.

int enif map iterator create(ErlNifEnv *env, ERL NIF TERM map,
ErlNifMapIterator *iter, ErlNifMapIlteratorEntry entry)

Create an iterator for the map map by initializing the structure pointedto by i t er . Theent r y argument determines
the start position of the iterator: ERL_NI F_MAP_| TERATOR FI RST or ERL_NI F_NMAP_| TERATOR LAST.
Return true on success or falseif map is not amap.

A map iterator is only useful during the lifetime of the environment env that the map belongs to. The iterator must
be destroyed by calling enif map_iterator_destroy.

ERL_NIF TERM key, value;
ErlNifMapIterator iter;
enif map iterator create(env, my map, &iter, ERL NIF MAP ITERATOR FIRST);

while (enif map iterator get pair(env, &iter, &key, &value)) {

352 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

do something(key,value);
enif map iterator next(env, &iter);

}

enif map iterator destroy(env, &iter);

Note:

The key-value pairs of a map have no defined iteration order. The only guarantee is that the iteration order of a
single map instance is preserved during the lifetime of the environment that the map belongs to.

void enif map iterator destroy(ErlNifEnv *env, ErlNifMapIterator *iter)
Destroy amap iterator created by enif_map_iterator_create.

int enif map iterator get pair(ErlNifEnv *env, ErlNifMapIterator *iter,
ERL NIF TERM *key, ERL NIF TERM *value)

Get key and value terms at current map iterator position. On success set * key and * val ue and return true. Return
faseif theiterator is positioned at head (before first entry) or tail (beyond last entry).

int enif map_iterator_is head (ErlNifEnv *env, ErlNifMapIterator *iter)
Return trueif map iterator i t er ispositioned before first entry.

int enif map_iterator is tail(ErNifEnv *env, ErlNifMapIterator *iter)
Return true if map iterator i t er ispositioned after last entry.

int enif map iterator next(ErlNifEnv *env, ErlNifMapIterator *iter)

Increment map iterator to point to next key-value entry. Return true if the iterator is now positioned at a valid key-
value entry, or falseif theiterator is positioned at the tail (beyond the last entry).

int enif map_iterator prev(ErlNifEnv *env, ErlNifMapIterator *iter)

Decrement map iterator to point to previous key-value entry. Return true if the iterator is now positioned at a valid
key-value entry, or false if the iterator is positioned at the head (before the first entry).

ErlNifMutex *enif mutex create(char *name)
Sameaserl_drv_mutex_create.

void enif mutex destroy(ErlNifMutex *mtx)
Same as erl_drv_mutex_destroy.

void enif mutex lock(ErlNifMutex *mtx)
Sameaserl_drv_mutex_lock.

int enif mutex trylock(ErlNifMutex *mtx)
Same aserl_drv_mutex_trylock.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 353

erl_nif

void enif mutex unlock(ErlNifMutex *mtx)
Same aserl_drv_mutex_unlock.

ErlNifResourceType *enif open resource type(ErlNifEnv* env, const char*
module_str, const char* name, ErlNifResourceDtor* dtor, ErlNifResourceFlags
flags, ErlNifResourceFlags* tried)

Create or takeover aresource typeidentified by the string name and give it the destructor function pointed to by dtor.
Argument f | ags can have the following values:

ERL_NI F_RT_CREATE
Create a new resource type that does not already exist.

ERL_NI F_RT_TAKEOVER
Open an existing resource type and take over ownership of all itsinstances. The supplied destructor dt or will
be called both for existing instances as well as new instances not yet created by the calling NIF library.

The two flag values can be combined with bitwise-or. The name of the resource type is local to the calling module.
Argument modul e_st r isnot (yet) used and must beNULL. Thedt or may be NULL in case no destructor is needed.

On success, return a pointer to the resource type and *tri ed will be set to either ERL_NI F_RT_CREATE or
ERL_NI F_RT_TAKEOVERto indicate what was actually done. On failure, return NULL and set *t ri ed tof | ags.
Itisallowedtosettri ed to NULL.

