| v

ERLANG

STDLIB

Copyright © 1997-2015 Ericsson AB. All Rights Reserved.
STDLIB 2.4
March 31, 2015

Copyright © 1997-2015 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 31, 2015

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.1 The Erlang I/O-protocol

1 STDLIB User's Guide

The Erlang standard library STDLIB.

1.1 The Erlang I/O-protocol

The 1/0O-protocol in Erlang specifies a way for a client to communicate with an 1/O server and vice versa. The I/O
server is a process that handles the requests and performs the requested task on e.g. an 1O device. The client is any
Erlang process wishing to read or write data from/to the 10 device.

The common I/O-protocol has been present in OTP since the beginning, but has been fairly undocumented and has al so
somewhat evolved over the years. In an addendum to Robert Virdings rationale the original |/O-protocol is described.
This document describes the current 1/O-protocol.

The original 1/O-protocol was simple and flexible. Demands for spacial and execution time efficiency has triggered
extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement than the
original. It can certainly be argued that the current protocol istoo complex, but thistext describes how it looks today,
not how it should have looked.

The basic ideas from the original protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server state is ever present in the client. Any 1/O server can be used together with any client
code and client code need not be aware of the actual 10 device the 1/0O server communicates with.

1.1.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io_request, From, ReplyAs, Request}

{io_reply, ReplyAs, Reply}

Theclient sendsani o_r equest tupletothe I/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.

* Fromisthepi d() of the client, the process which the 1/O server sendsthe IO reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Theio module monitors the I/O
server, and uses the monitor reference as the Repl yAs datum. A more complicated client could have several
outstanding I/O requests to the same 1/0 server and would then use different references (or something else) to
differentiate among the incoming 10 replies. The Repl yAs element should be considered opague by the I/O
server. Notethat the pi d() of thel/O server isnot explicitly presentinthei o_r epl y tuple. Thereply can
be sent from any process, not necessarily the actual 1/0 server. The Repl yAs element isthe only thing that
connects one 1/0 request with an I/O-reply.

* Request and Repl y are described below.

When an 1/0O server receivesani o_r equest tuple, it acts upon the actual Request part and eventually sends an
i 0_reply tuplewith the corresponding Repl y part.

1.1.2 Output Requests

To output characters on an 10 device, the following Request sexist:
{put_chars, Encoding, Characters}

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

{put_chars, Encoding, Module, Function, Args}

« Encodi ng iseither uni code or | at i n1, meaning that the characters are (in case of binaries) encoded as
either UTF-8 or 1SO-latin-1 (pure bytes). A well behaved 1/0 server should also return error if list elements
contain integers > 255 when Encodi ng issettol at i nl. Note that this does not in any way tell how
characters should be put on the actual 10 device or how the I/O server should handle them. Different 1/0
servers may handle the characters however they want, this simply tellsthe I/O server which format the data
is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tellswhich format the designated
function produces. Note that byte-oriented datais simplest sent using the 1SO-latin-1 encoding.

e Characters are the data to be put on the 10 device. If Encodi ngisl at i n1, thisisani ol i st ().If
Encodi ng isuni code, thisisan Erlang standard mixed Unicode list (oneinteger in alist per character,
charactersin binaries represented as UTF-8).

e Modul e, Functi on, and Ar gs denote afunction which will be called to produce the data (like
io_lib:format/2).Args isalist of arguments to the function. The function should produce datain the
given Encodi ng. The l/O server should call the function asappl y(Mod, Func, Args) and will put the
returned data on the |O device asif itwassentina{ put _chars, Encodi ng, Charact ers} request.
If the function returns anything else than abinary or list or throws an exception, an error should be sent back to
the client.

The 1/O server repliesto the client with ani o_r epl y tuple where the Repl y element is one of:

ok
{error, Error}

e Error describesthe error to the client, which may do whatever it wants with it. The Erlang io module typically
returnsit asis.

For backward compatibility the following Request s should also be handled by an 1/O server (these requests should
not be present after R15B of OTP):

{put_chars, Characters}
{put_chars, Module, Function, Args}

These should behaveas{ put _chars, latinl, Characters} and{put_chars, latinl, Module,
Function, Args} respectively.

1.1.3 Input Requests
To read characters from an 10 device, the following Request sexist:
{get_until, Encoding, Prompt, Module, Function, ExtraArgs}

e Encodi ng denotes how datais to be sent back to the client and what datais sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as a list, the datais converted to this
encoding. If however the function supplied returns datain some other format, no conversion can be done and it
is up to the client supplied function to return dataiin a proper way. If Encodi ng isl at i n1, lists of integers
0..255 or binaries containing plain bytes are sent back to the client when possible; if Encodi ng isuni code,
lists with integersin the whole Unicode range or binaries encoded in UTF-8 are sent to the client. The user
supplied function will always see lists of integers, never binaries, but the list may contain numbers > 255 if the
Encodi ng isuni code.

e Pronpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the IO
device. Pr onmpt isoftenignored by the I/O server and if setto' ' it should always beignored (and result in
nothing being written to the 10 device).

« Mbodul e, Functi on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function should take two additional arguments, the last state, and a list of characters. The function
should return one of:

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.1 The Erlang I/O-protocol

{done, Result, RestChars}
{more, Continuation}

The Resul t can be any Erlang term, but if itisal i st (), the I/O server may convert it to abi nary() of
appropriate format before returning it to the client, if the 1/O server is set in binary mode (see below).

The function will be called with the data the 1/O server finds on its 10 device, returning { done, Result,
Rest Char s} when enough dataisread (in which case Resul t issent to the client and Rest Char s iskeptin
the 1/0 server as a buffer for subsequent input) or { nor e, Conti nuati on}, indicating that more characters
are needed to complete the request. The Cont i nuat i on will be sent as the state in subsequent calls to the
function when more characters are available. When no more characters are available, the function shall return
{done, eof, Rest}.Theinitia stateisthe empty list and the data when an end of file is reached on the
IO deviceisthe atom eof . An emulation of theget _| i ne request could be (inefficiently) implemented using
the following functions:

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof,[]};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
of
{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\n]}},
receive
{io reply, IoServer, Data} ->
Data
end.

Note especialy that the last element in the Request tuple ([$\ n]) is appended to the argument list when the
function is called. The function should be called like appl y(Modul e, Function, [State, Data |
ExtraArgs]) bythel/O server

A fixed number of charactersis requested using this Request :

{get_chars, Encoding, Prompt, N}

Encodi ng and Pr onpt asforget _until.
Nisthe number of charactersto be read from the 1O device.

A singleline (like in the example above) is requested with thisRequest :

{get_line, Encoding, Prompt}

Encodi ng and Pr onpt asabove.

Obvioudly, theget _char s and get _| i ne could be implemented with theget _unt i | regquest (and indeed they
were originally), but demands for efficiency has made these additions necessary.

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

The /O server repliesto theclient withani o_r epl y tuple wherethe Repl y element is one of:

Data
eof
{error, Error}

» Dat aisthecharactersread, in either list or binary form (depending on the 1/0O server mode, see below).

e Error describesthe error to the client, which may do whatever it wants with it. The Erlang io module typically
returnsit asis.

» eof isreturned when input end is reached and no more data is available to the client process.

For backward compatibility the following Request s should also be handled by an 1/O server (these reqeusts should
not be present after R15B of OTP):

{get_until, Prompt, Module, Function, ExtraArgs}
{get_chars, Prompt, N}
{get_line, Prompt}

These should behave as {get _until, latinl, Pronpt, Mdule, Function, ExtraArgs},
{get _chars, latinl, Pronpt, N} and{get line, latinl, Pronpt} respectively.

1.1.4 1/O-server Modes

Demands for efficiency when reading data from an 1/O server has not only lead to the addition of theget | i ne and
get _char s requests, but has also added the concept of 1/0 server options. No options are mandatory to implement,
but al 1/0 serversin the Erlang standard libraries honor the bi nar y option, which alows the Dat a element of the
i o_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data will be
sent in the standard Erlang Unicode format, i.e. UTF-8 (note that the function of the get _unti | request till gets
list data regardless of the I/O server mode).

Note that i.e. theget _unti | request alows for afunction with the data specified as aways being a list. Also the
return value data from such a function can be of any type (asisindeed the case when ani o: f r ead request is sent
to an /O server). The client has to be prepared for data received as answers to those reguests to be in a variety of
forms, but the 1/0 server should convert the results to binaries whenever possible (i.e. when the function supplied to
get _unti | actualy returnsalist). The example shown later in thistext does just that.

An |/O-server in binary mode will affect the data sent to the client, so that it has to be able to handle binary data. For
convenience, it is possible to set and retrieve the modes of an /O server using the following 1/O requests:

{setopts, Opts}
e« Optsisalist of optionsin the format recognized by proplists (and of course by the I/O server itself).
Asan example, the I/O server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand_fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

- of which the bi nar y and encodi ng options are common for all 1/0 serversin OTP, while echo and expand
arevalid only for this I/O server. It isworth noting that the uni code option notifies how characters are actually put
on the physical 10 device, i.e. if theterminal per seis Unicode aware, it does not affect how characters are sent in the
I/O-protocol, where each request contains encoding information for the provided or returned data.

The I/O server should send one of the following as Repl y:

ok
{error, Error}

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.1 The Erlang I/O-protocol

An error (preferably enot sup) is to be expected if the option is not supported by the I/O server (like if an echo
optionissentinaset opt s request to aplain file).

To retrieve options, this request is used:

getopts

Theget opt s request asksfor acompletelist of all options supported by the 1/O server aswell astheir current values.
The I/O server replies:

OptList
{error, Error}

e OptlList isalistof tuples{ Opti on, Val ue} where Opti on isawaysan atom.

1.1.5 Multiple I/O Requests

The Request element can in itself contain several Request s by using the following format:
{requests, Requests}

* Requestsisalistof vaidi o_r equest tuplesfor the protocol, they shall be executed in the order in which
they appear in the list and the execution should continue until one of the requests result in an error or thelist is
consumed. The result of the last request is sent back to the client.

Thel/O server can for alist of requests send any of the valid resultsin the reply:

ok

{ok, Data}
{ok, Options}
{error, Error}

- depending on the actual requestsin thelist.

1.1.6 Optional I/O Requests

The following I/O request is optional to implement and a client should be prepared for an error return:
{get_geometry, Geometry}

e CGeonetry isether theatomr ows or the atom col ums.

The /O server should send the Repl y as:

{ok, N}
{error, Error}

* Nisthe number of character rows or columnsthe |O device has, if applicable to the 1O device the I/O server
handles, otherwise{ error, enotsup} isagood answer.

1.1.7 Unimplemented Request Types

If an 1/O server encounters arequest it does not recognize (i.e. thei o_r equest tupleisin the expected format, but
the actual Request isunknown), the I/O server should send avalid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backwards
compatible.

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

1.1.8 An Annotated and Working Example I/O Server

An1/O server is any process capable of handling the 1/0O protocol. There is no generic I/O server behavior, but could
well be. The framework is simple enough, a process handling incoming requests, usually both 1/0-requests and other
IO device-specific requests (for i.e. positioning, closing etc.).

Our example 1/0O server stores charactersin an ETS table, making up afairly crude ram-file (it is probably not useful,
but working).

The module begins with the usual directives, afunction to start the I/O server and a main loop handling the requests:

-module(ets io server).
-export([start link/0, init/0, loop/1, until newline/3, until enough/3]).
-define(CHARS PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list
1) .

start link() ->
spawn_link(?MODULE,init,[]).

init() ->
Table = ets:new(noname, [ordered set]),

?MODULE: loop (#state{table = Table, position 0, mode=list}).

loop(State) ->
receive
{io_request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:
reply(From, ReplyAs, Reply),
?MODULE: Loop (NewState) ;
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop (State#state{position = 0});
_Unknown ->
?MODULE: loop (State)
end.

error ->

The main loop receives messages from the client (which might be using the io module to send requests). For each
reguest the function r equest / 2 iscalled and areply is eventually sent using ther epl y/ 3 function.

The "private" message { From r ewi nd} results in the current position in the pseudo-file to be reset to 0 (the
beginning of the "file"). Thisisatypical example of 10 device-specific messages not being part of the I/O-protocaol. It
isusually abad ideato embed such private messagesini o_r equest tuples, asthat might be confusing to the reader.

Let uslook at the reply function first...

reply(From, ReplyAs, Reply) ->

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.1 The Erlang I/O-protocol

From ! {io reply, ReplyAs, Reply}.

Simple enough, it sends the i o_r epl y tuple back to the client, providing the Repl yAs element received in the
request along with the result of the request, as described above.

Now look at the different requests we need to handle. First the requests for writing characters:

request({put _chars, Encoding, Chars}, State) ->
put chars(unicode:characters to list(Chars,Encoding),State);
request({put _chars, Encoding, Module, Function, Args}, State) ->
try
request({put _chars, Encoding, apply(Module, Function, Args)}, State)
catch
— ->
{error, {error,Function}, State}
end;

TheEncodi ng tellsushow the charactersin the request are represented. We want to store the charactersaslistsinthe
ETS table, so we convert them to lists using the uni code: characters_to_| i st/ 2 function. The conversion
function conveniently accepts the encoding typesuni code or | ati n1, so we can use Encodi ng directly.

When Modul e, Funct i on and Ar gunent s are provided, we simply apply it and do the same thing with the result
asif the datawas provided directly.

Let us handle the requests for retrieving data too:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until
get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get _|i ne. In production code, this might be too inefficient, but that of course depends on
the frequency of the different requests. Before we start actually implementing the functions put _char s/ 2 and
get _until/5,letuslook into the few remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Reqs}, State) ->
multi request(Reqgs, {ok, ok, State});

The get _geomet ry request has no meaning for this 1/O server, so the reply will be{error, enotsup}.The
only option we handleisthe bi nar y/I i st option, which is done in separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

What is |€eft is to handle backward compatibility and the file module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Note that the I/O server will not work with a simple
file:wite/?2ifthesearenot added:

request({put chars,Chars}, State) ->

request({put_chars,latinl,Chars}, State);
request({put _chars,M,F,As}, State) ->

request({put chars,latinl,M,F,As}, State);
request({get chars,Prompt,N}, State) ->

request({get chars,latinl,Prompt,N}, State);
request({get line,Prompt}, State) ->

request({get line,latinl,Prompt}, State);
request({get until, Prompt,M,F,As}, State) ->

request({get until,latinl,Prompt,M,F,As}, State);

OK, what isleft now istoreturn{ error, request} if therequestisnot recognized:

request(Other, State) ->
{error, {error, request}, State}.

Let us move further and actually handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));
multi request([| 1, Error) ->
Error;
multi request([], Result) ->
Result.

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by the function

io_reply).
Theget opt s and set opt s requests are also simple to handle, we just change or read our state record:

setopts(Opts0Q,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0))
case check valid opts(Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->
{ok,ok,State}

end;
false ->
{error,{error,enotsup},State}
end.
check valid opts([]) ->
true;

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.1 The Erlang I/O-protocol

check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);

check valid opts() ->
false.

getopts (#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
7->
false
end}],S}.

As a convention, al 1/O servers handle both {set opts, [binary]}, {setopts, [list]} and
{setopts,[{binary, boolean()}]}, hencethetrick with proplists:substitute negations/2
and propl i sts:unfol d/1.Ifinvaidoptionsaresentto us, wesend{error, enotsup} back totheclient.

Theget opt s request shouldreturnalist of { Opt i on, Val ue} tuples, which hasthetwofold function of providing
both the current values and the available options of this 1/O server. We have only one option, and hence return that.

So far our 1/0O server has been fairly generic (except for ther ewi nd request handled in the main loop and the creation
of an ETStable). Most 1/0 servers contain code similar to the one above.

To make the example runnable, we now start implementing the actual reading and writing of the datato/fromthe ETS
table. First theput _char s/ 3 function:

put chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C)],
{ok, ok, State#state{position = (P + length(Chars))}}.

We aready have the data as (Unicode) lists and therefore just split the list in runs of a predefined size and put each
run in the table at the current position (and forward). The functionsspl i t _dat a/ 3 and appl y_updat e/ 2 are
implemented below.

Now we want to read data from the table. The get _unti | / 5 function reads data and applies the function until it
saysit isdone. Theresult is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->
case get loop(Mod,Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= binary ->
{ok,
unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, } =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get loop(M,F,A,T,P,C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Here we aso handle the mode (bi nary or | i st) that can be set by the set opt s request. By default, al OTP 1/0
servers send data back to the client aslists, but switching modeto bi nar y might increase efficiency if the 1/O server
handlesitin an appropriate way. Theimplementation of get _unt i | ishard to get efficient asthe supplied functionis
defined to take lists as arguments, but get _char s andget _| i ne can be optimized for binary mode. This example
does not optimize anything however. It is important though that the returned data is of the right type depending on
the options set, so we convert the lists to binaries in the correct encoding if possible before returning. The function
suppliedintheget _unti | request tuple may, asitsfinal result return anything, so only functions actually returning
lists can get them converted to binaries. If the request contained the encoding tag uni code, the lists can contain all
Unicode codepoints and the binaries should be in UTF-8, if the encoding tag was | at i n1, the client should only
get characters in the range 0..255. The function check/ 2 takes care of not returning arbitrary Unicode codepoints
inlistsif the encoding was given as| at i nl. If the function did not return alist, the check cannot be performed and
the result will be that of the supplied function untouched.

Now we are more or less done. We implement the utility functions below to actually manipulate the table:

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not unicode) || X <- List,

X > 255 1],

List
catch

throw: ->
{error, {cannot _convert, unicode, latinl}}
end.

The function check takes care of providing an error tuple if Unicode codepoints above 255 is to be returned if the
client requested latinl.

Thetwofunctionsunti | _new i ne/ 3andunti| _enough/ 3 arehelpersused together withtheget _until/5
function to implement get _char s andget _| i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done, eof, [1};
until newline(ThisFar,eof, MyStopCharacter) ->
{done,ThisFar, [1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.1 The Erlang I/O-protocol

of

{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

until enough([],eof, N) ->
{done,eof,[]};

until enough(ThisFar,eof, N) ->
{done,ThisFar,[1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, [1),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more,ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that should be providedinget _unti | requests.

Now we only need to read and write the table in an appropriate way to complete the 1/0O server:

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1 ->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of
{01} ->
{P+length(List),eof};
{ ,Data} ->
{P+length(Data),Data}
end
end.

my split(@,Left,Acc) ->
{lists:reverse(Acc),Left};
my split(,[],Acc) ->
{lists:reverse(Acc),[1};
my split(N,[H|T],Acc) ->
my split(N-1,T,[H|Acc]).

split data([], ,) ->
[1;

split data(Chars, Row, Col) ->
{This,Left} = my split(?CHARS PER REC - Col, Chars, [1),
[{Row, Col, This} | split data(Left, Row + 1, 0)].

apply update(Table, {Row, Col, List}) ->
case ets:lookup(Table,Row) of
[1 ->
ets:insert(Table,{Row, lists:duplicate(Col,0) ++ List});
[{Row, OldData}] ->
{Partl, } = my split(Col,OldData,[]),
{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table, {Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of ?CHARS PER REC, overwriting when necessary. The implementation is
obvioudly not efficient, it isjust working.

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

This concludes the example. It isfully runnable and you can read or writeto the I/O server by usingi.e. theio module
or even the file module. It is as simple as that to implement afully fledged 1/0 server in Erlang.

1.2 Using Unicode in Erlang

1.2.1 Unicode Implementation

Implementing support for Unicode character sets is an ongoing process. The Erlang Enhancement Proposal (EEP)
10 outlined the basics of Unicode support and also specified a default encoding in binaries that al Unicode-aware
modules should handle in the future.

The functionality described in EEP10 was implemented in Erlang/OTP R13A, but that was by no means the end of
it. In Erlang/OTP R14B01 support for Unicode file names was added, although it was in no way complete and was
by default disabled on platforms where no guarantee was given for the file name encoding. With Erlang/OTP R16A
came support for UTF-8 encoded source code, among with enhancements to many of the applications to support both
Unicode encoded file names as well as support for UTF-8 encoded files in several circumstances. Most notable is
the support for UTF-8 in filesread by fi | e: consul t/ 1, release handler support for UTF-8 and more support
for Unicode character sets in the 1/0-system. In Erlang/OTP 17.0, the encoding default for Erlang source files was
switched to UTF-8.