Note that eni f _open_resource_t ype is only alowed to be called in the three callbacks load, reload and
upgrade.

void *enif priv_data(ErlNifEnv* env)
Return the pointer to the private data that was set by | oad, r el oad or upgr ade.
Was previously named eni f _get _dat a.

ERL NIF TERM enif raise exception(ErlNifEnv* env, ERL_NIF TERM reason)

Create an error exception with the term r eason to be returned from a NIF, and associate it with the environment
env. OnceaNIFor any functionit callsinvokeseni f _r ai se_except i on, theruntime ensuresthat the exception
it creates is raised when the NIF returns, even if the NIF attempts to return a non-exception term instead. The return
vauefromeni f _rai se_excepti on may be used only as the return value from the NIF that invoked it (directly
or indirectly) or be passed to enif_is_exception, but not to any other NIF API function.

See also: enif_has pending_exception and enif_make badarg.

int enif realloc binary(ErlNifBinary* bin, size t size)

Change the size of a binary bi n. The source binary may be read-only, in which case it will be left untouched and a
mutable copy is allocated and assigned to * bi n. Return true on success, false if memory allocation failed.

void enif release binary(ErlNifBinary* bin)
Release a binary obtained from eni f _al | oc_bi nary.

void enif release resource(void* obj)

Remove areference to resource object obj obtained from enif_alloc_resource. The resource object will be destructed
when the last reference is removed. Each call toeni f_rel ease_resour ce must correspond to a previous call
toeni f _al | oc_resour ce orenif_keep resource. References made by enif _make resource can only be removed
by the garbage collector.

354 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ErlNifRWLock *enif rwlock create(char *name)
Sameaserl_drv_rwlock create.

void enif rwlock destroy(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock _destroy.

void enif rwlock rlock(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock rlock.

void enif rwlock runlock(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock runlock.

void enif rwlock rwlock(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock_rwlock.

void enif rwlock rwunlock(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock rwunlock.

int enif rwlock tryrlock(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock tryrlock.

int enif rwlock tryrwlock(ErlNifRWLock *rwlck)
Sameaserl_drv_rwlock_tryrwlock.

ERL NIF TERM enif schedule nif(ErlNifEnv* env, const char* fun _name, int
flags, ERL NIF TERM (*fp)(ErINifEnv* env, int argc, const ERL NIF TERM
argv[]), int argc, const ERL NIF TERM argv[])

Schedule NIF f p to execute. This function allows an application to break up long-running work into multiple regular
NIF calls or to schedule a dirty NIF to execute on a dirty scheduler thread (note that the dirty NIF functionality
described here is experimental and that you have to enable support for dirty schedulers when building OTP in order
to try the functionality out).

Thef un_nane argument provides a name for the NIF being scheduled for execution. If it cannot be converted to an
atom, eni f _schedul e_ni f returnsabadar g exception.

Thef | ags argument must be set to O for aregular NIF, or if the emulator was built the experimental dirty scheduler
support enabled, f | ags can be set to either ERL_NI F_DI RTY_JOB_CPU_BOUND if the job is expected to be
primarily CPU-bound, or ERL_NI F_DI RTY_JOB_| O _BOUND for jobs that will be 1/0-bound. If dirty scheduler
threads are not available in the emulator, atry to schedule such ajob will result in abadar g exception.

Thear gc and ar gv arguments can either be the originals passed into the calling NIF, or they can be values created
by the calling NIF.

The calling NIF must use the return value of eni f _schedul e_ni f asitsown return value.

Beawarethat eni f _schedul e_ni f , asits nameimplies, only schedules the NIF for future execution. The calling
NIF does not block waiting for the scheduled NIF to execute and return, which means that the calling NIF can't expect
to receive the scheduled NIF return value and use it for further operations.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 355

erl_nif

ErlNifPid *enif self(ErlNifEnv* caller_env, ErlNifPid* pid)
Initialize the pid variable * pi d to represent the calling process. Return pi d.

int enif send(ErlNifEnv* env, ErlNifPid* to_pid, ErlNifEnv* msg_env,
ERL NIF TERM msg)

Send a message to a process.

env
The environment of the calling process. Must be NULL if and only if calling from a created thread.
*to pid
The pid of the receiving process. The pid should refer to a process on the local node.
nsg_env
The environment of the message term. Must be a process independent environment allocated with
enif_alloc_env.
neg
The message term to send.

Return true on success, or falseif *t o_pi d does not refer to an alive local process.

The message environment msg_env with al its terms (including msg) will be invalidated by a successful call to
eni f _send. The environment should either be freed with enif_free_env of cleared for reuse with enif_clear_env.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from aNIF-calling thread.

unsigned enif sizeof resource(void* obj)
Get the byte size of aresource object obj obtained by enif_alloc_resource.

void enif system info(ErlNifSysInfo *sys info ptr, size t size)

Same as driver_system info.

int enif thread create(char *name,ErlNifTid *tid,void * (*func)(void *),void
*args,ErlNifThreadOpts *opts)

Sameaserl_drv_thread create.

void enif thread exit(void *resp)
Sameaserl_drv_thread exit.

int enif thread join(ErlNifTid, void **respp)
Sameaserl_drv_thread_join.

ErlNifThreadOpts *enif thread opts create(char *name)
Sameaserl_drv_thread opts create.

void enif thread opts destroy(ErlNifThreadOpts *opts)
Sameaserl_drv_thread opts destroy.

356 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ErlNifTid enif thread self(void)
Sameaserl_drv_thread self.

int enif tsd key create(char *name, ErlNifTSDKey *key)
Sameaserl_drv_tsd key create.

void enif tsd key destroy(ErlNifTSDKey key)
Sameaserl_drv_tsd key destroy.

void *enif tsd get(ErlNifTSDKey key)
Sameaserl_drv tsd get.

void enif tsd set(ErlNifTSDKey key, void *data)
Sameaserl_drv_tsd_set.

ErlNifTime enif monotonic_time(ErINifTimeUnit time unit)
Arguments:

time_unit
Time unit of returned value.

Returns Erlang monotonic time. Note that it is not uncommon with negative values.

ReturnsERL_NI F_TI ME_ERRORif called with an invalid time unit argument, or if called from athread that is not
a scheduler thread.

See also:

e ErINTfTI nme
e ErINfTinmeUnit

ErliNifTime enif time offset(ErlNifTimeUnit time unit)
Arguments:

time_unit
Time unit of returned value.

Returnsthe current time of fset between Erlang monotonic timeand Erlang systemtimeconvertedintothet i ne_uni t
passed as argument.

ReturnsERL_NI F_TI ME_ERRORf called with an invalid time unit argument, or if called from athread that is not
a scheduler thread.

See also:

e ErINTfTI nme
e ErINfTinmeUnit

ErlNifTime enif convert time unit(ErlNifTime val, EriNifTimeUnit from,

ErlNifTimeUnit to)

Arguments:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 357

erl_nif

val

Value to convert time unit for.
from

Time unit of val .
to

Time unit of returned value.

Converts the val value of time unit f r omto the corresponding value of time unit t 0. The result is rounded using
the floor function.

ReturnsERL_NI F_TI ME_ERRCRif called with an invalid time unit argument.
See also:

e ErINTfTI nme
e ErINfTimeUnit

SEE ALSO

erlang:load _nif/2

358 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

	Erlang Run-Time System Application (ERTS)
	ERTS User's Guide
	Communication in Erlang
	Passing of Signals
	Synchronous Communication
	Implementation

	Time and Time Correction in Erlang
	New Extended Time Functionality
	Terminology
	Monotonically Increasing
	Strictly Monotonically Increasing
	UT1
	UTC
	POSIX Time
	Time Resolution
	Time Precision
	Time Accuracy
	Time Warp
	OS System Time
	OS Monotonic Time
	Erlang System Time
	Erlang Monotonic Time

	Introduction
	Time Correction
	Time Warp Safe Code
	Time Warp Modes
	No Time Warp Mode
	Single Time Warp Mode
	Multi-Time Warp Mode

	New Time API
	New Erlang Monotonic Time
	Unique Values
	How to Work with the New API
	Retrieve Erlang System Time
	Measure Elapsed Time
	Determine Order of Events
	Determine Order of Events with Time of the Event
	Create a Unique Name
	Seed Random Number Generation with a Unique Value