This guide outlines the current Unicode support and gives a couple of recipes for working with Unicode data.

1.2.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it painfully clear that understanding Unicode characters and
encodings is not as easy as one would expect. The complexity of the field as well as the implications of the standard
requires thorough understanding of concepts rarely before thought of.

Furthermore the Erlang implementation requires understanding of conceptsthat never were an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, evenif you're
an experienced programmer.

As an example, one could contemplate the issue of converting between upper and lower case letters. Reading the
standard will make you realize that, to begin with, there's not a simple one to one mapping in all scripts. Take German
asan example, wherethere'saletter "3" (Sharp s) in lower case, but the uppercase equivalent is"SS'. Or Greek, where
"#' hastwo different lowercase forms: "#" in word-final position and "#" elsewhere. Or Turkish where dotted and dot-
less"i" both existin lower case and upper caseforms, or Cyrillic"1" which usually has no lowercase form. Or of course
languages that have no concept of upper case (or lower case). So, aconversion function will need to know not only one
character at atime, but possibly the whole sentence, maybe the natural language the translation should bein and also
take into account differences in input and output string length and so on. There is at the time of writing no Unicode
to_upper/to_lower functionality in Erlang/OTP, but there are publicly available libraries that address these issues.

Another example is the accented characters where the same glyph has two different representations. Let's look at the
Swedish "8". There's a code point for that in the Unicode standard, but you can also write it as "0" followed by U
+0308 (Combining Diaeresis, with the smplified meaning that the last letter should have a "™ above). They have
exactly the same glyph. They are for most purposes the same, but they have completely different representations. For
example MacOS X converts all file names to use Combining Diaeresis, while most other programs (including Erlang)
try to hide that by doing the opposite when for example listing directories. However it's done, it's usually important
to normalize such characters to avoid utter confusion.

The list of examples can be made as long as the Unicode standard, | suspect. The point is that one need a kind of
knowledge that was never needed when programs only took one or two languages into account. The complexity of
human languages and scripts, certainly has made this a challenge when constructing a universal standard. Supporting
Unicode properly in your program will require effort.

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.2 Using Unicode in Erlang

1.2.3 What Unicode Is

Unicode is a standard defining code points (numbers) for all known, living or dead, scripts. In principle, every known
symbol used in any language has a Unicode code point.

Unicode code points are defined and published by the Unicode Consortium, which is a non profit organization.

Support for Unicode is increasing throughout the world of computing, as the benefits of one common character set are
overwhelming when programs are used in aglobal environment.

Along with the base of the standard: the code points for al the scripts, there are a couple of encoding standards
available.

Itisvital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isjust a
standard for representation, UTF-8 can for example be used to represent a very limited part of the Unicode character
set (e.g. ISO-Latin-1), or the full Unicode range. It's just an encoding format.

Aslong asall character setswere limited to 256 characters, each character could be stored in one single byte, so there
was more or less only one practical encoding for the characters. Encoding each character in one byte was so common
that the encoding wasn't even named. When we now, with the Unicode system, have alot more than 256 characters,
we need a common way to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was before anon-issue.

Different operating systems and tools support different encodings. For example Linux and MacOS X has chosen the
UTF-8 encoding, which is backwards compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows on the other hand supports alimited version of UTF-16, namely all the code planes where
the characters can be stored in one single 16-bit entity, which includes most living languages.

The most widely spread encodings are;

Bytewise representation
Thisisnot a proper Unicode representation, but the representation used for characters before the Unicode
standard. It can still be used to represent character code points in the Unicode standard that have numbers
below 256, which corresponds exactly to the ISO-Latin-1 character set. In Erlang, thisis commonly denoted
| at i n1 encoding, which is dightly misleading as 1SO-Latin-1 is a character code range, not an encoding.

UTF-8
Each character is stored in one to four bytes depending on code point. The encoding is backwards compatible
with bytewise representation of 7-bit ASCII asal 7-bit characters are stored in one single bytein UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available. Note that UTF-8 is
not compatible with bytewise representation for code points between 128 and 255, so alSO-Latin-1 bytewise
representation is not generally compatible with UTF-8.

UTF-16
This encoding has many similaritiesto UTF-8, but the basic unit is a 16-bit number. This means that all
characters occupy at |least two bytes, some high numbers even four bytes. Some programs, libraries and
operating systems claiming to use UTF-16 only allows for characters that can be stored in one 16-bit entity,
which isusualy sufficient to handle living languages. As the basic unit is more than one byte, byte-order issues
occur, why UTF-16 exists in both a big-endian and little-endian variant. In Erlang, the full UTF-16 rangeis
supported when applicable, like in the uni code module and in the bit syntax.

UTF-32
The most straight forward representation. Each character is stored in one single 32-bit number. Thereisno
need for escapes or any variable amount of entities for one character, all Unicode code points can be stored
in one single 32-hit entity. As with UTF-16, there are byte-order issues, UTF-32 can be both big- and little-
endian.

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

UCs4
Basically the same as UTF-32, but without some Unicode semantics, defined by |EEE and has little use
as a separate encoding standard. For all normal (and possibly abnormal) usages, UTF-32 and UCS-4 are
interchangeable.

Certain ranges of numbers are left unused in the Unicode standard and certain ranges are even deemed invalid. The
most notable invalid range is 16#D800 - 16#DFFF, as the UTF-16 encoding does not allow for encoding of these
numbers. It can be speculated that the UTF-16 encoding standard was, from the beginning, expected to be able to hold
all Unicode characters in one 16-bit entity, but then had to be extended, leaving a hole in the Unicode range to cope
with backward compatibility.

Additionally, the code point 16#FEFF is used for byte order marks (BOM's) and use of that character is not encouraged
in other contexts than that. It actually is valid though, as the character "ZWNBS" (Zero Width Non Breaking Space).
BOM's are used to identify encodings and byte order for programs where such parameters are not known in advance.
Byte order marks are more seldom used than one could expect, but their use might become more widely spread as they
provide the means for programs to make educated guesses about the Unicode format of a certain file.

1.2.4 Areas of Unicode Support

To support Unicode in Erlang, problems in several areas have been addressed. Each area is described briefly in this
section and more thoroughly further down in this document:

Representation
To handle Unicode characters in Erlang, we have to have a common representation both in lists and binaries.
The EEP (10) and the subsequent initial implementation in Erlang/OTP R13A settled a standard representation
of Unicode charactersin Erlang.

Manipulation
The Unicode characters need to be processed by the Erlang program, why library functions need to be able to
handle them. In some cases functionality was added to already existing interfaces (as the string module now
can handle lists with arbitrary code points), in some cases hew functionality or options need to be added (asin
thei o-module, the file handling, the uni code module and the bit syntax). Today most modulesin kernel and
STDLIB, aswell asthe VM are Unicode aware.

Filel/O
1/0 isby far the most problematic areafor Unicode. A file is an entity where bytes are stored and the lore of
programming has been to treat characters and bytes as interchangeable. With Unicode characters, you need to
decide on an encoding as soon as you want to store the dataiin afile. In Erlang you can open atext file with
an encoding option, so that you can read characters from it rather than bytes, but you can also open afile for
bytewise I/O. The 1/0O-system of Erlang has been designed (or at least used) in away where you expect any |/
O-server to be able to cope with any string data, but that is no longer the case when you work with Unicode
characters. Handling the fact that you need to know the capabilities of the device where your dataendsup is
something new to the Erlang programmer. Furthermore, ports in Erlang are byte oriented, so an arbitrary string
of (Unicode) characters can not be sent to a port without first converting it to an encoding of choice.

Termina 1/0
Termina 1/0O is dightly easier than file 1/0. The output is meant for human reading and is usually Erlang
syntax (e.g. in the shell). There exists syntactic representation of any Unicode character without actually
displaying the glyph (instead written as\ x{ HHH}), so Unicode data can usually be displayed even if the
terminal as such do not support the whole Unicode range.

File names
File names can be stored as Unicode strings, in different ways depending on the underlying OS and file system.
This can be handled fairly easy by a program. The problems arise when the file system is not consistent in
it's encodings, like for example Linux. Linux allows files to be named with any sequence of bytes, leaving to
each program to interpret those bytes. On systems where these "transparent” file names are used, Erlang has
to be informed about the file name encoding by a startup flag. The default is bytewise interpretation, which is
actually usually wrong, but allows for interpretation of all file names. The concept of "raw file names" can be

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.2 Using Unicode in Erlang

used to handle wrongly encoded file names if one enables Unicode file name trandation (+f nu) on platforms
where thisis not the default.

Source code encoding
When it comes to the Erlang source code, there is support for the UTF-8 encoding and bytewise encoding. The
default in Erlang/OTP R16B was bytewise (or latinl) encoding; in Erlang/OTP 17.0 it was changed to UTF-8.
Y ou can control the encoding by a comment like:

%% -*- coding: utf-8 -*-

in the beginning of the file. This of course requires your editor to support UTF-8 as well. The same comment
isasointerpreted by functionslikef i | e: consul t/ 1, the release handler etc, so that you can have all text
filesin your source directoriesin UTF-8 encoding.

The language
Having the source codein UTF-8 also allows you to write string literals containing Unicode characters with
code points > 255, although atoms, module names and function names are restricted to the 1SO-Latin-1 range.
Binary literals where you use the/ ut f 8 type, can also be expressed using Unicode characters > 255. Having
module names using characters other than 7-bit ASCII can cause trouble on operating systems with inconsistent
file naming schemes, and might also hurt portability, so it's not really recommended. It is suggested in EEP 40
that the language should also alow for Unicode characters > 255 in variable names. Whether to implement that
EEP or not is yet to be decided.

1.2.5 Standard Unicode Representation

In Erlang, strings are actualy lists of integers. A string was up until Erlang/OTP R13 defined to be encoded in the
ISO-latin-1 (1S08859-1) character set, which is, code point by code point, a sub-range of the Unicode character set.

The standard list encoding for strings was therefore easily extended to cope with the whole Unicode range: A Unicode
string in Erlang is simply alist containing integers, each integer being a valid Unicode code point and representing
one character in the Unicode character set.

Erlang stringsin 1SO-latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using i.e
erlang:iolist_to_binary/1orcanbesentdirectly toaport. If the string contains Unicode characters > 255,
an encoding has to be decided upon and the string should be converted to a binary in the preferred encoding using
uni code: characters_to_binary/ {1, 2, 3}. Strings are not generally lists of bytes, as they were before
Erlang/OTP R13. They arelists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual datain binariesinstead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erl ang: | i st _t o_bi nary/ 1, an 1SO-Latin-1 Erlang string could be converted into a binary,
effectively using bytewise encoding - one byte per character. Thiswas very convenient for those limited Erlang strings,
but cannot be done for arbitrary Unicode lists.

As the UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang should cope with Unicode datain binaries,
but is of course not enforced when communicating externally. Functions and bit-syntax exist to encode and decode both
UTF-8, UTF-16 and UTF-32 in binaries. Library functions dealing with binaries and Unicode in general, however,
only deal with the default encoding.

Character datamay be combined from several sources, sometimes availablein amix of stringsand binaries. Erlang has
for long had the concept of i odat aori ol i st s, where binaries and lists can be combined to represent a sequence of

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

bytes. Inthe sameway, the Unicode aware modul es often all ow for combinations of binariesand listswherethebinaries
have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code points:

unicode binary() = binary() with characters encoded in UTF-8 coding standard
chardata() = charlist() | unicode binary()

charlist() = maybe improper list(char() | unicode binary() | charlist(),
unicode binary() | nil())

Themoduleuni code in STDLIB even supports similar mixes with binaries containing other encodings than UTF-8,
but that is a specia case to allow for conversions to and from external data:

external unicode binary() = binary() with characters coded in
a user specified Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external chardata() = external charlist() | external unicode binary()

external charlist() = maybe improper list(char() |
external unicode binary() |
external charlist(),
external unicode binary() | nil())

1.2.6 Basic Language Support

As of Erlang/OTP R16 Erlang source files can be written in either UTF-8 or bytewise encoding (ak.a. | ati nl
encoding). The details on how to state the encoding of an Erlang source file can be found in epp(3) . Strings and
comments can be written using Unicode, but functions still have to be named using characters from the 1SO-latin-1
character set and atoms are restricted to the same |SO-latin-1 range. These restrictions in the language are of course
independent of the encoding of the sourcefile.

Bit-syntax

The bit-syntax contains types for coping with binary data in the three main encodings. The types are named ut f 8,
ut f 16 and ut f 32 respectively. Theut f 16 and ut f 32 types can bein abig- or little-endian variant:

<<Ch/utf8, /binary>> = Binl,

<<Ch/utfl6-little, /binary>> = Bin2,

Bin3 = <<$H/utf32-little, $e/utf32-little, $l/utf32-little, $1/utf32-little,
$o0/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utfl6>>,

String and Character Literals

For source code, thereis an extension to the\ OOO (backsl ash followed by three octal numbers) and\ x HH (backslash
followed by x, followed by two hexadecimal characters) syntax, namely \ x{ H ...} (a backslash followed by an x,
followed by left curly bracket, any number of hexadecimal digits and a terminating right curly bracket). This allows

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.2 Using Unicode in Erlang

for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(Iatinl).

Intheshell, if usingaUnicodeinput device, or in source code stored in UTF-8, $ can befollowed directly by aUnicode
character producing an integer. In the following example the code point of a Cyrillic # is output:

7> $c.
1089

Heuristic String Detection

In certain output functions and in the output of return valuesin the shell, Erlang triesto heuristically detect string data
inlistsand binaries. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].

"abc"

2> <<97,98,99>>.

<<"abc">>

3> <<195,165,195,164,195,182>>.
<<"336"/utf8>>

Here the shell will detect lists containing printable characters or binaries containing printable characters either in
bytewise or UTF-8 encoding. The question here is: what is a printable character? One view would be that anything
the Unicode standard thinks is printable, will also be printable according to the heuristic detection. The result would
be that almost any list of integers will be deemed a string, resulting in all sorts of characters being printed, maybe
even characters your terminal does not have in its font set (resulting in some generic output you probably will not
appreciate). Another way isto keep it backwards compatible so that only the | SO-L atin-1 character set is used to detect
astring. A third way would beto let the user decide exactly what Unicode ranges are to be viewed as characters. Since
Erlang/OTP R16B you can select either the whole Unicode range or the 1SO-Latin-1 range by supplying the startup
flag +pc Range, where Rangeiseither | at i nl or uni code. For backwards compatibility, the defaultis| at i n1l.
This only controls how heuristic string detection is done. In the future, more ranges are expected to be added, so that
one can tailor the heuristics to the language and region relevant to the user.

Letslook at an example with the two different startup options:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

[1024]

2> [1070,1085,1080,1082,1086,1076].
[1070,1085,1080,1082,1086,1076]

3> [229,228,246].

"3306"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>

5> <<229/utf8,228/utf8,246/utf8>>.

Q

<<"aao"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

Eshell V5.10.1 (abort with ~G)

1> [1024].

||E||

2> [1070,1085,1080,1082,1086,1076] .
"lOHuKog"

3> [229,228,246] .

0o s

aaod"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"lOHukop" /utf8>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"336"/utf8>>

In the examples, we can see that the default Erlang shell will only interpret characters from the ISO-Latinl range as
printable and will only detect lists or binaries with those "printable" characters as containing string data. The valid
UTF-8 binary containing "####", will not be printed as a string. When, on the other hand, started with all Unicode
characters printable (+pc uni code), the shell will output anything containing printable Unicode data (in binaries
either UTF-8 or bytewise encoded) as string data.

These heuristicsareasoused by i o(_I i b): f or mat / 2 and friendswhen thet modifier isused in conjunction with
~p or ~P:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"8&6">>, <<"8&0"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"340">>,<<"a46" /utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}

ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"8&6">>, <<"3&0"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"8406">>,<<"840" /utf8>>, <<"lHukop" /utf8>>}

ok

Please observethat thisonly affects heuristic interpretation of listsand binaries on output. For examplethe~t s format
sequence does always output avalid lists of characters, regardless of the +pc setting, asthe programmer has explicitly
requested string output.

1.2.7 The Interactive Shell

The interactive Erlang shell, when started towards a terminal or started using the wer | command on windows, can
support Unicode input and output.

On Windows, proper operation requires that a suitable font isinstalled and selected for the Erlang application to use.
If no suitable font is available on your system, try installing the DejaVu fonts (dej avu- f ont s. or g), which are
freely available and then select that font in the Erlang shell application.

On Unix-like operating systems, the terminal should be able to handle UTF-8 on input and output (modern versions
of XTerm, KDE konsole and the Gnome terminal do for example) and your locale settings have to be proper. As an
example, my LANG environment variable is set asthis:

$ echo $LANG

Ericsson AB. All Rights Reserved.: STDLIB | 19

1.2 Using Unicode in Erlang

en US.UTF-8

Actually, most systems handle the LC_CTYPE variable before LANG, soif that is set, it has to be set to UTF- 8:

$ echo $LC CTYPE
en US.UTF-8

The LANGor LC_CTYPE setting should be consistent with what the terminal is capable of, thereis no portable way for
Erlang to ask the actual terminal about its UTF-8 capacity, we haveto rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thei 0: get opt s() call can be used when the shell is started:

$ LC_CTYPE=en US.IS0-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).

{encoding, latinl}

2> q().

ok

$ LC CTYPE=en US.UTF-8 erl

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2>

When (finally?) everything isin order with the local e settings, fonts and the terminal emulator, you probably also have
discovered a way to input characters in the script you desire. For testing, the simplest way is to add some keyboard
mappingsfor other languages, usually done with some appl et in your desktop environment. In my KDE environment, |
start the KDE Control Center (Personal Settings), select "Regional and Accessibility" and then "Keyboard Layout”. On
Windows XP, | start Control Panel->Regional and Language Options, select the Language tab and click the Details...
button in the square named "Text services and input Languages'. Y our environment probably provides similar means
of changing the keyboard layout. Make sure you have a way to easily switch back and forth between keyboards if
you are not used to this, entering commands using a Cyrillic character set is, as an example, not easily done in the
Erlang shell.

Now you are set up for some Unicodeinput and output. The simplest thing to dois of courseto enter astring in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2> "lOHukop" .

"lOHukopn"

3> io:format("~ts~n", [v(2)]).

0HWKOR

ok

4>

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

While strings can be input as Unicode characters, the language elements are till limited to the ISO-latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

$ e

ri

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> $E.

958

2> l0HuKofO.

* 1
2>

: illegal character

1.2.8 Unicode File Names

Most modern operating systems support Unicode file namesin some way or another. There are several different ways
to do this and Erlang by default treats the different approaches differently:

Mandatory Unicode file naming

Windows and, for most common uses, MacOS X enforces Unicode support for file names. All files created in
the file system have names that can consistently be interpreted. In MacOS X, al file names are retrieved in
UTF-8 encoding, while Windows has selected an approach where each system call handling file names has a
special Unicode aware variant, giving much the same effect. There are no file names on these systems that are
not Unicode file names, why the default behavior of the Erlang VM isto work in "Unicode file name trandation
mode", meaning that a file name can be given as a Unicode list and that will be automatically trandated to the
proper name encoding for the underlying operating and file system.

Doingi.e.afile:list_dir/ 1 ononeof these systems may return Unicode lists with code points beyond
255, depending on the content of the actual file system.

Asthefeatureisfairly new, you may still stumble upon non core applications that cannot handle being provided
with file names containing characters with code points larger than 255, but the core Erlang system should have
no problems with Unicode file names.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode file names, but do not enforce it.
On such a system, a file name containing characters having code points between 128 and 255 may be named
either as plain 1SO-latin-1 or using UTF-8 encoding. As no consistency is enforced, the Erlang VM can do no
consistent tranglation of al file names.

By default on such systems, Erlang starts in ut f 8 file name mode if the terminal supports UTF-8, otherwise
inl ati n1 mode.