	Support of Both New and Old OTP Releases

	Match specifications in Erlang
	Grammar
	Function descriptions
	Functions allowed in all types of match specifications
	Functions allowed only for tracing

	Variables and literals
	Execution of the match
	Differences between match specifications in ETS and tracing
	Examples

	How to interpret the Erlang crash dumps
	General information
	Reasons for crash dumps (slogan)
	Number of atoms

	Scheduler information
	Memory information
	Internal table information
	Allocated areas
	Allocator
	Process information
	Port information
	ETS tables
	Timers
	Distribution information
	Loaded module information
	Fun information
	Process Data
	Atoms
	Disclaimer

	How to implement an alternative carrier for the Erlang distribution
	Introduction
	The driver
	Drivers in general
	The distribution driver's data structures
	Selected parts of the distribution driver implementation

	Putting it all together

	The Abstract Format
	Module Declarations and Forms
	Record Fields
	Representation of Parse Errors and End-of-file

	Atomic Literals
	Patterns
	Expressions
	Generators and Filters
	Binary Element Type Specifiers
	Map Assoc and Exact Fields

	Clauses
	Guards
	Types
	Function Types
	Function Constraints

	The Abstract Format After Preprocessing

	tty - A command line interface
	Normal Mode
	Shell Break Mode

	How to implement a driver
	Introduction
	Sample driver
	Compiling and linking the sample driver
	Calling a driver as a port in Erlang
	Sample asynchronous driver
	An asynchronous driver using driver_async

	Inet configuration
	Introduction
	Configuration Data
	User Configuration Example

	External Term Format
	Introduction
	Distribution header
	ATOM_CACHE_REF
	SMALL_INTEGER_EXT
	INTEGER_EXT
	FLOAT_EXT
	ATOM_EXT
	REFERENCE_EXT
	PORT_EXT
	PID_EXT
	SMALL_TUPLE_EXT
	LARGE_TUPLE_EXT
	MAP_EXT
	NIL_EXT
	STRING_EXT
	LIST_EXT
	BINARY_EXT
	SMALL_BIG_EXT
	LARGE_BIG_EXT
	NEW_REFERENCE_EXT
	SMALL_ATOM_EXT
	FUN_EXT
	NEW_FUN_EXT
	EXPORT_EXT
	BIT_BINARY_EXT
	NEW_FLOAT_EXT
	ATOM_UTF8_EXT
	SMALL_ATOM_UTF8_EXT

	Distribution Protocol
	EPMD Protocol
	Register a node in the EPMD
	Unregister a node from the EPMD
	Get the distribution port of another node
	Get all registered names from EPMD
	Dump all data from EPMD
	Kill the EPMD
	STOP_REQ (Not Used)

	Distribution Handshake
	General
	Definitions
	The Handshake in Detail
	Semigraphic View
	The Currently Defined Distribution Flags

	Protocol between connected nodes
	New Ctrlmessages for distrvsn = 1 (OTP R4)
	New Ctrlmessages for distrvsn = 2
	New Ctrlmessages for distrvsn = 3 (OTP R5C)
	New Ctrlmessages for distrvsn = 4 (OTP R6)

	Reference Manual
	erl_prim_loader
	start/3
	get_file/1
	get_path/0
	list_dir/1
	read_file_info/1
	read_link_info/1
	set_path/1

	erlang
	abs/1
	abs/1
	adler32/1
	adler32/2
	adler32_combine/3
	append_element/2
	apply/2
	apply/3
	atom_to_binary/2
	atom_to_list/1
	binary_part/2
	binary_part/3
	binary_to_atom/2
	binary_to_existing_atom/2
	binary_to_float/1
	binary_to_integer/1
	binary_to_integer/2
	binary_to_list/1
	binary_to_list/3
	bitstring_to_list/1
	binary_to_term/1
	binary_to_term/2
	bit_size/1
	bump_reductions/1
	byte_size/1
	cancel_timer/2
	cancel_timer/1
	check_old_code/1
	check_process_code/2
	check_process_code/3
	convert_time_unit/3
	crc32/1
	crc32/2
	crc32_combine/3
	date/0
	decode_packet/3
	delete_element/2
	delete_module/1
	demonitor/1
	demonitor/2
	disconnect_node/1
	display/1
	element/2
	erase/0
	erase/1
	error/1
	error/2
	exit/1
	exit/2
	external_size/1
	external_size/2
	float/1
	float_to_binary/1
	float_to_binary/2
	float_to_list/1
	float_to_list/2
	fun_info/1
	fun_info/2
	fun_to_list/1
	function_exported/3
	garbage_collect/0
	garbage_collect/1
	garbage_collect/2
	get/0
	get/1
	get_cookie/0
	get_keys/0
	get_keys/1
	get_stacktrace/0
	group_leader/0
	group_leader/2
	halt/0
	halt/1
	halt/2
	hash/2
	hd/1
	hibernate/3
	insert_element/3
	integer_to_binary/1
	integer_to_binary/2
	integer_to_list/1
	integer_to_list/2
	iolist_to_binary/1
	iolist_size/1
	is_alive/0
	is_atom/1
	is_binary/1
	is_bitstring/1
	is_boolean/1
	is_builtin/3
	is_float/1
	is_function/1
	is_function/2
	is_integer/1
	is_list/1
	is_map/1
	is_number/1
	is_pid/1
	is_port/1
	is_process_alive/1
	is_record/2
	is_record/3
	is_reference/1
	is_tuple/1
	length/1
	link/1
	list_to_atom/1
	list_to_binary/1
	list_to_bitstring/1
	list_to_existing_atom/1
	list_to_float/1
	list_to_integer/1
	list_to_integer/2
	list_to_pid/1
	list_to_tuple/1
	load_module/2
	load_nif/2
	loaded/0
	localtime/0
	localtime_to_universaltime/1
	localtime_to_universaltime/2
	make_ref/0
	make_tuple/2
	make_tuple/3
	map_size/1
	max/2
	md5/1
	md5_final/1
	md5_init/0
	md5_update/2
	memory/0
	memory/1
	memory/1
	min/2
	module_loaded/1
	monitor/2
	monitor/2
	monitor_node/2
	monitor_node/3
	monotonic_time/0
	monotonic_time/1
	nif_error/1
	nif_error/2
	node/0
	node/1
	nodes/0
	nodes/1
	now/0
	open_port/2
	phash/2
	phash2/1
	phash2/2
	pid_to_list/1
	port_close/1
	port_command/2
	port_command/3
	port_connect/2
	port_control/3
	port_call/3
	port_info/1
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_to_list/1
	ports/0
	pre_loaded/0
	process_display/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/3
	process_info/1
	process_info/2
	process_info/2
	processes/0
	purge_module/1
	put/2
	raise/3
	read_timer/2
	read_timer/1
	ref_to_list/1
	register/2
	registered/0
	resume_process/1
	round/1
	self/0
	send/2
	send/3
	send_after/4
	send_after/3
	send_nosuspend/2
	send_nosuspend/3
	set_cookie/2
	setelement/3
	size/1
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_monitor/1
	spawn_monitor/3
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	split_binary/2
	start_timer/4
	start_timer/3
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	suspend_process/2
	suspend_process/1
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_monitor/0
	system_monitor/1
	system_monitor/2
	system_profile/0
	system_profile/2
	system_time/0
	system_time/1
	term_to_binary/1
	term_to_binary/2
	throw/1
	time/0
	time_offset/0
	time_offset/1
	timestamp/0
	tl/1
	trace/3
	trace_delivered/1
	trace_info/2
	trace_pattern/2
	trace_pattern/3
	trunc/1
	tuple_size/1
	tuple_to_list/1
	universaltime/0
	universaltime_to_localtime/1
	unique_integer/0
	unique_integer/1
	unlink/1
	unregister/1
	whereis/1
	yield/0

	init
	boot/1
	get_argument/1
	get_arguments/0
	get_plain_arguments/0
	get_status/0
	reboot/0
	restart/0
	script_id/0
	stop/0
	stop/1