Inthel ati n1 mode, file names are bytewise endcoded. This alows for list representation of all file names
in the system, but, for example, a file named "Ostersund.txt", will appear infile: i st _dir/ 1 as either
"Ostersund.txt" (if the file name was encoded in bytewise ISO-Latin-1 by the program creating the file, or more
probably as[195, 150, 115, 116, 101, 114, 115, 117, 110, 100] , whichisalist containing UTF-8 bytes
- hot what you would want... If you on the other hand use Unicode file name translation on such a system, non-
UTF-8 file names will simply be ignored by functions likefi |l e: i st _di r/ 1. They can be retrieved with
file:list_dir_all/21,butwrongly encoded file nameswill appear as "raw file names".

The Unicode file naming support was introduced with Erlang/OTP R14B01. A VM operating in Unicode file name
trandation mode can work with files having names in any language or character set (aslong asit is supported by the
underlying OS and file system). The Unicode character list is used to denote file or directory names and if the file
system content is listed, you will also get Unicode lists as return value. The support liesin the Kernel and STDLIB

Ericsson AB. All Rights Reserved.: STDLIB | 21

1.2 Using Unicode in Erlang

modules, why most applications (that does not explicitly require the file names to be in the 1SO-latin-1 range) will
benefit from the Unicode support without change.

On operating systems with mandatory Unicode file names, this means that you more easily conform to the file
names of other (non Erlang) applications, and you can also process file names that, at least on Windows, were
completely inaccessible (due to having names that could not be represented in ISO-latin-1). Also you will avoid
creating incomprehensible file names on MacOS X asthe vfslayer of the OSwill accept al your file namesas UTF-8
and will not rewrite them.

For most systems, turning on Unicode file name tranglation is no problem even if it uses transparent file naming.
Very few systems have mixed file name encodings. A consistent UTF-8 named system will work perfectly in
Unicode file name mode. It was still however considered experimental in Erlang/OTP R14B01 and is still not
the default on such systems. Unicode file name trangdlation is turned on with the +f nu switch to the On Linux,
a VM started without explicitly stating the file name translation mode will default to | ati nl as the native file
name encoding. On Windows and MacOS X, the default behavior is that of Unicode file name trandation, why the
file:native_nane_encodi ng/ 0 by default returns ut f 8 on those systems (the fact that Windows actually
doesnot use UTF-8 onthefile systemlevel can safely beignored by the Erlang programmer). The default behavior can,
as stated before, be changed using the +f nu or +f nl optionstothe VM, seetheer | program. If theVM isstarted in
Unicode file name translation mode, f i | e: nati ve_name_encodi ng/ 0 will return the atom ut f 8. The +f nu
switch can be followed by w, i or e, to control how wrongly encoded file names are to be reported. w means that a
warning is sent to theer r or _| ogger whenever awrongly encoded file name is "skipped" in directory listings, i
meansthat those wrongly encoded file names are silently ignored and e meansthat the API function will return an error
whenever awrongly encoded file (or directory) nameisencountered. wisthedefault. Notethatfi | e: read_I i nk/ 1
will aways return an error if the link pointsto an invalid file name.

In Unicode file name mode, file names given to the BIF open_port/2 with the option
{spawn_execut abl e, ...} aredso interpreted as Unicode. So is the parameter list given in the ar gs option
available when using spawn_execut abl e. The UTF-8 trandation of arguments can be avoided using binaries, see
the discussion about raw file names below.

It is worth noting that the file encodi ng options given when opening a file has nothing to do with the file name
encoding convention. Y ou can very well open files containing dataencoded in UTF-8 but having file namesin bytewise
(I ati n1) encoding or vice versa.

Note:

Erlang driversand NIF shared objects still can not be named with names containing code points beyond 127. This
is a known limitation to be removed in a future release. Erlang modules however can, but it is definitely not a
good idea and is still considered experimental.

Notes About Raw File Names

Raw file names were introduced together with Unicode file name support in erts-5.8.2 (Erlang/OTP R14B01). The
reason "raw file names"' was introduced in the system was to be able to consistently represent file names given in
different encodings on the same system. Having the VM automatically trandate a file name that is not in UTF-8 to
a list of Unicode characters might seem practical, but this would open up for both duplicate file names and other
inconsistent behavior. Consider a directory containing a file named "bjorn" in 1SO-latin-1, while the Erlang VM is
operating in Unicode file name mode (and therefore expecting UTF-8 file naming). The | SO-latin-1 nameis not valid
UTF-8 and one could be tempted to think that automatic conversionin for examplefil e: i st _dir/ 1 isagood
idea. But what would happen if welater tried to open the file and have the name asaUnicode list (magically converted
from the 1SO-latin-1 file name)? The VM will convert the file name given to UTF-8, as thisis the encoding expected.
Effectively this meanstrying to open the file named <<"bjorn"/utf8>>. Thisfile does not exist, and even if it existed it
would not be the samefile as the one that was listed. We could even create two files named "bjérn”, one named in the

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

UTF-8encodingandonenct. If fi |l e: i st _di r/ 1 wouldautomatically convert the ISO-latin-1 filenameto alist,
we would get two identical file names as the result. To avoid this, we need to differentiate between file names being
properly encoded according to the Unicode file naming convention (i.e. UTF-8) and file names being invalid under
the encoding. By thecommon fil e: i st _dir/ 1 function, the wrongly encoded file names are simply ignored
in Unicode file name translation mode, but by thefil e: 1i st _dir_al | /1 function, the file names with invalid
encoding are returned as "raw" file names, i.e. as binaries.

The Erlang f i | e module accepts raw file names asinput. open_port ({ spawn_executable, ...} ...)
aso accepts them. As mentioned earlier, the arguments given in the option list to
open_port ({spawn_executable, ...} ...) undergothesame conversion asthefile names, meaning that

the executable will be provided with argumentsin UTF-8 as well. This translation is avoided consistently with how
the file names are treated, by giving the argument as a binary.

To force Unicode file name translation mode on systems where this is not the default was considered experimental
in Erlang/OTP R14B01 due to the fact that the initial implementation did not ignore wrongly encoded file names, so
that raw file names could spread unexpectedly throughout the system. Beginning with Erlang/OTP R16B, the wrongly
encoded filenamesareonly retrieved by special functions(e.g.fi l e: 1'i st_di r_al |/ 1), sotheimpact on existing
cadeismuch lower, why it is now supported. Unicode file name trandation is expected to be default in future releases.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw file names encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in might, in some circumstances be a good idea, as the convention
of using UTF-8 file names is spreading.

Notes About MacOS X

MacOS X's vfslayer enforces UTF-8 file namesin a quite aggressive way. Older versions did this by simply refusing
to create non UTF-8 conforming file names, while newer versions replace offending bytes with the sequence "%HH",
where HH isthe original character in hexadecimal notation. As Unicodetrandlation isenabled by default on MacOS X,
the only way to come up against thisisto either start the VM with the +f nl flag or to use araw file namein bytewise
(I ati n1) encoding. If using a raw filename, with a bytewise encoding containing characters between 127 and 255,
to create afile, the file can not be opened using the same name as the one used to createit. Thereis no remedy for this
behaviour, other than keeping the file names in the right encoding.

MacOS X aso reorganizes the names of files so that the representation of accents etc is using the "combining
characters', i.e. the character 6 is represented as the code points [111,776], where 111 is the character o and 776 is
the special accent character "combining diaeresis'. Thisway of normalizing Unicode is otherwise very seldom used
and Erlang normalizes those file namesin the opposite way upon retrieval, so that file names using combining accents
are not passed up to the Erlang application. In Erlang the file name "bjérn" is retrieved as [98,106,246,114,110], not
as[98,106,117,776,114,110], even though the file system might think differently. The normalization into combining
accents are redone when actually accessing files, so this can usually be ignored by the Erlang programmer.

1.2.9 Unicode in Environment and Parameters

Environment variables and their interpretation is handled much in the same way as file names. If Unicode file names
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode file names are enabled, the callsto os: get env/ 0, os: get env/ 1 and os: put env/ 2 will handle
Unicode strings. On Unix-like platforms, the built-in functions will translate environment variablesin UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows the Unicode versions of the environment system API
will be used, also allowing for code points > 255.

On Unix-like operating systems, parameters are expected to be UTF-8 without translation if Unicode file names are
enabled.

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.2 Using Unicode in Erlang

1.2.10 Unicode-aware Modules

Most of the modules in Erlang/OTP are of course Unicode-unaware in the sense that they have no notion of Unicode
and really should not have. Typically they handle non-textual or byte-oriented data (likegen_t cp etc).

Modules that actually handle textual data (like i o_li b, string etc) are sometimes subject to conversion or
extension to be able to handle Unicode characters.

Fortunately, most textual data has been stored in lists and range checking has been sparse, why moduleslikest ri ng
works well for Unicode lists with little need for conversion or extension.

Some modules are however changed to be explicitly Unicode-aware. These modules include:
uni code

The module uni code is obviously Unicode-aware. It contains functions for conversion between different
Unicode formats aswell as some utilities for identifying byte order marks. Few programs handling Unicode data
will survive without this module.

Thei o module has been extended along with the actual 1/0-protocol to handle Unicode data. This means that
severa functions require binariesto bein UTF-8 and there are modifiersto formatting control sequencesto allow
for outputting of Unicode strings.

file,group,user

1/O-serversthroughout the system are able to handle Unicode dataand has optionsfor converting data upon actual
output or input to/from the device. Asshown earlier, theshel | hassupport for Unicodeterminalsandthefi | e
module alows for translation to and from various Unicode formats on disk.

The actual reading and writing of files with Unicode data is however not best done with the f i | e module as
its interface is byte oriented. A file opened with a Unicode encoding (like UTF-8), is then best read or written
using thei o module.

re

The r e module alows for matching Unicode strings as a specia option. As the library is actually centered on
matching in binaries, the Unicode support is UTF-8-centered.

Thewx graphical library has extensive support for Unicode text

The module st ri ng works perfectly for Unicode strings as well as for | SO-latin-1 strings with the exception of the
language-dependent t o_upper andt o_| ower functions, which are only correct for the | SO-latin-1 character set.
Actually they can never function correctly for Unicode characters in their current form, as there are language and
locale issues as well as multi-character mappings to consider when converting text between cases. Converting casein
an international environment is a big subject not yet addressed in OTP.

1.2.11 Unicode Data in Files

The fact that Erlang as such can handle Unicode data in many forms does not automatically mean that the content of
any file can be Unicode text. The external entities such as ports or 1/O-servers are not generally Unicode capable.

Ports are always byte oriented, so before sending data that you are not sure is bytewise encoded to a port, make sure
to encode it in a proper Unicode encoding. Sometimes this will mean that only part of the data shall be encoded as
e.g. UTF-8, some parts may be binary data (like alength indicator) or something else that shall not undergo character
encoding, so ho automatic tranglation is present.

I/O-serversbehavealittledifferently. Thel/O-serversconnected to terminals (or stdout) can usually copewith Unicode
data regardless of the encodi ng option. This is convenient when one expects a modern environment but do not

24 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

want to crash when writing to a archaic terminal or pipe. Files on the other hand are more picky. A file can have
an encoding option which makes it generally usable by the io-module (e.g. { encodi ng, ut f 8}), but is by default
opened as a byte oriented file. The f i | e module is byte oriented, why only ISO-Latin-1 characters can be written
using that module. The i 0 module is the one to use if Unicode data is to be output to a file with other encodi ng
than| at i nl (ak.a. bytewise encoding). It is dightly confusing that a file opened with e.g. fi | e: open(Nane,
[read, {encodi ng, ut f8}]), cannot be properly read using fi | e: read(Fi | e, N) but you have to use the
i 0 moduleto retrieve the Unicode datafromit. Thereasonisthatfil e: read andfil e: wri t e (and friends) are
purely byte oriented, and should so be, asthat isthe way to accessfiles other than text files - byte by byte. Just aswith
ports, you can of course write encoded data into afile by "manually” converting the data to the encoding of choice
(using the uni code module or the bit syntax) and then output it on a bytewise encoded (I at i nl) file.

The rule of thumb is that the file module should be used for files opened for bytewise access
({encodi ng, I ati n1}) and the i 0 module should be used when accessing files with any other encoding (e.g.
{encodi ng, uf 8}).

Functions reading Erlang syntax from files generally recognize the codi ng: comment and can therefore handle
Unicode data on input. When writing Erlang Termsto afile, you should insert such comments when applicable:

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> file:write file("test.term",<<"%% coding: utf-8\n[{\"lOHukopg\",4711}].\n"/utf8>>).
ok

2> file:consult("test.term").

{ok, [[{"lOHnkon",4711}11}

1.2.12 Summary of Options

The Unicode support is controlled by both command line switches, some standard environment variables and the
version of OTPyou areusing. Most optionsaffect mainly theway Unicode dataisdisplayed, not the actual functionality
of the API'sin the standard libraries. This meansthat Erlang programs usually do not need to concern themselveswith
these options, they are more for the devel opment environment. An Erlang program can be written so that it works well
regardless of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:
The LANGand LC_CTYPE environment variables

The language setting in the OS mainly affects the shell. The terminal (i.e. the group leader) will operate with
{encodi ng, uni code} onlyif theenvironment tellsit that UTF-8 isallowed. This setting should correspond
to the actual terminal you are using.

The environment can a so affect file name interpretation, if Erlang is started with the +f na flag (which is default
from Erlang/OTP 17.0).

You can check the setting of this by calling i o: get opt s(), which will give you an option list containing
{'encodi ng, uni code} or{encodi ng, | atinl}.

The+pc {uni codell ati nl} flagtoerl (1)

This flag affects what is interpreted as string data when doing heuristic string detection in the shell and in
iolio_|ib:formt withthe"~t p" and ~t P formatting instructions, as described above.

You can check this option by calling io:printable range/O, which will return uni code or | atinl.
To be compatible with future (expected) extensions to the settings, one should rather use

Ericsson AB. All Rights Reserved.: STDLIB | 25

1.2 Using Unicode in Erlang

io lib:printable |ist/1tocheckifalistisprintable according to the setting. That function will take
into account new possible settings returned fromi o: pri nt abl e_range/ 0.

The+f n{l |aju} [{Wi |e}] flagtoer| (1)

Thisflag affects how the file names are to be interpreted. On operating systems with transparent file naming, this
has to be specified to alow for file naming in Unicode characters (and for correct interpretation of file names
containing characters > 255.

+f nl means bytewise interpretation of file names, which was the usual way to represent | SO-Latin-1 file names
before UTF-8 file naming got widespread.

+f nu means that file names are encoded in UTF-8, which is nowadays the common scheme (although not
enforced).

+f na means that you automatically select between +f nl and +f nu, based on the LANG and LC_CTYPE
environment variables. This is optimistic heuristics indeed, nothing enforces a user to have a terminal with the
same encoding asthefile system, but usually, thisisthe case. Thisisthedefault on all Unix-like operating systems
except MacOS X.

The file name translation mode can be read with thefi | e: nati ve_nane_encodi ng/ 0 function, which
returns| at i n1 (meaning bytewise encoding) or ut f 8.

epp: defaul t _encodi ng/ 0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. In Erlang/OTP R16B | at i n1 was returned (meaning bytewise encoding). In Erlang/
OTP 17.0 and forward it returns ut f 8.

The encoding of each file can be specified using comments as described in epp(3) .
i 0: setopt s/ {1,2} andthe- ol dshel | /-noshel | flags.

When Erlang is started with - ol dshel | or - noshel | , the I/O-server for st andar d_i o is default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

With the i 0: set opt s/ 2 function you can set the encoding of a file or other 1/O-server. This can aso be
set when opening a file. Setting the terminal (or other st andar d_i o server) unconditionally to the option
{encodi ng, ut f 8} will for example make UTF-8 encoded characters being written to the device regardliess
of how Erlang was started or the users environment.

Opening fileswith encodi ng option is convenient when writing or reading text filesin aknown encoding.

Y ou can retrieve the encodi ng setting for an 1/O-server usingi 0: get opt s() .

1.2.13 Recipes

When starting with Unicode, one often stumbles over some common issues. | try to outline some methods of dealing
with Unicode datain this section.

Byte Order Marks

A common method of identifying encoding in text-filesis to put a byte order mark (BOM) first in the file. The BOM
is the code point 16#FEFF encoded in the same way as the rest of the file. If such afileisto be read, the first few
bytes (depending on encoding) is not part of the actual text. This code outlines how to open afile which isbelieved to
have aBOM and set the files encoding and position for further sequential reading (preferably using thei o module).
Note that error handling is omitted from the code:

open _bom file for reading(File) ->
{ok,F} = file:open(File,[read,binaryl]),
{ok,Bin} = file:read(F,4),

26 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

{Type,Bytes} = unicode:bom to encoding(Bin),
file:position(F,Bytes),

io:setopts(F, [{encoding,Type}l),

{ok,F}.

The uni code: bom t o_encodi ng/ 1 function identifies the encoding from a binary of at least four bytes. It
returns, along with an term suitable for setting the encoding of the file, the actual length of the BOM, so that the file
position can be set accordingly. Notethatf i | e: posi ti on/ 2 awaysworks on byte-offsets, so that the actual byte-
length of the BOM is needed.

To open afilefor writing and putting the BOM first is even simpler:

open bom file for writing(File,Encoding) ->
{ok,F} = file:open(File, [write,binary]),
ok = file:write(File,unicode:encoding to bom(Encoding)),
io:setopts(F, [{encoding,Encoding}]),
{ok,F}.

In both casesthe fileisthen best processed using thei o module, asthefunctionsini o can handle code points beyond
the ISO-latin-1 range.

Formatted I/O

When reading and writing to Unicode-aware entities, like the User or afile opened for Unicode translation, you will
probably want to format text strings using the functionsini o ori o_I i b. For backward compatibility reasons, these
functions do not accept just any list as a string, but require a special trand ation modifier when working with Unicode
texts. The modifier ist . When applied to the s control character in a formatting string, it accepts all Unicode code
points and expect binariesto bein UTF-8:

1> io:format("~ts~n", [<<"346"/utf8>>1).
EED)

ok

2> io:format("~s~n", [<<"8&6"/utf8>>]).
A¥A=Aq

ok

Obviously thesecondi o: f or nat / 2 givesundesired output because the UTF-8 binary isnot in latinl. For backward
compatibility, the non prefixed s control character expects bytewise encoded 1SO-latin-1 characters in binaries and
lists containing only code points < 256.

Aslong as the data is always lists, thet modifier can be used for any string, but when binary datais involved, care
must be taken to make the right choice of formatting characters. A bytewise encoded binary will also be interpreted as
astring and printed even when using ~t s, but it might be mistaken for avalid UTF-8 string and one should therefore
avoid using the ~t s control if the binary contains bytewise encoded characters and not UTF-8.

The functionf ormat/ 2 ini o_| i b behaves similarly. This function is defined to return a deep list of characters
and the output could easily be converted to binary data for outputting on a device of any kind by a simple
erlang:list_to_binary/ 1. Whenthetranslation modifier isused, thelist can however contain characters that
cannot be stored in one byte. Thecall toer | ang: i st _t o_bi nary/ 1 will in that case fail. However, if the |/O
server you want to communicate with is Unicode-aware, the list returned can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Ericsson AB. All Rights Reserved.: STDLIB | 27

1.2 Using Unicode in Erlang

Eshell V5.10.1 (abort with ~G)

1> io lib:format("~ts~n", ["Fto0vikovt"]).
["TtovvikovT", "\n"]

2> io:put chars(io lib:format("~ts~n", ["FtovUvikovt"])).
FtovvikovT

ok

The Unicode string is returned as a Unicode list, which is recognized as such since the Erlang shell uses the Unicode
encoding (and is started with all Unicode characters considered printable). The Unicode list is valid input to the
i 0: put _char s/ 2 function, so data can be output on any Unicode capable device. If the device is a terminal,
characters will be output inthe\ x{ H ...} format if encodingisl at i n1 otherwisein UTF-8 (for the non-interactive
terminal - "oldshell" or "noshell") or whatever is suitable to show the character properly (for an interactive terminal -
the regular shell). The bottom line is that you can always send Unicode datato the st andar d_i o device. Fileswill
however only accept Unicode code points beyond | SO-latin-1 if encodi ng is set to something elsethan| at i n1.

Heuristic Identification of UTF-8

Whileit is strongly encouraged that the actual encoding of charactersin binary datais known prior to processing, that
is not always possible. On atypical Linux system, there is a mix of UTF-8 and ISO-latin-1 text files and there are
seldom any BOM'sin the files to identify them.