	zlib
	open/0
	close/1
	deflateInit/1
	deflateInit/2
	deflateInit/6
	deflate/2
	deflate/3
	deflateSetDictionary/2
	deflateReset/1
	deflateParams/3
	deflateEnd/1
	inflateInit/1
	inflateInit/2
	inflate/2
	inflateChunk/2
	inflateChunk/1
	inflateSetDictionary/2
	inflateReset/1
	inflateEnd/1
	setBufSize/2
	getBufSize/1
	crc32/1
	crc32/2
	crc32/3
	crc32_combine/4
	adler32/2
	adler32/3
	adler32_combine/4
	compress/1
	uncompress/1
	zip/1
	unzip/1
	gzip/1
	gunzip/1

	epmd
	erl
	erlc
	werl
	escript
	erlsrv
	start_erl
	run_erl
	start
	erl_driver
	driver_system_info()

	driver_output()

	driver_output2()

	driver_output_binary()

	driver_outputv()

	driver_vec_to_buf()

	driver_set_timer()

	driver_cancel_timer()

	driver_read_timer()

	driver_get_now()

	driver_select()

	driver_alloc()

	driver_realloc()

	driver_free()

	driver_alloc_binary()

	driver_realloc_binary()

	driver_free_binary()

	driver_binary_get_refc()

	driver_binary_inc_refc()

	driver_binary_dec_refc()

	driver_enq()

	driver_pushq()

	driver_deq()

	driver_sizeq()

	driver_enq_bin()

	driver_pushq_bin()

	driver_peekqv()

	driver_peekq()

	driver_enqv()

	driver_pushqv()

	driver_pdl_create()

	driver_pdl_lock()

	driver_pdl_unlock()

	driver_pdl_get_refc()

	driver_pdl_inc_refc()

	driver_pdl_dec_refc()

	driver_monitor_process()

	driver_demonitor_process()

	driver_get_monitored_process()

	driver_compare_monitors()

	add_driver_entry()

	remove_driver_entry()

	erl_errno_id()

	erl_drv_busy_msgq_limits()

	set_busy_port()

	set_port_control_flags()

	driver_failure_eof()

	driver_failure_atom()

	driver_failure_posix()

	driver_failure()

	driver_connected()

	driver_caller()

	erl_drv_output_term()

	driver_output_term()

	driver_mk_atom()

	driver_mk_port()

	erl_drv_send_term()

	driver_send_term()

	driver_async ()

	driver_async_port_key ()

	driver_lock_driver()

	driver_create_port()

	erl_drv_thread_create()

	erl_drv_thread_opts_create()

	erl_drv_thread_opts_destroy()

	erl_drv_thread_exit()

	erl_drv_thread_join()

	erl_drv_thread_self()

	erl_drv_equal_tids()

	erl_drv_mutex_create()

	erl_drv_mutex_destroy()

	erl_drv_mutex_lock()

	erl_drv_mutex_trylock()

	erl_drv_mutex_unlock()

	erl_drv_cond_create()

	erl_drv_cond_destroy()

	erl_drv_cond_signal()

	erl_drv_cond_broadcast()

	erl_drv_cond_wait()

	erl_drv_rwlock_create()

	erl_drv_rwlock_destroy()

	erl_drv_rwlock_rlock()

	erl_drv_rwlock_tryrlock()

	erl_drv_rwlock_runlock()

	erl_drv_rwlock_rwlock()

	erl_drv_rwlock_tryrwlock()

	erl_drv_rwlock_rwunlock()

	erl_drv_tsd_key_create()

	erl_drv_tsd_key_destroy()

	erl_drv_tsd_set()

	erl_drv_tsd_get()

	erl_drv_putenv()

	erl_drv_getenv()

	erl_drv_consume_timeslice()

	erl_drv_cond_name()

	erl_drv_mutex_name()

	erl_drv_rwlock_name()

	erl_drv_thread_name()

	erl_drv_monotonic_time()

	erl_drv_time_offset()

	erl_drv_convert_time_unit()

	driver_entry
	erts_alloc
	erl_nif
	enif_alloc()

	enif_alloc_binary()

	enif_alloc_env()

	enif_alloc_resource()

	enif_clear_env()

	enif_compare()

	enif_cond_broadcast()

	enif_cond_create()

	enif_cond_destroy()

	enif_cond_signal()

	enif_cond_wait()

	enif_consume_timeslice()

	enif_equal_tids()

	enif_free()

	enif_free_env()

	enif_get_atom()

	enif_get_atom_length()

	enif_get_double()

	enif_get_int()

	enif_get_int64()

	enif_get_local_pid()

	enif_get_list_cell()

	enif_get_list_length()

	enif_get_long()

	enif_get_map_size()

	enif_get_map_value()

	enif_get_resource()

	enif_get_string()

	enif_get_tuple()

	enif_get_uint()

	enif_get_uint64()

	enif_get_ulong()

	enif_getenv()

	enif_has_pending_exception()

	enif_inspect_binary()

	enif_inspect_iolist_as_binary()

	enif_is_atom()

	enif_is_binary()

	enif_is_empty_list()

	enif_is_exception()

	enif_is_map()

	enif_is_number()

	enif_is_fun()

	enif_is_identical()

	enif_is_on_dirty_scheduler()

	enif_is_pid()

	enif_is_port()

	enif_is_ref()

	enif_is_tuple()

	enif_is_list()

	enif_keep_resource()

	enif_make_atom()

	enif_make_atom_len()

	enif_make_badarg()

	enif_make_binary()

	enif_make_copy()

	enif_make_double()

	enif_make_existing_atom()

	enif_make_existing_atom_len()

	enif_make_int()

	enif_make_int64()

	enif_make_list()

	enif_make_list1()

	enif_make_list2()

	enif_make_list3()

	enif_make_list4()

	enif_make_list5()

	enif_make_list6()

	enif_make_list7()

	enif_make_list8()

	enif_make_list9()

	enif_make_list_cell()

	enif_make_list_from_array()

	enif_make_long()

	enif_make_new_binary()

	enif_make_new_map()

	enif_make_map_put()

	enif_make_map_update()

	enif_make_map_remove()

	enif_make_pid()

	enif_make_ref()

	enif_make_resource()

	enif_make_resource_binary()

	enif_make_reverse_list()

	enif_make_string()

	enif_make_string_len()

	enif_make_sub_binary()

	enif_make_tuple()

	enif_make_tuple1()

	enif_make_tuple2()

	enif_make_tuple3()

	enif_make_tuple4()

	enif_make_tuple5()

	enif_make_tuple6()

	enif_make_tuple7()

	enif_make_tuple8()

	enif_make_tuple9()

	enif_make_tuple_from_array()

	enif_make_uint()

	enif_make_uint64()

	enif_make_ulong()

	enif_map_iterator_create()

	enif_map_iterator_destroy()

	enif_map_iterator_get_pair()

	enif_map_iterator_is_head()

	enif_map_iterator_is_tail()

	enif_map_iterator_next()

	enif_map_iterator_prev()

	enif_mutex_create()

	enif_mutex_destroy()

	enif_mutex_lock()

	enif_mutex_trylock()

	enif_mutex_unlock()

	enif_open_resource_type()

	enif_priv_data()

	enif_raise_exception()

	enif_realloc_binary()

	enif_release_binary()

	enif_release_resource()

	enif_rwlock_create()

	enif_rwlock_destroy()

	enif_rwlock_rlock()

	enif_rwlock_runlock()

	enif_rwlock_rwlock()

	enif_rwlock_rwunlock()

	enif_rwlock_tryrlock()

	enif_rwlock_tryrwlock()

	enif_schedule_nif()

	enif_self()

	enif_send()

	enif_sizeof_resource()

	enif_system_info()

	enif_thread_create()

	enif_thread_exit()

	enif_thread_join()

	enif_thread_opts_create()

	enif_thread_opts_destroy()

	enif_thread_self()

	enif_tsd_key_create()

	enif_tsd_key_destroy()

	enif_tsd_get()

	enif_tsd_set()

	enif_monotonic_time()

	enif_time_offset()

	enif_convert_time_unit()