UTF-8 is designed in such away that | SO-latin-1 characters with numbers beyond the 7-bit ASCII range are seldom
considered valid when decoded as UTF-8. Therefore one can usually use heuristics to determineif afileisin UTF-8
or if it isencoded in ISO-latin-1 (one byte per character) encoding. The uni code module can be used to determine
if data can be interpreted as UTF-8:

heuristic_encoding bin(Bin) when is binary(Bin) ->
case unicode:characters to binary(Bin,utf8,utf8) of
Bin ->
utf8;
->
latinl
end.

If one does not have a complete binary of the file content, one could instead chunk through the file and check
part by part. The return-tuple {i nconpl et e, Decoded, Rest} fromuni code: characters_t o_bi nary/
{1, 2, 3} comesinhandy. Theincompleterest from one chunk of dataread from thefileisprepended to the next chunk
and we therefore circumvent the problem of character boundaries when reading chunks of bytesin UTF-8 encoding:

heuristic encoding file(FileName) ->
{ok,F} = file:open(FileName, [read,binary]),
loop through file(F,<<>>,file:read(F,1024)).

loop through file(,<<>>,eof) ->
utfs;
loop through file(, ,eof) ->
latinl;
loop through file(F,Acc,{ok,Bin}) when is binary(Bin) ->
case unicode:characters to binary([Acc,Bin]) of
{error, , } ->
latinl;
{incomplete, ,Rest} ->
loop through file(F,Rest,file:read(F,1024));
Res when is binary(Res) ->
loop through file(F,<<>>,file:read(F,1024))
end.

28 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

Another optionisto try to read the whole filein UTF-8 encoding and seeif it fails. Here we need to read thefile using
i 0: get _char s/ 3, aswe have to succeed in reading characters with a code point over 255:

heuristic encoding file2(FileName) ->
{ok,F} = file:open(FileName, [read,binary,{encoding,utf8}]),
loop through file2(F,io:get chars(F,'',1024)).

loop through file2(,eof) ->
utf8;

loop through file2(,{error, Err}) ->
latinl;

loop through file2(F,Bin) when is binary(Bin) ->
loop through file2(F,io:get chars(F,'',1024)).

Lists of UTF-8 Bytes

For various reasons, you may find yourself having a list of UTF-8 bytes. This is not a regular string of Unicode
characters as each element in the list does not contain one character. Instead you get the "raw" UTF-8 encoding that
you havein binaries. Thisis easily converted to a proper Unicode string by first converting byte per byteinto a binary
and then converting the binary of UTF-8 encoded characters back to a Unicode string:

utf8 list to string(StrangelList) ->
unicode:characters to list(list to binary(StrangelList)).

Double UTF-8 Encoding

When working with binaries, you may get the horrible"double UTF-8 encoding", where strange characters are encoded
in your binaries or files that you did not expect. What you may have got, is a UTF-8 encoded binary that is for the
second time encoded as UTF-8. A common situation is where you read a file, byte by byte, but the actual content is
already UTF-8. If you then convert the bytesto UTF-8, using i.e. theuni code module or by writing to afile opened
with the { encodi ng, ut f 8} option. You will have each byte in the in the input file encoded as UTF-8, not each
character of the original text (one character may have been encoded in several bytes). Thereisno real remedy for this
other than being very sure of which dataiis actually encoded in which format, and never convert UTF-8 data (possibly
read byte by byte from afile) into UTF-8 again.

The by far most common situation where this happens, is when you get lists of UTF-8 instead of proper Unicode
strings, and then convert them to UTF-8 in abinary or on afile:

wrong thing to do() ->

{ok,Bin} = file:read file("an utf8 encoded file.txt"),

MyList = binary to list(Bin), %% Wrong! It is an utf8 binary!

{ok,C} = file:open("catastrophe.txt", [write,{encoding,utf8}]),

io:put chars(C,MyList), %% Expects a Unicode string, but get UTF-8

%% bytes in a list!

he file catastrophe.txt contains more or less unreadable
arbage!

file:close(C). %%

«Q -

Make very sureyou know what abinary contains before converting it to astring. If no other option exists, try heuristics:

Ericsson AB. All Rights Reserved.: STDLIB | 29

1.2 Using Unicode in Erlang

if you can not know() ->
{ok,Bin} = file:read file("maybe utf8 encoded file.txt"),
MyList = case unicode:characters to list(Bin) of
L when is list(L) ->
L;
_ ->
binary to list(Bin) %% The file was bytewise encoded
end,
%% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
{ok,G} = file:open("greatness.txt", [write,{encoding,utf8}]),
io:put chars(G,MyList), %% Expects a Unicode string, which is what it gets!
file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

30 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

2 Reference Manual

The Standard Erlang Libraries application, STDLIB, contains modules for manipulating lists, strings and files etc.

Ericsson AB. All Rights Reserved.: STDLIB | 31

STDLIB

STDLIB

Application

The STDLIB ismandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
The STDLIB application contains no services.

Configuration

The following configuration parameters are defined for the STDLIB application. See app(4) for more information
about configuration parameters.

shell _esc = icl | abort

This parameter can be used to alter the behaviour of the Erlang shell when ~G is pressed.
restricted_shell = nodul e()

This parameter can be used to run the Erlang shell in restricted mode.
shel | _catch_excepti on = bool ean()

This parameter can be used to set the exception handling of the Erlang shell's evaluator process.
shell _history_length = integer() >= 0

This parameter can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Mdd, Func} | default

where

e Md = atom()

e Func = atom()

This parameter can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

This parameter can be used to determine how many results are saved by the Erlang shell.
shel |l _strings = bool ean()

This parameter can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4), application(3), shell(3),

32 | Ericsson AB. All Rights Reserved.: STDLIB

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueisused
for entries that have not been explicitly set.

Arrays uses zero based indexing. This is a deliberate design choice and differs from other erlang datastructures, e.g.
tuples.

Unlessspecified by the user when thearray iscreated, the default valueistheatomundef i ned. Thereisno difference
between an unset entry and an entry which has been explicitly set to the same value as the default one (cf. reset/2). If
you need to differentiate between unset and set entries, you must make sure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically; if anindex | has been used successfully to set an entry, al indicesin the range
[O,1 T will stay accessible unless the array size is explicitly changed by calling resize/2.

Examples:
%% Create a fixed-size array with entries 0-9 set to 'undefined'
AOQ = array:new(10).
10 = array:size(A0).
%% Create an extendible array and set entry 17 to 'true',
%% causing the array to grow automatically
Al = array:set(17, true, array:new()).
18 = array:size(Al).

%% Read back a stored value
true = array:get(17, Al).

%% Accessing an unset entry returns the default value
undefined = array:get(3, Al).

%% Accessing an entry beyond the last set entry also returns the
%% default value, if the array does not have fixed size
undefined = array:get(18, Al).

%% "sparse" functions ignore default-valued entries
A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse to orddict(A2).

%% An extendible array can be made fixed-size later
A3 = array:fix(A2).

% A fixed-size array does not grow automatically and does not
% allow accesses beyond the last set entry

"EXIT',{badarg, }} (catch array:set(18, true, A3)).
{'EXIT',{badarg, }} (catch array:get(18, A3)).

~ P of

Data Types
array(Type)

A functional, extendible array. The representation is not documented and is subject to change without notice. Note
that arrays cannot be directly compared for equality.

Ericsson AB. All Rights Reserved.: STDLIB | 33

array

array ()

array() isequivadenttoarray(tern()).

array _indx() = integer() >= 0

array opts() = array_opt() | [array_opt()]
array opt() = {fixed, boolean()}

| fixed
| {default, Type :: term()}
| {size, N :: integer() >= 0}

| (N :: integer() >= 0)
indx_pairs(Type) = [i ndx_pair (Type)]
indx_pair(Type) = {Index :: array_indx(), Type}

Exports

default(Array :: array(Type)) -> Value :: Type
Get the value used for uninitialized entries.
See also: new/2.

fix(Array :: array(Type)) -> array(Type)
Fix the size of the array. This preventsit from growing automatically upon insertion; see also set/3.
See also: relax/1

foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Fold the elements of the array using the given function and initial accumulator value. The elements arevisited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: foldr/3, map/2, sparse foldl/3.

foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Fold the elements of the array right-to-left using the given function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

See also: foldl/3, map/2.

from list(List :: [Value :: Typel) -> array(Type)
Equivalent to from list(List, undefined).

from list(List :: [Value :: Type], Default :: term()) ->

34 | Ericsson AB. All Rights Reserved.: STDLIB

array

array (Type)

Convert alist to an extendible array. Def aul t isused as the value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

Seealso: new/2, to_list/1.

from orddict(0Orddict :: indx_pairs(Value :: Type)) -> array(Type)
Equivalent to from_orddict(Orddict, undefined).

from orddict(0Orddict :: indx_pairs(Value :: Type),
Default :: Type) ->
array (Type)

Convert an ordered list of pairs{ | ndex, Val ue} to a corresponding extendible array. Def aul t is used as the
value for uninitialized entries of the array. If Or ddi ct isnot aproper, ordered list of pairs whose first elements are
nonnegative integers, the call fails with reason badar g.

See also: new/2, to_orddict/1.

get(I :: array_indx(), Array :: array(Type)) -> Value :: Type

Getthevalueof entry | . If | isnot anonnegativeinteger, or if thearray hasfixedsizeand | islarger than the maximum
index, the call fails with reason badar g.

If the array does not have fixed size, this function will return the default value for any index | greater than
size(Array)- 1.

See also: set/3.

is array(X :: term()) -> boolean()

Returnst r ue if X appearsto bean array, otherwisef al se. Note that the check isonly shallow; thereis no guarantee
that X isawell-formed array representation even if this function returnst r ue.

is fix(Array :: array()) -> boolean()
Check if the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.
See also: fix/l.

map(Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

Map the given function onto each element of the array. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: foldl/3, foldr/3, sparse_map/2.

new() -> array()
Create anew, extendible array with initial size zero.
See also: new/1, new/2.

Ericsson AB. All Rights Reserved.: STDLIB | 35

array

new(Options :: array_opts()) -> array()

Create a new array according to the given options. By default, the array is extendible and has initial size zero. Array
indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:
N::integer() >= Oor{size, N:integer() >= 0}

Specifiestheinitia size of the array; thisalso implies{f i xed, true}.If Nisnot anonnegative integer, the
call failswith reason badar g.

fixedor{fixed, true}
Creates afixed-size array; see also fix/1.
{fixed, false}
Creates an extendible (non fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur in thelit, i.e., later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.
Examples:

array:new(100)

creates a fixed-size array of size 100.
array:new({default,0})

creates an empty, extendible array whose default value is 0.
array:new([{size, 10}, {fixed, false}, {default,-1}1)

creates an extendible array with initial size 10 whose default valueis-1.
Seealso: fix/1, from list/2, get/2, new/O, new/2, set/3.

new(Size :: integer() >= 0, Options :: array_opts()) -> array()

Create a new array according to the given size and options. If Si ze is not a nonnegative integer, the call fails with
reason badar g. By default, the array has fixed size. Note that any size specificationsin Opt i ons will override the
Si ze parameter.

If Opti ons isalist, thisissimply equivalenttonew([{ si ze, Size} | Options], otherwiseitisequivalent
tonew[{size, Size} | [Options]].However, using thisfunction directly is more efficient.

Example:

array:new (100, {default,0})

creates a fixed-size array of size 100, whose default valueis 0.
See also: new/1.

36 | Ericsson AB. All Rights Reserved.: STDLIB

array

relax(Array :: array(Type)) -> array(Type)
Make the array resizable. (Reverses the effects of fix/1.)
See also: fix/1.

reset(I :: array_indx(), Array :: array(Type)) -> array(Type)

Reset entry | to the default value for the array. If the value of entry | is the default value the array will be returned
unchanged. Reset will never change size of the array. Shrinking can be done explicitly by calling resize/2.

If I isnot anonnegative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; cf. set/3

See also: new/2, set/3.

resize(Array :: array(Type)) -> array(Type)

Change the size of the array to that reported by sparse size/1. If the given array has fixed size, the resulting array
will aso have fixed size.

See also: resize/2, sparse_size/l.

resize(Size :: integer() >= 0, Array :: array(Type)) ->
array (Type)

Change the size of the array. If Si ze is not a nonnegative integer, the call fails with reason badar g. If the given
array hasfixed size, the resulting array will also have fixed size.

set(I :: array_indx(), Value :: Type, Array :: array(Type)) ->
array (Type)

Setentry | of thearray to Val ue. If | isnot a nonnegative integer, or if the array hasfixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Arr ay) - 1, thearray will grow to sizel +1.
See also: get/2, reset/2.

size(Array :: array()) -> integer() >= 0

Get the number of entriesin the array. Entries are numbered fromOtosi ze(Arr ay) - 1; hence, thisisalso theindex
of thefirst entry that is guaranteed to not have been previously set.

See also: set/3, sparse_size/l.

sparse foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Fold the elements of the array using the given function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on is not a function, the call fails
with reason badar g.

See also: foldl/3, sparse_foldr/3.

Ericsson AB. All Rights Reserved.: STDLIB | 37

array

sparse_foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Fold the elements of the array right-to-left using the given function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call failswith reason badar g.

See also: foldr/3, sparse_foldl/3.

sparse_map(Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

Map the given function onto each element of the array, skipping default-valued entries. The elements are visited in
order from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: map/2.

sparse _size(Array :: array()) -> integer() >= 0

Get the number of entriesin the array up until the last non-default valued entry. In other words, returns| +1 if | isthe
last non-default valued entry in the array, or zero if no such entry exists.

See also: resize/l, size/l.

sparse_to list(Array :: array(Type)) -> [Value :: Type]l
Convertsthe array to alist, skipping default-valued entries.
Seealso: to_list/1.

sparse_to orddict(Array :: array(Type)) ->
i ndx_pairs(Value :: Type)

Convert the array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
See also: to_orddict/1.

to list(Array :: array(Type)) -> [Value :: Typel
Convertsthe array to alist.
See also: from list/2, sparse to_list/1.

to orddict(Array :: array(Type)) -> indx_pairs(Value :: Type)
Convert the array to an ordered list of pairs{ | ndex, Val ue}.
See also: from_orddict/2, sparse_to_orddict/1.

38 | Ericsson AB. All Rights Reserved.: STDLIB

base64

base64

Erlang module

Implements base 64 encode and decode, see RFC2045.

Data Types
ascii string() = [1..255]
ascii binary() = binary()

A bi nary() with ASCII charactersin the range 1 to 255.

Exports

encode(Data) -> Base64
encode to string(Data) -> Base64String
Types.

Data = ascii_string() | ascii_binary()

Baseb4 = ascii _binary()

Base64String = ascii _string()

Encodes aplain ASCII string into base64. The result will be 33% larger than the data.

decode(Base64) -> Data
decode to string(Base64) -> DataString
mime decode(Base64) -> Data
mime decode to string(Base64) -> DataString
Types:
Base64 = ascii_string() | ascii_binary()
Data = ascii_binary()
DataString = ascii_string()
Decodes a base64 encoded string to plan ASCIl. See RFC4648. mi me_decode/1 and

m nme_decode_to_string/ 1 strips away illega characters, while decode/ 1 and decode_to_string/1
only strips away whitespace characters.

Ericsson AB. All Rights Reserved.: STDLIB | 39

beam_lib

beam_lib

Erlang module

beam | i b providesaninterfaceto files created by the BEAM compiler ("BEAM files"). The format used, a variant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The names recognized and the corresponding identifiers
are;

e abstract _code ("Abst")

e attributes ("Attr")

e conpile_info ("Clinf")

e exports ("ExpT")

« labeled exports ("ExpT")

e inports ("InmpT")

« indexed_inports ("InpT")

e locals ("LocT")

e Jlabeled |locals ("LocT")

e atons ("Atont)

Debug Information/Abstract Code

The option debug_i nf o can be given to the compiler (see compile(3)) in order to have debug information in the
form of abstract code (see The Abstract Format in ERTS User's Guide) stored intheabst r act _code chunk. Tools
such as Debugger and Xref require the debug information to be included.

Warning:

Source code can be reconstructed from the debug information. Use encrypted debug information (see below) to
prevent this.

The debug information can also be removed from BEAM files using strip/1, strip_files/1 and/or strip_release/1.

Reconstructing source code
Here is an example of how to reconstruct source code from the debug information in a BEAM file Beam

{ok,{ ,[{abstract code,{ ,AC}}]}} = beam lib:chunks(Beam, [abstract code]).
io:fwrite("~s~n", [erl prettypr:format(erl syntax:form list(AC))]).

Encrypted debug information

The debug information can be encrypted in order to keep the source code secret, but still being able to use tools such
as Xref or Debugger.

To use encrypted debug information, a key must be provided to the compiler and beam | i b. The key isgiven asa
string and it is recommended that it contains at least 32 characters and that both upper and lower case letters as well
asdigits and special characters are used.

40 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

The default type -- and currently the only type -- of crypto algorithm isdes3_cbc, three rounds of DES. The key
string will be scrambled using er | ang: nd5/ 1 to generate the actual keys used for des3_chc.

Note:

Asfar aswe know by the time of writing, it isinfeasibleto break des3_chbc encryption without any knowledge
of the key. Therefore, aslong asthe key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

There are two ways to provide the key:

* Usethe compiler option { debug_i nf o, Key} , see compile(3), and the function crypto_key fun/1 to register a
fun which returns the key whenever beam | i b needsto decrypt the debug information.

If no such funisregistered, beam | i b will instead search for a. er | ang. crypt file, see below.
« Storethekey inatext filenamed . er | ang. crypt .

In this case, the compiler option encr ypt _debug_i nf o can be used, see compile(3).
.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthecurrent directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b will implicitly create a crypto key fun and register it.

The. erl ang. crypt fileshould contain asinglelist of tuples:

{debug info, Mode, Module, Key}

Mbde isthetype of crypto agorithm; currently, the only allowed valuethusisdes3_chc. Modul e iseither an atom,
in which case Key will only be used for the module Modul e, or [] , in which case Key will be used for all modules.
Key isthe non-empty key string.

The Key in the first tuple where both Mode and Modul e matches will be used.

Hereisan exampleof an. er | ang. cr ypt filethat returns the same key for al modules:

[{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr1G "}].

And here is a dightly more complicated example of an . er | ang. cr ypt which provides one key for the module
t , and another key for all other modules:

[{debug info, des3 cbc, t, "My KEY"},
{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr]G "}1.

Note:

Do not use any of the keys in these examples. Use your own keys.

Ericsson AB. All Rights Reserved.: STDLIB | 41

beam_lib

Data Types
beam() = module() | file:filename() | binary()

Each of the functions described below accept either the module name, the filename, or a binary containing the beam
module.

chunkdata() = {chunkid(), dataB()}
| {abstract code, abst_code() }
| {attributes, [attrib_entry()]}
| {compile info, [conpinfo_entry()1}
| {exports, [{atom(), arity()}1}
| {labeled exports, [labeled_entry()]}
| {imports, [mfa()l}
| {indexed imports,
[{i ndex() ,

module(),

Function :: atom(),

arity()}1}
| {locals, [{atom(), arity()}1}
| {labeled locals, [labeled_entry()]}
| {atoms, [{integer(), atom()}1}

Thelist of attributesissorted on At t ri but e (in attrib_entry()), and each attribute name occurs once in thelist. The
attribute values occur in the same order asin the file. The lists of functions are also sorted.

chunkid() = nonempty string()

"Abst" | "Attr* | "CInf" | "ExpT" | "ImpT" | "LocT" | "Atom"

dataB() = binary()

abst code() = {AbstVersion :: atom(), forns()}
| no abstract code

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on.no_abstract _code
meansthat the" Abst " chunk is present, but empty.

forms() = [erl _parse:abstract_forn()]

compinfo _entry() = {InfoKey :: atom(), term()}

attrib entry() =
{Attribute :: atom(), [AttributeValue :: term()]}

labeled entry() = {Function :: atom(), arity(), label ()}
index() = integer() >= 0

label() integer()

chunkref() = chunknane() | chunkid()

(
chunkname() = abstract code
| attributes
| compile info
| exports
| labeled exports
| imports
| indexed imports
| locals
| labeled locals

42 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

| atoms

chnk_rsn() = {unknown chunk, file:filename(), atom()}
| {key missing or invalid,
file:filenane(),
abstract code}
| info_rsn()
info rsn() = {chunk too big,
file:filenane(),

chunki d() ,
ChunkSize :: integer() >= 0,
FileSize :: integer() >= 0}

| {invalid beam file,

file:filenane(),

Position :: integer() >= 0}

{invalid chunk, file:filename(), chunkid
{missing chunk, file:filename(), chunkid
{not a beam file, file:filename()}

{file error, file:filenane(), file:posix()}

O
OF;

Exports

chunks(Beam, ChunkRefs) ->
{ok, {module(), [chunkdata()]}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beamn()
ChunkRefs = [chunkref ()]

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of
thelist of chunks references.

chunks (Beam, ChunkRefs, Options) ->
{ok, {module(), [ChunkResult]}} |
{error, beam 1lib, chnk_rsn()}

Types.
Beam = beam()
ChunkRefs = [chunkref ()]
Options = [allow missing chunks]
ChunkResult = chunkdat a()
| {ChunkRef :: chunkref(), missing chunk}

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of
thelist of chunks references.

By default, if any requested chunk is missing in Beam an err or tuple is returned. However, if the option
al I ow_mi ssi ng_chunks has been given, aresult will be returned even if chunks are missing. In the result list,
any missing chunks will be represented as { ChunkRef , ni ssi ng_chunk} . Note, however, that if the " At ont'
chunk if missing, that is considered afatal error and the return value will bean er r or tuple.

version(Beam) ->
{ok, {module(), [Version :: term()]}} |

Ericsson AB. All Rights Reserved.: STDLIB | 43

beam_lib

{error, beam 1lib, chnk_rsn()}
Types:
Beam = beam()

Returns the module version(s). A version is defined by the module attribute - vsn(Vsn) . If this attribute is not
specified, the version defaults to the checksum of the module. Note that if the version Vsn is not a list, it is made
into one, that is{ ok, { Modul e, [Vsn] }} isreturned. If there are several - vsn module attributes, the result isthe
concatenated list of versions. Examples:

1> beam lib:version(a). % -vsn(1).

{ok,{a, [1]}}

2> beam lib:version(b). % -vsn([1]).

{ok,{b, [1]}}

3> beam lib:version(c). % -vsn([1]). -vsn(2).

{ok,{c, [1,2]}}
4> beam lib:version(d). % no -vsn attribute
{ok,{d, [275613208176997377698094100858909383631]}}

md5(Beam) -> {ok, {module(), MD5}} | {error, beam lib, chnk_rsn()}
Types:

Beam = beam()

MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

info(Beam) -> [InfoPair] | {error, beam lib, info_rsn()}

Types.
Beam = beam()
InfoPair {file, Filename :: file:filenane()}

| {binary, Binary :: binary()}
| {module, Module :: module()}
|

{chunks,
[{ChunkId :: chunkid(),
Pos :: integer() >= 0,

Size :: integer() >= 0}1}

Returns alist containing some information about a BEAM fileastuples{1tem | nf o}:
{file, Filenane} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.
{odul e, Modul e}

The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

cmp (Beaml, Beam2) -> ok | {error, beam lib, cnp_rsn()}
Types:

44 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Beaml = Beam2 = beam()

cmp_rsn() = {modules different, module(), module()}
| {chunks different, chunkid()}

| different chunks

| info_rsn()

Compares the contents of two BEAM files. If the module names are the same, and all chunks
except for the "Cl nf" chunk (the chunk containing the compilation information which is returned by
Modul e: modul e_i nf o(conpi | €)) have the same contents in both files, ok is returned. Otherwise an error
message is returned.

cmp dirs(Dirl, Dir2) ->
{Onlyl, Only2, Different} | {error, beam lib, Reason}

Types.
Dirl = Dir2 = atom() | file:filenane()
Onlyl = Only2 = [file:filename()]
Different =
[{Filenamel :: file:filenane(), Filename2 :: file:filenanme()}]
Reason = {not a directory, term()} | info_rsn()

The cnp_di r s/ 2 function compares the BEAM files in two directories. Only files with extension " . beant' are
compared. BEAM filesthat exist in directory Di r 1 (Di r 2) only are returned in Onl y1 (Onl y2). BEAM files that
exist on both directories but are considered different by cnp/ 2 are returned as pairs {Fi | enanel, Fi | enane?2}
whereFi | enanel (Fi | enanme?2) existsin directory Di r 1 (Di r 2).

diff dirs(Dirl, Dir2) -> ok | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Thedi ff _di r s/ 2 function compares the BEAM files in two directories the way cnp_di r s/ 2 does, but names
of filesthat exist in only one directory or are different are presented on standard output.

strip(Beaml) ->
{ok, {module(), Beam2}} | {error, beam lib, info_rsn()}

Types:
Beaml = Beam2 = beam()

Thestri p/ 1 function removes al chunks from a BEAM file except those needed by the loader. In particular, the
debug information (abst r act _code chunk) isremoved.

strip files(Files) ->
{ok, [{module(), Beam}]} |
{error, beam lib, info_rsn()}

Types:
Files = [bean()]
Beam = beam()

Thestrip_fil es/ 1 functionremovesall chunksexcept those needed by theloader from BEAM files. In particular,
the debug information (abst r act _code chunk) is removed. The returned list contains one element for each given
file name, in the same order asinFi | es.

Ericsson AB. All Rights Reserved.: STDLIB | 45

beam_lib

strip release(Dir) ->
{ok, [{module(), file:filenanme()}]} |
{error, beam lib, Reason}

Types:
Dir = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Thestri p_rel ease/ 1 function removes all chunks except those needed by the loader from the BEAM files of a
release. Di r should be the installation root directory. For example, the current OTP release can be stripped with the
cal beam lib:strip_rel ease(code:root _dir()).

format _error(Reason) -> io_lib:chars()
Types.
Reason = term()

Given the error returned by any function in this module, the function f or mat _er r or returns adescriptive string of
the error in English. For file errors, the functionf i | e: f or mat _err or (Posi x) should be called.

crypto _key fun(CryptoKeyFun) -> ok | {error, Reason}
Types:
CryptoKeyFun = crypto_fun()
Reason = badfun | exists | term()
crypto _fun() = fun((crypto_fun_arg()) -> term())
crypto fun arg() = init
| clear
| {debug info,
node() ,

module(),
file:filenanme()}

mode() = des3 cbc

The crypt o_key_ fun/ 1 function registers a unary fun that will be caled if beam | i b needs to read an
abstract _code chunk that has been encrypted. The funisheld in aprocessthat is started by the function.

If there aready is afun registered when attempting to register afun, { err or, exi st s} isreturned.
The fun must handl e the following arguments:

CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any necessary
initializations. If { ok, NewCr ypt oKeyFun} isreturned then NewCr ypt oKeyFun will be registered instead of
Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and cr ypt o_key fun/ 1 returns
{error, Tern} aswdll.

CryptoKeyFun({debug info, Mode, Module, Filename}) -> Key

Called when the key is needed for the module Mbdul e in the file named Fi | enane. Mode is the type of crypto
algorithm; currently, the only possible value thusisdes3_cbc. The call should fail (raise an exception) if there is
no key available.

46 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

CryptoKeyFun(clear) -> term()

Called beforethefunisunregistered. Here any cleaning up can bedone. Thereturn valueisnot important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of its return value.

clear crypto key fun() -> undefined | {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key_ fun/ 1.

Thecl ear _crypto_key_ fun/1 either returns{ ok, undefi ned} if there was no crypto key fun registered,
or{ok, Tern},whereTer misthereturnvaluefrom Cr ypt oKeyFun(cl ear),seecrypto_key fun/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 47

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
implemented using bit-syntax, the functions in this library are highly optimized and are expected to either execute
faster or consume less memory (or both) than a counterpart written in pure Erlang.

The module is implemented according to the EEP (Erlang Enhancement Proposal) 31.

Note:

The library handles byte-oriented data. Bitstrings that are not binaries (does not contain whole octets of bits) will
result in abadar g exception being thrown from any of the functions in this module.

Data Types

cp()

Opaque data-type representing a compiled search-pattern. Guaranteed to be atuple() to allow programs to distinguish
it from non precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}

A representaion of a part (or range) in a binary. Start is a zero-based offset into a binary() and Length is the length
of that part. Asinput to functions in this module, a reverse part specification is allowed, constructed with a negative
Length, so that the part of the binary begins at Start + Length and is -Length long. Thisis useful for referencing the
last N bytes of abinary as{size(Binary), -N}. The functionsin this module always return part()'s with positive Length.

Exports

at(Subject, Pos) -> byte()
Types:

Subject = binary()

Pos = integer() >= 0

Returns the byte at position Pos (zero-based) in the binary Subj ect as an integer. If Pos >=
byt e_si ze(Subj ect),abadar g exceptionisraised.

bin to list(Subject) -> [byte()]
Types:

Subject = binary()
Thesameasbin_to_|ist(Subject, {0, byte size(Subject)}).

bin to list(Subject, PosLen) -> [byte()]
Types.

48 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()
PosLen = part ()

Converts Subj ect toalist of byt e() s, each representing the value of one byte. The part () denoteswhich part
of thebi nar y() to convert. Example:

1> binary:bin to list(<<"erlang">>,{1,3}).
n r'La n
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception israised.

bin to list(Subject, Pos, Len) -> [byte()]
Types:

Subject = binary()

Pos integer() >= 0

Len integer()

Thesameas bin_to_list(Subject, {Pos, Len}).

compile pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search-pattern, later to be used in the match/3, matches/3,

split/3 or replace/4 functions. The cp() returned is guaranteed to be at upl e() to alow programs to distinguish
it from non pre-compiled search patterns

When a list of binaries is given, it denotes a set of adternative binaries to search for.
l.e if [<<"functional">> <<"programm ng">>] is given as Pattern, this means "either
<<"functional ">> or <<" progranm ng" >>". The pattern is a set of aternatives, when only a single binary
is given, the set has only one element. The order of alternativesin apattern is not significant.

Thelist of binaries used for search alternatives shall be flat and proper.
If Pat t er n isnot abinary or aflat proper list of binarieswith length > 0, abadar g exception will be raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Thesameascopy(Subj ect, 1).

copy(Subject, N) -> binary()
Types:
Subject = binary()
N = integer() >= 0
Creates a binary with the content of Subj ect duplicated N times.

This function will always create a new binary, evenif N = 1. By using copy/ 1 on abinary referencing a larger
binary, one might free up the larger binary for garbage collection.

Ericsson AB. All Rights Reserved.: STDLIB | 49

binary

Note:

By deliberately copying a single binary to avoid referencing a larger binary, one might, instead of freeing up
the larger binary for later garbage collection, create much more binary data than needed. Sharing binary datais
usually good. Only in special cases, when small parts reference large binaries and the large binaries are no longer
used in any process, deliberate copying might be a good idea.

If N< 0, abadar g exception israised.

decode unsigned(Subject) -> Unsigned
Types:

Subject = binary()

Unsigned = integer() >= 0
Thesameasdecode_unsi gned(Subj ect, big).

decode unsigned(Subject, Endianness) -> Unsigned
Types:
Subject = binary()
Endianness = big | little
Unsigned = integer() >= 0
Converts the binary digit representation, in big or little endian, of a positive integer in Subj ect to an Erlang
i nteger().
Example:

1> binary:decode unsigned(<<169,138,199>>,big).
11111111

encode unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Thesameasencode_unsi gned(Unsi gned, big).

encode unsigned(Unsigned, Endianness) -> binary()
Types:

Unsigned = integer() >= 0

Endianness = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big or little
endian.

Example:

1> binary:encode unsigned(11111111,big).
<<169,138,199>>

50 | Ericsson AB. All Rights Reserved.: STDLIB

binary

first(Subject) -> byte()
Types:
Subject = binary()

Returns the first byte of the binary Subj ect as an integer. If the size of Subj ect is zero, abadar g exception
israised.

last(Subject) -> byte()
Types:
Subject = binary()

Returns the last byte of the binary Subj ect as an integer. If the size of Subj ect is zero, abadar g exception
israised.

list to bin(BytelList) -> binary()
Types:
BytelList = iodata()
Worksexactly aser |l ang: | i st _to_bi nary/ 1, added for completeness.

longest common prefix(Binaries) -> integer() >= 0
Types.
Binaries = [binary()]
Returns the length of the longest common prefix of the binariesin thelist Bi nar i es. Example:

1> binary:longest common prefix([<<"erlang">>,<<"ergonomy">>]).
2

2> binary:longest common prefix([<<"erlang">>,<<"perl">>]).

0

If Bi nari es isnot aflat list of binaries, abadar g exception is raised.

longest common suffix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common suffix of the binariesin the list Bi nar i es. Example:

1> binary:longest_common_suffix([<<"erlang">>,<<"fang">>]).
3
2> binary:longest common suffix([<<"erlang">>,<<"perl">>]).
0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

Ericsson AB. All Rights Reserved.: STDLIB | 51

binary

match(Subject, Pattern) -> Found | nomatch

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()
Thesameasnmat ch(Subj ect, Pattern, []).

match(Subject, Pattern, Options) -> Found | nomatch

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()

Options = [Option]

Option = {scope, part()}

part() = {Start :: integer() >= 0, Length :: integer()}
Searches for the first occurrence of Pat t er n in Subj ect and returns the position and length.

The function will return { Pos, Lengt h} for thebinary in Pat t er n starting at the lowest positionin Subj ect ,
Example:

1> binary:match(<<"abcde">>, [<<"bcde">>,<<"cd">>],[]).
{1,4}

Even though <<" cd" >> ends before <<" bcde" >>, <<" bcde" >> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:

{scope, { Start, Length}}
Only the given part is searched. Return values still have offsets from the beginning of Subj ect . A negative
Lengt h isallowed as described in the DATA TYPES section of this manual.

If none of the stringsin Pat t er n isfound, the atom nomat ch isreturned.

For adescription of Pat t er n, see compile pattern/1.

If {scope, {Start,Length}} isgivenin the options such that St art is larger than the size of Subj ect,
Start + Lengthislessthanzeroor St art + Lengt hislarger thanthesizeof Subj ect ,abadar g exception
israised.

matches(Subject, Pattern) -> Found

Types.
Subject binary()
Pattern = binary() | [binary()]l | cp()
Found = [part ()]

Thesameasnmat ches(Subj ect, Pattern, []).

matches(Subject, Pattern, Options) -> Found
Types:

52 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()

Pattern = binary() | [binary()] | cp()

Found = [part()]

Options = [Option]

Option = {scope, part()}

part() = {Start :: integer() >= 0, Length :: integer()}
Workslike mat ch/ 2, but the Subj ect issearched until exhausted and alist of al non-overlapping parts matching
Pat t er n isreturned (in order).

Thefirst and longest match is preferred to a shorter, which isillustrated by the following example:

1> binary:matches(<<"abcde">>,
[<<"bcde">>,<<"bc">>>,<<"de">>],[1).

[{1,4}]

Theresult showsthat <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have givenraiseto
one more match,<<"de">>). This corresponds to the behavior of posix regular expressions (and programs like awk),
but is not consistent with alternative matches in re (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the stringsin pattern is found, an empty list is returned.
For adescription of Pat t er n, see compile pattern/1 and for a description of available options, see match/3.

If {scope, {Start, Length}} isgivenin the options such that St art islarger than the size of Subj ect ,
Start + Lengthislessthanzeroor St art + Lengt hislarger thanthesize of Subj ect ,abadar g exception
israised.

part(Subject, PosLen) -> binary()

Types:

Subject = binary()
PosLen = part ()

Extracts the part of the binary Subj ect described by PosLen.
Negative length can be used to extract bytes at the end of a binary:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary:part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

Note:
part/2and part/3 are also available in the erl ang module under the names bi nary part/2 and
bi nary_part/ 3. Those BlIFs are alowed in guard tests.

If PosLen in any way references outside the binary, abadar g exception israised.

Ericsson AB. All Rights Reserved.: STDLIB | 53

binary

part(Subject, Pos, Len) -> binary()
Types:

Subject = binary()

Pos = integer() >= 0

Len = integer()
Thesameaspart (Subj ect, {Pos, Len}).

referenced byte size(Binary) -> integer() >= 0
Types:
Binary = binary()

If a binary references a larger binary (often described as being a sub-binary), it can be useful to get the size of the
actual referenced binary. This function can be used in a program to trigger the use of copy/ 1. By copying a binary,
one might dereference the original, possibly large, binary which asmaller binary is areference to.

Example:

store(Binary, GBSet) ->
NewBin =
case binary:referenced byte size(Binary) of
Large when Large > 2 * byte size(Binary) ->
binary:copy(Binary);
->
Binary
end,
gb sets:insert(NewBin,GBSet).

In this example, we chose to copy the binary content before inserting it in the gb_set () if it references a binary
more than twice the size of the data we're going to keep. Of course different rules for when copying will apply to
different programs.

Binary sharing will occur whenever binaries are taken apart, this is the fundamental reason why binaries are
fast, decomposition can always be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/ 1 might be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary:copy(<<1>>,100).
<<1,1,1,1,1 ...

2> byte size(A).

100

3> binary:referenced byte size(A)
100

4> << :10/binary,B:10/binary, /binary>> = A.
<<1,1,1,1,1 ...

5> byte size(B).

10

6> binary:referenced byte size(B)
100

54 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Note:

Binary datais shared among processes. If another process still references the larger binary, copying the part this
process uses only consumes more memory and will not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care, and only if areal problem is detected.

replace(Subject, Pattern, Replacement) -> Result

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

]
Replacement = Result = binary()

Thesameasr epl ace(Subj ect, Patt ern, Repl acenent,[]).

replace(Subject, Pattern, Replacement, Options) -> Result

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Replacement = binary()

Options = [Option]

Option global | {scope, part()} | {insert replaced, InsPos}
InsPos = OnePos | [OnePos]

OnePos = integer() >= 0

Aninteger() =< byte size(Replacement)

Result = binary()

Constructs anew binary by replacing the partsin Subj ect matching Pat t er n with the content of Repl acenent .

If the matching sub-part of Subj ect giving raise to the replacement is to be inserted in the result, the option
{insert _replaced, |nsPos} will insert the matching part into Repl acenent at the given position (or
positions) before actually inserting Repl acenent into the Subj ect . Example:

1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert replaced,1}]).

<<"a[b]cde">>

2> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>,
[global, {insert replaced,1}]).

<<"a[blc[d]e">>

3> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>,
[global, {insert replaced, [1,1]}]).

<<"a[bb]c[dd]e">>

4> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[-]">>,
[global, {insert replaced, [1,2]}]).

<<"a[b-b]c[d-d]e">>

If any position givenin | nsPos is greater than the size of the replacement binary, abadar g exception is raised.
Theoptionsgl obal and{scope, part ()} work asfor split/3. Thereturn typeisalwaysabi nary() .
For adescription of Pat t er n, see compile pattern/1.

Ericsson AB. All Rights Reserved.: STDLIB | 55

binary

split(Subject, Pattern) -> Parts

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Parts = [binary()]
Thesameasspl it (Subj ect, Pattern, []).

split(Subject, Pattern, Options) -> Parts

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Options = [Option]

Option = {scope, part()} | trim | global
Parts = [binary()]

Splits Subj ect into alist of binaries based on Pat t er n. If the option global is not given, only the first occurrence
of Patt er nin Subj ect will giveriseto asplit.

The partsof Pat t er n actually found in Subj ect are not included in the result.
Example:

1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]

2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0, 1>>,<<4>>,<<9>>]

Summary of options:

{scope, part()}

Works as in match/3 and matches/3. Note that this only defines the scope of the search for matching strings,
it does not cut the binary before splitting. The bytes before and after the scope will be kept in the result. See
example below.

trim
Removes trailing empty parts of the result (asdoestriminre: split/3)
global

Repeats the split until the Subj ect is exhausted. Conceptualy the global option makes split work on the
positions returned by matches/3, while it normally works on the position returned by match/3.

Example of the difference between a scope and taking the binary apart before splitting:

1> binary:split(<<"banana">>, [<<"a">>], [{scope,{2,3}}]).
[<<"ban">>,<<"na">>]
2> binary:split(binary:part(<<"banana">>,{2,3}),[<<"a">>],[]).

[<<"n">>,<<"n">>]

The return type is always alist of binaries that are all referencing Subj ect . This means that the datain Subj ect
is not actually copied to new binaries and that Subj ect cannot be garbage collected until the results of the split are
no longer referenced.

56 | Ericsson AB. All Rights Reserved.: STDLIB

binary

For adescription of Pat t er n, see compile_pattern/1.

Ericsson AB. All Rights Reserved.: STDLIB | 57

C

Erlang module

The ¢ module enables users to enter the short form of some commonly used commands.

Note:

These functions are are intended for interactive use in the Erlang shell only. The module prefix may be omitted.

Exports

bt(Pid) -> ok | undefined
Types:
Pid = pid()
Stack backtrace for a process. Equivalent to er | ang: process_di spl ay(Pi d, backtrace).

c(File) -> {ok, Module} | error
c(File, Options) -> {ok, Module} | error
Types.
File = fil e: name()
Options = [conpile:option()]
Module = module()
c/ 1, 2 compiles and then purges and loads the code for afile. Opt i ons defaultsto []. Compilation is equivalent to:

compile:file(, ++ [report errors, report warnings])

Note that purging the code means that any processes lingering in old code for the module are killed without warning.
See code/ 3 for moreinformation.

cd(Dir) -> ok
Types:
Dir = fil e:nanme()

Changes working directory to Di r, which may be a relative name, and then prints the name of the new working
directory.

2> cd("../erlang").
/home/ron/erlang

flush() -> ok
Flushes any messages sent to the shell.

58 | Ericsson AB. All Rights Reserved.: STDLIB

help() -> ok
Displays help information: al valid shell internal commands, and commands in this module.

i() -> ok
ni() -> ok

i / 0 displays information about the system, listing information about all processes. ni / 0 does the same, but for al
nodes the network.

i(X, Y, Z) -> [{atom(), term()}]
Types:
X =Y =Z = integer() >= 0

Displaysinformation about a process, Equivalent to pr ocess_i nfo(pi d(X, Y, Z)), butlocation transparent.

1(Module) -> code:load ret()
Types.
Module = module()

Purges and loads, or reloads, a module by caling code: purge(Mdule) followed by
code: | oad_fil e(Modul e).

Note that purging the code means that any processes lingering in old code for the module are killed without warning.
See code/ 3 for moreinformation.

lc(Files) -> ok
Types.
Files = [File]
File = file:fil enanme()

Compiles alist of filesby caling conpil e: file(File, [report_errors, report_warnings]) for
eachFil einFil es.

1s() -> ok
Listsfilesin the current directory.

ls(Dir) -> ok
Types:
Dir = file: name()
Listsfilesin directory Di r or, if Dir isafile, only list it.

m() -> ok
Displays information about the loaded modules, including the files from which they have been loaded.

m(Module) -> ok
Types:

Module = module()
Displays information about Modul e.

Ericsson AB. All Rights Reserved.: STDLIB | 59

memory() -> [{Type, Size}]

Types:
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalenttoer | ang: nenory/ 0.

memory(Type) -> Size
memory(Types) -> [{Type, Size}]

Types:
Types = [Typel
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalentto er | ang: menory/ 1.

nc(File) -> {ok, Module} | error
nc(File, Options) -> {ok, Module} | error
Types.
File = fil e: name()
Options = [Option] | Option
Option = conpile: option()
Module = module()
Compiles and then loads the code for afile on al nodes. Opt i ons defaultsto []. Compilation is equivalent to:

compile:file(, ++ [report errors, report warnings])

nl(Module) -> abcast | error
Types:

Module = module()
Loads Mbdul e on al nodes.

pid(X, Y, Z) -> pid()
Types:
X =Y =1Z = integer() >= 0

Converts X, Y, Z to the pid <X. Y. Z>. This function should only be used when debugging.

pwd() -> ok

Prints the name of the working directory.

q() -> no_return()
Thisfunction isshorthand fori ni t : st op() , that is, it causes the node to stop in a controlled fashion.

60 | Ericsson AB. All Rights Reserved.: STDLIB

regs() -> ok
nregs() -> ok

r egs/ 0 displaysinformation about all registered processes. nr egs/ 0 doesthe same, but for all nodesin the network.

xm(ModSpec) -> void()

Types.
ModSpec = Modul e | Fil enane
Modul e = atom()
Fil ename = string()

This function finds undefined functions, unused functions, and calls to deprecated functions in a module by calling

xref:nf 1.

y(File) -> YeccRet

Types:
File = nane() -- see filenane(3)
YeccRet = -- see yecc:filel2

Generates an LALR-1 parser. Equivalent to:

yecc:file(File)

y(File, Options) -> YeccRet

Types.
File = nane() -- see filenane(3)
Options, YeccRet = -- see yecc:file/2

Generates an LALR-1 parser. Equivalent to:

yecc:file(File, Options)

See Also
compile(3), filename(3), erlang(3), yecc(3), xref(3)

Ericsson AB. All Rights Reserved.: STDLIB | 61

calendar

calendar

Erlang module

Thismodul e provides computation of local and universal time, day-of-the-week, and several time conversion functions.

Timeisloca whenit isadjusted in accordance with the current time zone and daylight saving. Timeisuniversal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
timeisaso caled Greenwich Mean Time (GMT).

Thetimefunctions| ocal _ti nme/ 0 anduni ver sal _ti nme/ 0 provided in this module both return date and time.
Thereason for thisisthat separate functionsfor date and time may result in a date/time combination which is displaced
by 24 hours. This happensif one of the functionsis called before midnight, and the other after midnight. This problem
also applies to the Erlang BIFsdat e/ 0 and t i e/ 0, and their use is strongly discouraged if areliable date/time
stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XlI1 in 1582 and was
used in al Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a given date and time, is the the
number of seconds up to and including the specified date and time.

For computing differences between epochs in time, use the functions counting gregorian days or seconds. If epochs
are given aslocal time, they must be converted to universal time, in order to get the correct value of the elapsed time
between epochs. Use of the functiont i me_di f f er ence/ 2 is discouraged.

There exists different definitions for the week of the year. The calendar module contains a week of the year
implementation which conforms to the 1SO 8601 standard. Since the week number for a given date can fall on the
previous, the current or on the next year it is important to provide the information which year is it together with the
week number. The function i so_week _nunber/ 0 andi so_week_nunber/ 1 returns a tuple of the year and
the week number.

Data Types

datetime() = {date(), time()}

datetimel970() = {{year1970(), nonth(), day()}, time()}
date() = {year(), nonth(), day()}

year() = integer() >= 0

Y ear cannot be abbreviated. Example: 93 denotes year 93, not 1993. Valid range depends on the underlying OS. The
date tuple must denote avalid date.

62 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

yearl970() = 1970..10000

month() = 1..12

day() = 1..31

time() = {hour(), mnute(), second()}
hour() = 0..23

minute() = 0..59

second() = 0..59

daynum() = 1..7

ldom() = 28 | 29 | 30 | 31
yearweeknum() = {year(), weeknum() }
weeknum() = 1..53

Exports

date to gregorian days(Date) -> Days
date to gregorian days(Year, Month, Day) -> Days
Types:
Date = date()
Year = year ()
Month = nont h()
Day = day()
This function computes the number of gregorian days starting with year 0 and ending at the given date.

datetime to gregorian seconds(DateTime) -> Seconds
Types:
DateTime = dateti me()
Seconds = integer() >= 0
This function computes the number of gregorian seconds starting with year 0 and ending at the given date and time.

day of the week(Date) -> daynum()
day of the week(Year, Month, Day) -> daynum()
Types:
Date = date()
Year = year()
Month = nont h()
Day = day()
This function computes the day of the week given Year , Mont h and Day. The return value denotes the day of the
week as 1: Monday, 2: Tuesday, and so on.

gregorian days to date(Days) -> date()
Types:
Days = integer() >= 0

This function computes the date given the number of gregorian days.

Ericsson AB. All Rights Reserved.: STDLIB | 63

calendar

gregorian seconds to datetime(Seconds) -> datetime()
Types:
Seconds = integer() >= 0
This function computes the date and time from the given number of gregorian seconds.

is leap year(Year) -> boolean()
Types:

Year = year()
This function checksif ayear isaleap year.

iso week number() -> yearweeknuny()

This function returns the tuple {Year, WeekNum} representing the iso week number for the actual date. For
determining the actual date, the function| ocal _ti ne/ 0 isused.

iso week number(Date) -> yearweeknun()
Types:
Date = date()
This function returns the tuple { Y ear, WeekNum} representing the iso week number for the given date.

last day of the month(Year, Month) -> LastDay
Types:

Year = year()

Month = nont h()

LastDay = | dom()

This function computes the number of days in a month.

local time() -> datetine()
This function returns the local time reported by the underlying operating system.

local time to universal time(DateTimel) -> DateTime2
Types:
DateTimel = DateTime2 = dateti ne1970()

This function converts from local timeto Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date
after Jan 1, 1970.

Warning:

This function is deprecated. Usel ocal _tinme_to_uni versal time_dst/ 1 instead, asit gives a more
correct and complete result. Especially for the period that does not exist since it gets skipped during the switch
to daylight saving time, this function still returns a result.

64 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

local time to universal time dst(DateTimel) -> [DateTime]
Types:
DateTimel = DateTime = datetinel970()

This function converts from local timeto Universal Coordinated Time (UTC). Dat eTi nel must refer to alocal date
after Jan 1, 1970.

Thereturn valueisalist of 0, 1 or 2 possible UTC times:

[]

For alocal { Dat e1, Ti mel} during the period that is skipped when switching to daylight saving time, there
is no corresponding UTC since the local timeisillegal - it has never happened.

[Dst Dat eTi neUTC, Dat eTi neUTC]

For alocal { Dat el, Ti mel} during the period that is repeated when switching from daylight saving time,
there are two corresponding UTCs. One for the first instance of the period when daylight saving time is still
active, and one for the second instance.

[Dat eTi neUTC]
For all other local times there is only one corresponding UTC.

now_to local time(Now) -> datetimel970()
Types:
Now = erl ang:ti nmestanmp()
This function returns local date and time converted from the return value from er | ang: now() .

now_to universal time(Now) -> datetinel970()
now to datetime(Now) -> dateti mel970()
Types:
Now = erlang:tinestanp()
This function returns Universal Coordinated Time (UTC) converted from the return value from er | ang: now() .

seconds_to_daystime(Seconds) -> {Days, Time}
Types:

Seconds = Days = integer()

Time = tinme()

This function transforms a given number of seconds into days, hours, minutes, and seconds. The Ti ne part isaways
non-negative, but Days is negative if the argument Seconds is.

seconds to time(Seconds) -> tine()
Types:
Seconds = secs_per_day()
secs_per_day() = 0..86400

Thisfunction computes the time from the given number of seconds. Seconds must belessthan the number of seconds
per day (86400).

time difference(T1l, T2) -> {Days, Time}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 65

calendar

Tl = T2 = datetinme()
Days = integer()
Time = time()

This function returns the difference betweentwo { Dat e, Ti ne} tuples. T2 should refer to an epoch later than T1.

Warning:

This function is obsolete. Use the conversion functions for gregorian days and seconds instead.

time to seconds(Time) -> secs_per_day()
Types:
Time = time()
secs_per_day() = 0..86400
This function computes the number of seconds since midnight up to the specified time.

universal time() -> datetine()

This function returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Local time
isreturned if universal timeis not available.

universal time to local time(DateTime) -> datetine()
Types:
DateTime = dateti nel970()

This function converts from Universal Coordinated Time (UTC) to local time. Dat eTi ne must refer to a date after
Jan 1, 1970.

valid date(Date) -> boolean()
valid date(Year, Month, Day) -> boolean()

Types:
Date = date()
Year = Month = Day = integer()

This function checks if adateisavalid.

Leap Years

The notion that every fourth year is aleap year is not completely true. By the Gregorian rule, ayear Y is aleap year
if either of the following rulesisvalid:

e Y isdivisible by 4, but not by 100; or
* Y isdivisible by 400.
Accordingly, 1996 is aleap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF | ocal ti me/ 0. Universal time is computed from the BIF
uni versal tine/0.

66 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

The following facts apply:

there are 86400 secondsin a day

there are 365 daysin an ordinary year

there are 366 daysin aleap year

there are 1461 daysin a4 year period

there are 36524 daysin a 100 year period

there are 146097 daysin a 400 year period

there are 719528 days between Jan 1, 0 and Jan 1, 1970.

Ericsson AB. All Rights Reserved.: STDLIB | 67

dets

dets

Erlang module

The module det s provides a term storage on file. The stored terms, in this module called objects, are tuples such
that one element is defined to be the key. A Dets table is a collection of objects with the key at the same position
stored on afile.

Dets is used by the Mnesia application, and is provided as is for users who are interested in an efficient storage of
Erlang termson disk only. Many applicationsjust need to store sometermsin afile. Mnesiaadds transactions, queries,
and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, Mnesid's table fragmentation
can be used.

There are three types of Detstables: set, bag and duplicate bag. A table of type set has at most one object with agiven
key. If an object with akey aready present in the table isinserted, the existing object is overwritten by the new object.
A table of type bag has zero or more different objects with a given key. A table of type duplicate bag has zero or
more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a
table has not been properly closed, Detswill automatically repair the table. This can take a substantial timeif the table
islarge. A Detstableisclosed when the process which opened the table terminates. If several Erlang processes (users)
open the same Dets table, they will share the table. The table is properly closed when all users have either terminated
or closed the table. Dets tables are not properly closed if the Erlang runtime system is terminated abnormally.

Note:

A ~C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

Since all operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involves a series of disk seek and read operations. For this reason, the Dets functions are much slower than the
corresponding Ets functions, although Dets exports a similar interface.

Dets organizes dataas alinear hash list and the hash list grows gracefully as more dataisinserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment atable isto closeit and then open it again with ther epai r optionsettof or ce.

Itisworth noting that the ordered_set type present in Etsis not yet implemented by Dets, neither isthe limited support
for concurrent updates which makes asequence of f i r st and next calls safeto use on fixed Etstables. Both these
features will be implemented by Detsin afuture release of Erlang/OTP. Until then, the Mnesia application (or some
user implemented method for locking) has to be used to implement safe concurrency. Currently, no library of Erlang/
OTP has support for ordered disk based term storage.

Two versions of the format used for storing objects on file are supported by Dets. The first version, 8, is the format
always used for tables created by OTP R7 and earlier. The second version, 9, is the default version of tables created
by OTP R8 (and later OTP releases). OTP R8 can create version 8 tables, and convert version 8 tables to version 9,
and vice versa, upon request.

All Detsfunctionsreturn{ er r or, Reason} ifanerroroccurs(fi r st/ 1 andnext / 2 areexceptions, they exit the
process with the error tuple). If given badly formed arguments, all functions exit the processwith abadar g message.

68 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Data Types

access() = read | read write

auto save() = infinity | integer() >= 0

bindings cont()

Opaque continuation used by nat ch/ 1 and nat ch/ 3.

cont()

Opaque continuation used by bchunk/ 2.

keypos() = integer() >=1

match spec() = ets: match_spec()

Match specifications, see the match specification documentation in the ERTS User's Guide and ms_transform(3).
no slots() = integer() >= 0 | default

object() = tuple()

object cont()

Opaque continuation used by nmat ch_obj ect/ 1 and mat ch_obj ect/ 3.
pattern() = atom() | tuple()

See ets:match/2 for adescription of patterns.

select cont()

Opaque continuation used by sel ect/ 1 and sel ect/ 3.
tab_name() = term()

type() = bag | duplicate bag | set
version() =8 | 9 | default

Exports

all() -> [tab_nane()]
Returns alist of the names of all open tables on this node.

bchunk(Name, Continuation) ->
{Continuation2, Data} |
'$end of table' |
{error, Reason}
Types:
Name = tab_name()
Continuation = start | cont()
Continuation2 = cont ()
Data = binary() | tuple()
Reason = term()
Returns a list of objects stored in atable. The exact representation of the returned objects is not public. The lists of

data can be used for initializing a table by giving the value bchunk to thef or mat option of thei nit _t abl e/ 3
function. The Mnesia application uses this function for copying open tables.

Unlessthetableisprotected using saf e_f i xt abl e/ 2, callstobchunk/ 2 may not work as expected if concurrent
updates are made to the table.

Ericsson AB. All Rights Reserved.: STDLIB | 69

dets

Thefirst timebchunk/ 2 iscalled, aninitial continuation, the atom st ar t , must be provided.

The bchunk/ 2 function returns a tuple { Conti nuati on2, Data}, where Data is a list of objects.
Cont i nuat i on2 isanother continuation which isto be passed on to a subsequent call to bchunk/ 2. With aseries
of callsto bchunk/ 2 it is possible to extract al objects of the table.

bchunk/ 2 returns' $end_of _t abl e' when all objects have been returned, or { error, Reason} if an error
occurs.

close(Name) -> ok | {error, Reason}
Types:

Name = tab_name()

Reason = term()

Closes atable. Only processes that have opened atable are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open atable which has not been
properly closed, Dets automatically triesto repair the table.

delete(Name, Key) -> ok | {error, Reason}
Types.

Name = tab_nane()

Key = Reason = term()

Deletes all objects with the key Key from the table Nane.

delete all objects(Name) -> ok | {error, Reason}
Types.

Name = tab_nane()

Reason = term()

Deletes all objectsfrom atablein almost constant time. However, if thetableif fixed, del et e_al | _obj ect s(T)
isequivalenttomat ch_del ete(T, ' _').

delete object(Name, Object) -> ok | {error, Reason}
Types:

Name = tab_name()

Object = object()

Reason = term()

Deletes all instances of a given object from atable. If atableis of type bag or dupl i cat e_bag, thedel et e/ 2
function cannot be used to delete only some of the objects with a given key. This function makes this possible.

first(Name) -> Key | '$end of table'

Types:
Name = tab_name()
Key = term()

Returns the first key stored in the table Name according to the table's internal order, or ' $end_of _t abl e' if the
tableis empty.

70 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Unless the table is protected using saf e_f i xt abl e/ 2, subsequent callsto next / 2 may not work as expected if
concurrent updates are made to the table.

Should an error occur, the process is exited with an error tuple{ error, Reason}. The reason for not returning
the error tuple is that it cannot be distinguished from akey.

There aretwo reasonswhy f i r st / 1 and next / 2 should not be used: they are not very efficient, and they prevent
theuseof thekey ' $end_of _t abl e' sincethisatom isused to indicatethe end of thetable. If possible, themat ch,
mat ch_obj ect ,and sel ect functions should be used for traversing tables.

foldl(Function, AccO, Name) -> Acc | {error, Reason}
foldr(Function, AccO, Name) -> Acc | {error, Reason}
Types.

Name = tab_nane()

Function = fun((Object :: object(), AccIn) -> AccOut)

AccO = Acc = AccIn = AccOut = Reason = term()

Calls Funct i on on successive elements of the table Nane together with an extra argument Accl n. The order in
which the elements of the table are traversed is unspecified. Funct i on must return a new accumulator which is
passed to the next call. AccO isreturned if the tableis empty.

from ets(Name, EtsTab) -> ok | {error, Reason}

Types:
Name = tab_name()
EtsTab = ets:tab()
Reason = term()

Deletes all objects of the table Name and then inserts all the objects of the Ets table Et sTab. The order in which
the objects are inserted is not specified. Since et s: saf e_f i xt abl e/ 2 is called the Ets table must be public or
owned by the calling process.

info(Name) -> InfolList | undefined
Types:
Name = tab_name()
InfoList = [InfoTuple]
InfoTuple {file size, integer() >= 0}
{filename, file:nane()}

|

| {keypos, keypos()}

| {size, integer() >= 0}
|

{type, type()}
Returns information about the table Nane asalist of tuples:
« {file_size, integer() >= 0},thesizeof thefilein bytes.
« {filenane, file:name()},thename of thefile where objects are stored.
e {keypos, keypos()} ,thepositionof thekey.
e {size, integer() >= 0},thenumber of objects stored in the table.
« {type, type()},thetypeof thetable.

Ericsson AB. All Rights Reserved.: STDLIB | 71

dets

info(Name, Item) -> Value | undefined
Types:

Name = tab_name()

Item = access
| auto save

| bchunk format
| hash

| file size

| filename

| keypos

| memory

| no keys

| no objects

| no_slots

| owner

| ram file

| safe fixed

| size

| type

| version

Value = term()

Returnstheinformation associated with | t emfor thetable Nane. In additiontothe{ 1t em Val ue} pairsdefined
fori nf o/ 1, the following items are allowed:

{access, access()} ,theaccessmode.
{auto_save, auto_save()},theautosaveinterval.

{bchunk_format, binary()}, an opague binary describing the format of the objects returned by
bchunk/ 2. The binary can be used as argument toi s_conpati bl e_chunk_f or mat/ 2. Only available
for version 9 tables.

{ hash, Hash} . Describeswhich BIF is used to calculate the hash values of the objects stored in the Dets table.
Possible values of Hash arehash, whichimpliesthat theer | ang: hash/ 2 BIFisused, phash, whichimplies
thattheer | ang: phash/ 2 BIFisused, andphash2, whichimpliesthat theer | ang: phash2/ 1 BIFisused.
{menory, integer() >= 0}, thesize of thefilein bytes. The same value is associated with the item
file_size.

{no_keys, integer >= 0()},thenumber of different keys stored in the table. Only available for version
9tables.

{no_objects, integer >= 0()},thenumber of objects stored in thetable.

{no_slots, {Min, Used, Max}},thenumber of dotsof thetable. M n isthe minimum number of dots,
Used isthe number of currently used slots, and Max isthe maximum number of slots. Only available for version
9 tables.

{owner, pid()},thepid of the processthat handles requests to the Dets table.

{ram file, boolean()},whetherthetableiskeptin RAM.

{safe_fixed, SafeFixed}. If the table is fixed, SafeFixed is a tuple {Fi xedAtTi ne,

[{Pid, Ref Count}]}. Fi xedAt Ti e is the time when the table was first fixed, and Pi d is the pid of the
process that fixes the table Ref Count times. There may be any number of processesin the list. If the table is
not fixed, SafeFixed istheatom f al se.

{version, integer(),theversionof theformat of thetable.

72 | Ericsson AB. All Rights Reserved.: STDLIB

dets

init table(Name, InitFun) -> ok | {error, Reason}
init table(Name, InitFun, Options) -> ok | {error, Reason}
Types.
Name = tab_nane()
InitFun = fun((Arg) -> Res)
Arg read | close
Res = end of input
{[obj ect()], InitFun}

{Data, InitFun}
term()

Options = Option | [Option]

Option = {min no slots, no_slots()} | {format, term | bchunk}
Reason = term()

Data = binary() | tuple()

Replacesthe existing objects of thetable Nane with objects created by calling theinput function | ni t Fun, seebelow.
Thereason for using thisfunction rather than callingi nser t / 2 isthat of efficiency. It should be noted that the input
functions are called by the process that handles requests to the Dets table, not by the calling process.

When called with the argument r ead thefunction | ni t Fun isassumed toreturnend_of _i nput whenthereisno
moreinput, or { Obj ect's, Fun},where Obj ect s isalist of objectsand Fun isanew input function. Any other
valueVaueisreturnedasanerror{error, {init_fun, Val ue}}.Eachinputfunctionwill be called exactly
once, and should an error occur, the last function is called with the argument cl ose, the reply of which isignored.

If thetype of thetableisset and thereis more than one object with a given key, one of the objectsis chosen. Thisis
not necessarily the last object with the given key in the sequence of objects returned by the input functions. Duplicate
keys should be avoided, or the file will be unnecessarily fragmented. This holds also for duplicated objects stored in
tables of type bag.

It isimportant that the table has a sufficient number of slotsfor the objects. If not, the hash list will start to grow when
i ni t_tabl e/ 2 returnswhich will significantly slow down access to the table for a period of time. The minimum
number of slotsisset by theopen_fi | e/ 2 optionmi n_no_sl ot s andreturned by thei nf o/ 2 itemno_sl ot s.
Seeasothem n_no_sl ot s option below.

The Opt i ons argument isalist of { Key, Val } tupleswhere the following values are allowed:

« {mn_no_slots, no_slots()}. Specifiesthe estimated number of different keys that will be stored in
the table. The open_f i | e option with the same name is ignored unless the table is created, and in that case
performance can be enhanced by supplying an estimate when initializing the table.

« {format, Format}. Specifiesthe format of the objects returned by the function | ni t Fun. If For mat is
t er m(thedefault), | ni t Fun isassumed to return alist of tuples. If For mat isbchunk, | ni t Fun isassumed
to return Dat a asreturned by bchunk/ 2. This option overridesthe i n_no_sl ot s option.

insert(Name, Objects) -> ok | {error, Reason}
Types:

Name = tab_name()

Objects = object() | [object()]

Reason = term()

Inserts one or more objectsinto the table Nane. If there already exists an object with a key matching the key of some
of the given objects and the table typeis set , the old object will be replaced.

Ericsson AB. All Rights Reserved.: STDLIB | 73

dets

insert new(Name, Objects) -> boolean() | {error, Reason}
Types:
Name = tab_name()
Objects = object() | [object()]
Reason = term()
Inserts one or more objects into the table Nare. If there already exists some object with a key matching the key of

any of the given objects the table is not updated and f al se isreturned, otherwise the objects areinserted and t r ue
returned.

is compatible bchunk format(Name, BchunkFormat) -> boolean()
Types:
Name = tab_name()
BchunkFormat = binary()
Returns true if it would be possible to initialize the table Nane, using i nit_tabl e/ 3 with the

option {f or mat, bchunk}, with objects read with bchunk/ 2 from some table T such that calling
i nfo(T, bchunk_fornmat) returnsBchunkFor mat .

is dets file(Filename) -> boolean() | {error, Reason}
Types.

Filename = file: nane()

Reason = term()

Returnst r ue if thefileFi | enane isaDetstable, f al se otherwise.

lookup(Name, Key) -> Objects | {error, Reason}

Types:
Name = tab_name()
Key = term()

Objects = [object()]
Reason = term()
Returns alist of all objects with the key Key stored in the table Narre. For example:

2> dets:open file(abc, [{type, bag}l).
{ok,abc}

3> dets:insert(abc, {1,2,3}).

ok

4> dets:insert(abc, {1,3,4}).

ok

5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

If thetableis of type set , the function returns either the empty list or alist with one object, as there cannot be more
than one object with a given key. If the table is of type bag or dupl i cat e_bag, the function returns a list of
arbitrary length.

Note that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected.

74 | Ericsson AB. All Rights Reserved.: STDLIB

dets

match(Continuation) ->
{[Match], Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation =
Match = [term()

Reason = term()

Continuation2 = bindi ngs_cont ()
]

Matches some objects stored in a table and returns a non-empty list of the bindings that match a given pattern
in some unspecified order. The table, the pattern, and the number of objects that are matched are al defined by
Cont i nuat i on, which has been returned by aprior call tormat ch/ 1 or mat ch/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

match(Name, Pattern) -> [Match] | {error, Reason}
Types.
Name = tab_nane()
Pattern = pattern()
Match = [term()]
Reason = term()
Returns for each object of the table Nane that matches Pat t er n alist of bindings in some unspecified order. See

ets:match/2 for a description of patterns. If the keyposth element of Pat t er n isunbound, all objects of the table are
matched. If the keyposth element is bound, only the objects with the right key are matched.

match(Name, Pattern, N) ->
{[Match], Continuation} |
"$end of table' |
{error, Reason}
Types:
Name = tab_name()
Pattern = pattern()
N = default | integer() >= 0
Continuation = bindi ngs_cont ()
Match = [term()]
Reason = term()

Matches some or all objects of the table Nane and returns a non-empty list of the bindings that match Pat t er n in
some unspecified order. See ets: match/2 for a description of patterns.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case' $end_of _t abl e’
isreturned. The continuation is to be used when matching further objects by calling mat ch/ 1.

If thekeyposth element of Pat t er n isbound, all objectsof thetable are matched. If the keyposth element isunbound,
all objects of the table are matched, N objects at atime, until at least one object matches or the end of the table has
been reached. The default, indicated by giving N the value def aul t , isto let the number of objects vary depending
on the sizes of the objects. If Nanme isaversion 9 table, al objects with the same key are always matched at the same
time which implies that more than N objects may sometimes be matched.

Thetable should alwaysbe protected usingsaf e_fi xt abl e/ 2 beforecalling mat ch/ 3, or errors may occur when
calingmat ch/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 75

dets

match delete(Name, Pattern) -> ok | {error, Reason}
Types:

Name = tab_name()

Pattern = pattern()

Reason = term()

Deletes al objects that match Pat t er n from the table Nane. See ets:match/2 for a description of patterns.
If the keyposth element of Pat t er n isbound, only the objects with the right key are matched.

match object(Continuation) ->
{Objects, Continuation2} |
"$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = object _cont ()
Objects = [object()]
Reason = term()
Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The

table, the pattern, and the number of objects that are matched are all defined by Cont i nuat i on, which has been
returned by aprior cal tonmat ch_obj ect/ 1 or mat ch_obj ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e’ isreturned.

match object(Name, Pattern) -> Objects | {error, Reason}
Types:

Name = tab_name()

Pattern = pattern()

Objects = [object()]

Reason = term()

Returns alist of al objects of the table Name that match Pat t er n in some unspecified order. See ets. match/2 for
adescription of patterns.

If the keyposth element of Pat t er n is unbound, all objects of the table are matched. If the keyposth element of
Pat t er n isbound, only the objects with the right key are matched.

Usingthemat ch_obj ect functionsfor traversing all objects of atableis more efficient than callingfi r st/ 1 and
next/2orslot/2

match object(Name, Pattern, N) ->
{Objects, Continuation} |
'$end of table' |
{error, Reason}

Types:

76 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()

Pattern = pattern()

N = default | integer() >= 0
Continuation = object_cont ()
Objects = [object()]

Reason = term()

Matches some or al objects stored in the table Nare and returns anon-empty list of the objectsthat match Pat t er n
in some unspecified order. See ets: match/2 for a description of patterns.

A list of objects and a continuation is returned, unless the table is empty, in which case ' $end_of t abl e' is
returned. The continuation is to be used when matching further objects by calling mat ch_obj ect/ 1.

If thekeyposth element of Pat t er n isbound, all objectsof thetable are matched. If the keyposth element isunbound,
all objects of the table are matched, N objects at atime, until at least one object matches or the end of the table has
been reached. The default, indicated by giving N the value def aul t , isto let the number of objects vary depending
on the sizes of the objects. If Nane isaversion 9 table, all matching objects with the same key are always returned in
the same reply which implies that more than N objects may sometimes be returned.

The table should always be protected using saf e_f i xt abl e/ 2 before calling mat ch_obj ect / 3, or errors may
occur when calling mat ch_obj ect/ 1.

member(Name, Key) -> boolean() | {error, Reason}
Types:

Name = tab_name()

Key = Reason = term()

Works like | ookup/ 2, but does not return the objects. The function returnst r ue if one or more elements of the
table hasthe key Key, f al se otherwise.

next (Name, Keyl) -> Key2 | '$end of table'’

Types:
Name = tab_name()
Keyl = Key2 = term()

Returns the key following Key1 in the table Nane according to the table's internal order, or ' $end_of _t abl €'
if thereis no next key.

Should an error occur, the process is exited with an error tuple{ er r or, Reason}.
Usefirst/1tofindthefirst key inthetable.

open file(Filename) -> {ok, Reference} | {error, Reason}
Types.

Filename = file: nane()

Reference = reference()

Reason = term()

Opens an existing table. If the table has not been properly closed, it will be repaired. The returned reference is to be
used as the name of the table. This function is most useful for debugging purposes.

Ericsson AB. All Rights Reserved.: STDLIB | 77

dets

open_ file(Name, Args) -> {ok, Name} | {error, Reason}

Types:
Name = tab_name()
Args = [OpenArg]
OpenArg {access, access()}

| {auto save, auto_save()}

| {estimated no objects, integer() >= 0}
| {file, file:nane()}

| {max no slots, no_slots()}
| {min_no slots, no_slots()}
| {keypos, keypos()}

| {ram file, boolean()}

| {repair, boolean() | force}
| {type, type()}

| {version, version()}

Reason = term()

Opens atable. An empty Detstableis created if no file exists.

The atom Nane is the name of the table. The table name must be provided in all subsequent operations on the table.
The name can be used by other processes as well, and several process can share one table.

If two processes open the same table by giving the same name and arguments, then the table will have two users. If
one user closes thetable, it still remains open until the second user closes the table.

The Ar gs argument isalist of { Key, Val } tupleswhere the following values are allowed:

{access, access()}. Itispossible to open existing tables in read-only mode. A table which is opened
in read-only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash.
Thedefault valueisread wri te.

{auto_save, auto_save()},theautosaveinterval. If theinterval isaninteger Ti ne, thetableisflushed
to disk whenever it isnot accessed for Ti me milliseconds. A table that has been flushed will require no reparation
when reopened after an uncontrolled emulator halt. If the interval isthe atom i nf i ni t y, auto save is disabled.
The default value is 180000 (3 minutes).

{estimated no_objects, no_slots()}.Equivaenttothem n_no_sl ot s option.
{file, file:name()},thename of thefileto be opened. The default value isthe name of the table.

{max_no_sl ot s, no_sl ot s() }, the maximum number of slots that will be used. The default value as
well as the maximal value is 32 M. Note that a higher value may increase the fragmentation of the table, and
conversdly, that asmaller value may decrease the fragmentation, at the expense of execution time. Only available
for version 9 tables.

{m n_no_slots, no_slots()}.Application performance can be enhanced with thisflag by specifying,
when thetableis created, the estimated number of different keysthat will be stored in the table. The default value
aswell as the minimum value is 256.

{keypos, keypos()}, theposition of the element of each object to be used as key. The default valueis 1.
The ability to explicitly state the key position is most convenient when we want to store Erlang records in which
the first position of the record is the name of the record type.

{ram file, bool ean()}, whether the table isto be kept in RAM. Keeping the table in RAM may sound
like an anomaly, but can enhance the performance of applications which open atable, insert a set of objects, and
then close the table. When the table is closed, its contents are written to the disk file. The default valueisf al se.

{repair, Val ue}.Val ue canbeeither abool ean() ortheatomf or ce. Theflag specifies whether the
Dets server should invoke the automatic file reparation algorithm. The default ist r ue. If f al se is specified,

78 | Ericsson AB. All Rights Reserved.: STDLIB

dets

thereis no attempt to repair thefileand{error, {needs_repair, FileNanme}} isreturnedif thetable
needs to be repaired.

The value f or ce means that a reparation will take place even if the table has been properly closed. This
is how to convert tables created by older versions of STDLIB. An example is tables hashed with the
deprecated er | ang: hash/ 2 BIF. Tables created with Dets from a STDLIB version of 1.8.2 and later use the
er | ang: phash/ 2 function or theer | ang: phash2/ 1 function, which is preferred.
Ther epai r optionisignored if thetableis already open.

« {type, type()},thetypeof thetable Thedefault valueisset .

« {version, version()},theversionoftheformat usedfor thetable. The default valueis9. Tableson the
format used before OTP R8 can be created by giving the value 8. A version 8 table can be converted to aversion
9 table by giving the options{ ver si on, 9} and{r epai r, f orce}.

pid2name(Pid) -> {ok, Name} | undefined
Types:

Pid = pid()

Name = tab_nane()

Returns the name of the table given the pid of a process that handles requests to atable, or undef i ned if thereis
no such table.

This function is meant to be used for debugging only.

repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

Continuation = Continuation2 = sel ect_cont()

MatchSpec = mat ch_spec()

Thisfunction can be used to restore an opaque continuation returned by sel ect / 3 or sel ect / 1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore will
be invalidated if converted to external term format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

Seeasoet s(3) for further explanations and examples.

Note:

Thisfunctionisvery rarely needed in application code. It isused by Mnesiato implement distributed sel ect / 3
and sel ect / 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to externa format.

The reason for not having an external representation of compiled match specifications is performance. It may be
subject to change in future releases, while this interface will remain for backward compatibility.

safe fixtable(Name, Fix) -> ok
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 79

dets

Name = tab_name()
Fix = boolean()

If Fi x ist r ue, thetable Nane isfixed (once more) by the calling process, otherwise the tableis released. The table
is also released when afixing process terminates.

If several processesfix atable, thetablewill remain fixed until all processes havereleased it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.

It is not guaranteed that callsto fi rst/ 1, next/ 2, select and match functions work as expected even if the table
has been fixed; the limited support for concurrency implemented in Ets has not yet been implemented in Dets. Fixing
atable currently only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list will start to grow when the table is released which
will significantly slow down access to the table for a period of time.

select(Continuation) ->
{Selection, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = sel ect _cont ()
Selection = [term()]
Reason = term()
Applies a match specification to some objects stored in a table and returns a non-empty list of the results. The table,

the match specification, and the number of objects that are matched are all defined by Cont i nuat i on, which has
been returned by aprior call tosel ect/ 1 or sel ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

select(Name, MatchSpec) -> Selection | {error, Reason}
Types.

Name = tab_nanme()

MatchSpec = mat ch_spec()

Selection = [term()]

Reason = term()

Returns the results of applying the match specification Mat chSpec to all or some objects stored in the table Nane.
The order of the objectsis not specified. See the ERTS User's Guide for a description of match specifications.

If the keyposth element of Mat chSpec is unbound, the match specification is applied to all objects of the table. If
the keyposth element is bound, the match specification is applied to the objects with the right key(s) only.

Usingthesel ect functionsfor traversing all objects of atableis more efficient than callingf i r st/ 1 andnext / 2
orslot/2.

select(Name, MatchSpec, N) ->
{Selection, Continuation} |
"$end of table' |
{error, Reason}

Types.

80 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()

MatchSpec = mat ch_spec()

N = default | integer() >= 0
Continuation = sel ect_cont ()
Selection = [term()]

Reason = term()

Returns the results of applying the match specification Mat chSpec to some or al objects stored in the table Nane.
The order of the objectsis not specified. See the ERTS User's Guide for a description of match specifications.

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty,
in which case ' $end_of _t abl e' isreturned. The continuation is to be used when matching further objects by
calingsel ect/ 1.

If the keyposth element of Mat chSpec is bound, the match specification is applied to al objects of the table with
theright key(s). If the keyposth element of Mat chSpec isunbound, the match specification is applied to all objects
of thetable, N objects at atime, until at least one object matches or the end of the table has been reached. The default,
indicated by giving Nthe value def aul t , isto let the number of objects vary depending on the sizes of the objects.
If Name isaversion 9 table, all objects with the same key are always handled at the same time which implies that the
match specification may be applied to more than N objects.

The table should always be protected using saf e_f i xt abl e/ 2 before calling sel ect/ 3, or errors may occur
when calling sel ect/ 1.

select delete(Name, MatchSpec) -> N | {error, Reason}
Types:

Name = tab_name()

MatchSpec = mat ch_spec()

N = integer() >= 0

Reason = term()
Deletes each object from the table Narnre such that applying the match specification Mat chSpec to the object returns
thevaluet r ue. Seethe ERTS User's Guide for a description of match specifications. Returns the number of deleted
objects.
If the keyposth element of Mat chSpec is bound, the match specification is applied to the objects with the right
key(s) only.

slot(Name, I) -> '$end of table' | Objects | {error, Reason}
Types:

Name = tab_name()

I = integer() >= 0

Objects = [object()]

Reason = term()

The objects of atable are distributed among slots, starting with slot 0 and ending with slot n. This function returnsthe
list of objects associated with slot | . If | isgreater thann' $end_of t abl e' isreturned.

sync(Name) -> ok | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 81

dets

Name = tab_name()
Reason = term()

Ensuresthat al updates made to the table Nane are written to disk. Thisalso appliesto tables which have been opened
withtheram fil e flagsettot r ue. Inthis case, the contents of the RAM file are flushed to disk.

Note that the space management data structures kept in RAM, the buddy system, is also written to the disk. This may
take some timeif the table is fragmented.

table(Name) -> QueryHandle
table(Name, Options) -> QueryHandle
Types:
Name = tab_name()
Options = Option | [Option]
Option = {n objects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >=1
TraverseMethod = first next | select | {select, match_spec()}
QueryHandle = gl c: query_handl e()
Returns a QLC (Query List Comprehension) query handle. The module gl ¢ implements a query language aimed

mainly at Mnesia but Ets tables, Dets tables, and lists are also recognized by gl ¢ as sources of data. Calling
det s: t abl e/ 1, 2 isthe means to make the Dets table Nane usableto gl c.

When thereare only simplerestrictionson thekey positiongl ¢ usesdet s: | ookup/ 2 tolook up the keys, but when
that is not possible the whole table is traversed. The optiont r aver se determines how thisis done:
« first_next.Thetableistraversed onekey at atimeby calingdet s: first/ 1 anddet s: next/ 2.

 sel ect.Thetableistraversed by callingdet s: sel ect/ 3 anddet s: sel ect/ 1. Theoptionn_obj ect s
determines the number of objects returned (the third argument of sel ect / 3). The match specification (the
second argument of sel ect/ 3) is assembled by gl c: simple filters are trandated into equivalent match
specifications while more complicated filters have to be applied to all objects returned by sel ect/ 3 given a
match specification that matches all objects.

« {select, mat ch_spec()}. Asfor sel ect the table is traversed by calling det s: sel ect/ 3 and
det s: sel ect/ 1. Thedifferenceisthat the match specification is explicitly given. Thisis how to state match
specifications that cannot easily be expressed within the syntax provided by gl c.

The following example uses an explicit match specification to traverse the table:

1> dets:open file(t, [1),

ok = dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),

MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).

An example with implicit match specification:

2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X <5)1]).

The latter example isin fact equivalent to the former which can be verified using the function gl c: i nf o/ 1:

3> qlc:info(QH1) =:= qlc:info(QH2).

82 | Ericsson AB. All Rights Reserved.: STDLIB

dets

true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this caseidentical information is returned for the two
query handles.

to ets(Name, EtsTab) -> EtsTab | {error, Reason}
Types:

Name = tab_name()

EtsTab = ets:tab()

Reason = term()

Inserts the objects of the Dets table Nane into the Ets table Et sTab. The order in which the objects are inserted is
not specified. The existing objects of the Ets table are kept unless overwritten.

traverse(Name, Fun) -> Return | {error, Reason}
Types:
Name = tab_name()
Fun = fun((Object) -> FunReturn)
Object = object()
FunReturn = continue
| {continue, Val}
| {done, Value}
| OtherValue

Return = [term()] | OtherValue
Val = Value = OtherValue = Reason = term()

Applies Fun to each object stored in the table Narnre in some unspecified order. Different actions are taken depending
on the return value of Fun. The following Fun return values are allowed:

conti nue

Continue to perform the traversal. For example, the following function can be used to print out the contents of
atable:

fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}

Continue the traversal and accumulate Val . The following function is supplied in order to collect al objects of
atableinalist:

fun(X) -> {continue, X} end.

{done, Val ue}
Terminate the traversal and return [Val ue | Acc].
Any other value O her Val ue returned by Fun terminates the traversal and isimmediately returned.

Ericsson AB. All Rights Reserved.: STDLIB | 83

dets

update counter(Name, Key, Increment) -> Result

Types:
Name = tab_name()
Key = term()
Increment = {Pos, Incr} | Incr

Pos = Incr = Result = integer()

Updates the object with key Key stored in the table Name of typeset by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element and insert the resulting object into the table again.

See Also
ets(3), mnesia(3), glc(3)

84 | Ericsson AB. All Rights Reserved.: STDLIB

dict

dict

Erlang module

Di ct implementsaKey - Val ue dictionary. The representation of a dictionary is not defined.

This module provides exactly the same interface as the module or ddi ct . One difference is that while this module
considers two keys as different if they do not match (=: =), or ddi ct considers two keys as different if and only if
they do not compare equal (==).

Data Types

dict(Key, Value)

Dictionary as returned by new/ 0.

dict()

di ct () isequivaenttodi ct(ternm(), term)).

Exports

append(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)

This function appends anew Val ue to the current list of values associated with Key.

append list(Key, VallList, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
ValList = [Value]

This function appends a list of values Val Li st to the current list of values associated with Key. An exception is
generated if theinitial value associated with Key isnot alist of values.

erase(Key, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)

Thisfunction erases al items with a given key from adictionary.

fetch(Key, Dict) -> Value
Types:
Dict = dict (Key, Value)

This function returns the value associated with Key in the dictionary Di ct . f et ch assumesthat the Key is present
in the dictionary and an exception is generated if Key is not in the dictionary.

fetch keys(Dict) -> Keys
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 85

dict

Dict
Keys

di ct (Key, Value :: term())
[Key]
Thisfunction returns alist of al keysin the dictionary.

filter(Pred, Dictl) -> Dict2

Types.
Pred = fun((Key, Value) -> boolean())
Dictl = Dict2 = dict (Key, Value)

Di ct 2 isadictionary of al keysand valuesin Di ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Dict) -> {ok, Value} | error
Types.
Dict = dict (Key, Value)

This function searches for akey in adictionary. Returns{ ok, Val ue} where Val ue isthe value associated with
Key, or er r or if thekey isnot present in the dictionary.

fold(Fun, AccO, Dict) -> Accl
Types:
Fun = fun((Key, Value, AccIn) -> AccOut)
Dict = dict (Key, Value)
AccO = Accl = AccIn = AccOut = Acc
Calls Fun on successive keys and values of Di ct together with an extraargument Acc (short for accumulator). Fun

must return a new accumulator which is passed to the next call. AccO isreturned if the dict is empty. The evauation
order is undefined.

from list(List) -> Dict

Types:
Dict = dict (Key, Value)
List = [{Key, Value}]

This function convertsthe Key - Val ue list Li st to adictionary.

is key(Key, Dict) -> boolean()
Types:

Dict = dict (Key, Value :: term())
Thisfunction testsif Key is contained in the dictionary Di ct .

map(Fun, Dictl) -> Dict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)

map calls Fun on successive keys and values of Di ct 1 to return a new value for each key. The evaluation order
isundefined

86 | Ericsson AB. All Rights Reserved.: STDLIB

dict

merge(Fun, Dictl, Dict2) -> Dict3
Types:
Fun = fun((Key, Valuel, Value2) -> Value)

Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)
Dict3 = dict (Key, Value)

mer ge merges two dictionaries, Di ct 1 and Di ct 2, to create a new dictionary. All the Key - Val ue pairs from
both dictionaries are included in the new dictionary. If a key occurs in both dictionaries then Fun is called with the
key and both values to return anew value. mer ge could be defined as:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

but is faster.

new() -> dict()
This function creates a new dictionary.

size(Dict) -> integer() >= 0
Types:

Dict = dict()
Returns the number of elementsinaDbDi ct .

is empty(Dict) -> boolean()
Types:
Dict = dict()
Returnst r ue if Di ct hasno elements, f al se otherwise.

store(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)

This function stores a Key - Val ue pair in adictionary. If the Key already existsin Di ct 1, the associated value
isreplaced by Val ue.

to list(Dict) -> List

Types:
Dict = dict (Key, Value)
List = [{Key, Value}]

This function converts the dictionary to alist representation.

update(Key, Fun, Dictl) -> Dict2
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 87

dict

Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)

Update a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Dictl) -> Dict2

Types.
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Initial = Value

Update avaluein adictionary by calling Fun on the value to get a new value. If Key is not present in the dictionary
thenl ni ti al will be stored asthefirst value. For example append/ 3 could be defined as:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val]l, D).

update counter(Key, Increment, Dictl) -> Dict2
Types:

Dictl = Dict2 = dict (Key, Value)

Increment = number()

Add | ncrement to the value associated with Key and store this value. If Key is not present in the dictionary then
I ncr enent will be stored as thefirst value.

This could be defined as:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> Old + Incr end, Incr, D).

but isfaster.

Notes

The functions append and append_| i st are included so we can store keyed values in a list accumulator. For
example:

> DO = dict:new(),
D1 = dict:store(files, [], DO),
D2 = dict:append(files, f1l, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),

dict:fetch(files, D4).
[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the resullt.

Thefunction f et ch should be used if the key is known to bein the dictionary, otherwisef i nd.

88 | Ericsson AB. All Rights Reserved.: STDLIB

dict

See Also
gb_trees(3), orddict(3)

Ericsson AB. All Rights Reserved.: STDLIB | 89

digraph

digraph

Erlang module

The di gr aph module implements a version of labeled directed graphs. What makes the graphs implemented here
non-proper directed graphs s that multiple edges between vertices are allowed. However, the customary definition of
directed graphs will be used in the text that follows.

A directed graph (or just "digraph™) isapair (V, E) of afinite set V of vertices and afinite set E of directed edges
(or just "edges'). The set of edges E is a subset of V x V (the Cartesian product of V with itself). In this module,
V is alowed to be empty; the so obtained unique digraph is called the empty digraph. Both vertices and edges are
represented by unique Erlang terms.

Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the
edges of the digraph. A digraph which has been annotated is called alabeled digraph, and the information attached
to avertex or an edgeis called alabel. Labels are Erlang terms.

An edge e = (v, w) is said to emanate from vertex v and to be incident on vertex w. The out-degree of avertex isthe
number of edges emanating from that vertex. Thein-degree of avertex isthe number of edgesincident on that vertex.
If thereis an edge emanating from v and incident on w, then w is said to be an out-neighbour of v, and v is said to be
an in-neighbour of w. A path P from v[1] to v[K] in adigraph (V, E) is a non-empty sequence v[1], v[2], ..., V[K] of
vertices in V such that there is an edge (v[i],v[i+1]) in E for 1 <=i < k. The length of the path Pisk-1. Pis simple
if al vertices are distinct, except that the first and the last vertices may be the same. P is a cycle if the length of Pis
not zero and v[1] = v[K]. A loop is acycle of length one. A simple cycleis a path that is both a cycle and ssimple. An
acyclic digraph is a digraph that has no cycles.

Data Types

d type() = d_cyclicity() | d_protection()
d_cyclicity() = acyclic | cyclic

d protection() = private | protected
graph()

A digraph asreturned by new 0, 1.

edge()

label() = term()

vertex()

Exports

add edge(G, V1, V2) -> edge() | {error, add_edge_err_rsn()}
add edge(G, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}

add edge(G, E, V1, V2, Label) ->
edge() | {error, add_edge_err_rsn()}

Types:
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()

add edge err _rsn() = {bad edge, Path :: [vertex()]}

90 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

| {bad vertex, V :: vertex()}

add_edge/ 5 creates (or modifies) the edge E of the digraph G, using Label asthe (new) label of the edge. The
edge is emanating from V1 and incident on V2. Returns E.

add_edge(G V1, V2, Label) isequivaenttoadd edge(G E, V1, V2, Label),whereEisa
created edge. The created edgeisrepresented by theterm [' $e' | N], where N isaninteger >= 0.
add_edge(G V1, V2) isequivalenttoadd_edge(G V1, V2, []).

If the edge would create acyclein an acyclic digraph, then{ error, {bad_edge, Path}} isreturned. If either
of V1 or V2 isnot avertex of thedigraph G then{error, {bad_vertex, V}} isreturned,V=V1orV =V2.

add vertex(G) -> vertex()
add vertex(G, V) -> vertex()
add vertex(G, V, Label) -> vertex()

Types.
G = graph()
V = vertex()

Label = | abel ()

add_vert ex/ 3 creates (or modifies) the vertex V of the digraph G, using Label asthe (new) label of the vertex.
Returns V.

add_vertex(G V) isequivalenttoadd_vertex(G, V, []).

add_vert ex/ 1 creates avertex using the empty list as label, and returns the created vertex. The created vertex is
represented by theterm [* $v' | N], where N isaninteger >= 0.

del edge(G, E) -> true

Types.
G = graph()
E = edge()

Deletes the edge E from the digraph G

del edges(G, Edges) -> true
Types:
G = graph()
Edges = [edge()]
Deletesthe edgesin the list Edges from the digraph G.

del path(G, V1, V2) -> true
Types.

G = graph()

V1 = V2 = vertex()

Deletes edges from the digraph Guntil there are no paths from the vertex V1 to the vertex V2.

A sketch of the procedure employed: Find an arbitrary simple path v[1], v[2], ..., V[K] from V1 to V2 in G. Remove
all edges of Gemanating from v[i] and incident to v[i+1] for 1 <=i <k (including multiple edges). Repeat until there
is no path between V1 and V2.

Ericsson AB. All Rights Reserved.: STDLIB | 91

digraph

del vertex(G, V) -> true

Types:
G = graph()
V = vertex()

Deletes the vertex V from the digraph G. Any edges emanating from V or incident on V are also deleted.

del vertices(G, Vertices) -> true
Types:
G = graph()
Vertices = [vertex()]
Deletesthe verticesinthelist Ver t i ces from the digraph G

delete(G) -> true
Types:
G = graph()

Deletes the digraph G. This call is important because digraphs are implemented with ETS. There is no garbage
collection of ETS tables. The digraph will, however, be deleted if the process that created the digraph terminates.

edge(G, E) -> {E, V1, V2, Label} | false

Types.
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()

Returns{ E, V1, V2, Label} wherelLabel isthelabel of the edge E emanating from V1 and incident on V2
of the digraph G. If there is no edge E of the digraph G, then f al se isreturned.

edges(G) -> Edges
Types:
G = graph()
Edges = [edge()]
Returnsalist of all edges of the digraph G, in some unspecified order.

edges(G, V) -> Edges
Types:
G = graph()
V = vertex()
Edges = [edge()]

Returns alist of all edges emanating from or incident on V of the digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false
Types:

92 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()
V = vertex()
Vertices = [vertex(), ...]
If thereisasimple cycle of length two or more through the vertex V, thenthecycleisreturned asalist[V, ..., V]

of vertices, otherwiseif thereisaloop through V, then theloop isreturned asalist [V] . If there are no cyclesthrough
V, thenf al se isreturned.

get _pat h/ 3 isused for finding a simple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Tries to find a simple path from the vertex V1 to the vertex V2 of the digraph G Returns the path as a list
[Vi, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

The digraph Gistraversed in a depth-first manner, and the first path found is returned.

get short cycle(G, V) -> Vertices | false

Types.
G = graph()
V = vertex()
Vertices = [vertex(), ...]

Tries to find an as short as possible simple cycle through the vertex V of the digraph G. Returns the cycle as alist
[V, ..., V] of vertices, or f al se if no simple cycle through V exists. Note that a loop through V is returned
asthelist[V, V].

get _short _pat h/ 3 isused for finding asimple cycle through V.

get short path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Triesto find an as short as possible simple path from the vertex V1 to the vertex V2 of the digraph G. Returnsthe path
asalist[V1, ..., V2] of vertices, or f al se if no ssimple path from V1 to V2 of length one or more exists.

The digraph Gistraversed in a breadth-first manner, and the first path found is returned.

in _degree(G, V) -> integer() >= 0

Types:
G = graph()
V = vertex()

Returns the in-degree of the vertex V of the digraph G

Ericsson AB. All Rights Reserved.: STDLIB | 93

digraph

in edges(G, V) -> Edges

Types:
G = graph()
V = vertex()

Edges = [edge()]
Returnsalist of all edgesincident on V of the digraph G, in some unspecified order.

in neighbours(G, V) -> Vertex

Types:
G = graph()
V = vertex()

Vertex = [vertex()]
Returnsalist of al in-neighbours of V of the digraph G, in some unspecified order.

info(G) -> InfolList

Types:
G = graph()
Infolist =
[{cyclicity, Cyclicity :: d_cyclicity()} |
{memory, NoWords :: integer() >= 0} |
{protection, Protection :: d_protection()}]

d cyclicity() = acyclic | cyclic
d protection() = private | protected

Returnsalist of { Tag, Val ue} pairsdescribing the digraph G The following pairs are returned:

e {cyclicity, Cyclicity},whereCyclicityiscyclicoracycli c,accordingto the optionsgiven
tonew.

« {nmenory, NoWbrds}, where NoWr ds isthe number of words alocated to the ETS tables.

« {protection, Protection},whereProtectionisprotectedorprivat e,accordingtotheoptions
givento new.

new() -> graph()
Equivalenttonew([]) .

new(Type) -> graph()
Types:
Type = [d_type()]
d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returns an empty digraph with properties according to the optionsin Ty pe:

cyclic

Allow cyclesin the digraph (default).
acyclic

The digraph isto be kept acyclic.

94 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

protected
Other processes can read the digraph (default).
private
The digraph can be read and modified by the creating process only.

If an unrecognized type option T isgiven or Type ishot a proper list, there will beabadar g exception.

no edges(G) -> integer() >= 0
Types.

G = graph()
Returns the number of edges of the digraph G.

no vertices(G) -> integer() >= 0
Types:

G = graph()
Returns the number of vertices of the digraph G

out degree(G, V) -> integer() >= 0

Types.
G = graph()
V = vertex()

Returns the out-degree of the vertex V of the digraph G

out edges(G, V) -> Edges

Types:
G = graph()
V = vertex()

Edges = [edge()]
Returns alist of all edges emanating from V of the digraph G, in some unspecified order.

out neighbours(G, V) -> Vertices

Types:
G = graph()
V = vertex()

Vertices = [vertex()]
Returns alist of all out-neighbours of V of the digraph G, in some unspecified order.

vertex(G, V) -> {V, Label} | false
Types:

G = graph()

V = vertex()

Label = | abel ()

Returns{V, Label} where Label isthe label of the vertex V of the digraph G, or f al se if there is no vertex
V of the digraph G.

Ericsson AB. All Rights Reserved.: STDLIB | 95

digraph

vertices(G) -> Vertices
Types:
G = graph()
Vertices = [vertex()]
Returns alist of all vertices of the digraph G, in some unspecified order.

See Also
digraph_utils(3), ets(3)

96 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

digraph_utils

Erlang module

Thedi graph_ut i | s module implements some algorithms based on depth-first traversal of directed graphs. See
thedi gr aph module for basic functions on directed graphs.

A directed graph (or just "digraph") isapair (V, E) of afinite set V of vertices and afinite set E of directed edges (or
just "edges"). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the
edges of the digraph. A digraph which has been annotated is called alabeled digraph, and the information attached
to avertex or an edgeiscalled alabel.

Anedgee= (v, w) issaid to emanate from vertex v and to beincident on vertex w. If there is an edge emanating from
v and incident on w, then w is said to be an out-neighbour of v, and v is said to be an in-neighbour of w. A path P
from v[1] to v[K] inadigraph (V, E) isanon-empty sequence v[1], v[2], ..., V[K] of verticesin V such that thereisan
edge (v[i],v[i+1]) in Efor 1 <=i < k. Thelength of the path Pisk-1. Pisacycleif the length of Pisnot zero and v[1]
=v[K]. A loop isacycle of length one. An acyclic digraph is a digraph that has no cycles.

A depth-first traversal of adirected digraph can be viewed as a process that visits all vertices of the digraph. Initially,
all vertices are marked as unvisited. The traversal starts with an arbitrarily chosen vertex, which is marked as visited,
and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that vertex in the same
fashion, until there is no edge leading to an unvisited vertex. At that point the process backtracks, and the traversal
continues aslong asthere are unexamined edges. If there remain unvisited verticeswhen all edges from thefirst vertex
have been examined, some hitherto unvisited vertex is chosen, and the process is repeated.

A partial ordering of aset Sisatransitive, antisymmetric and reflexive relation between the objects of S. The problem
of topological sorting isto find atotal ordering of Sthat is a superset of the partial ordering. A digraph G = (V, E) is
equivalent to arelation E on V (we neglect the fact that the version of directed graphs implemented in thedi gr aph
modul e allows multiple edges between vertices). If the digraph has no cycles of length two or more, then the reflexive
and transitive closure of E is a partial ordering.

A subgraph G' of G is adigraph whose vertices and edges form subsets of the vertices and edges of G. G' is maximal
with respect to aproperty Pif all other subgraphs that include the vertices of G' do not have the property P. A strongly
connected component is a maximal subgraph such that there is a path between each pair of vertices. A connected
component is a maximal subgraph such that there is a path between each pair of vertices, considering all edges
undirected. An arborescence is an acyclic digraph with a vertex V, the root, such that there is a unique path from V
to every other vertex of G. A treeis an acyclic non-empty digraph such that there is a unique path between every pair
of vertices, considering all edges undirected.

Data Types
digraph()
A digraph asreturned by di gr aph: new/ 0, 1.

Exports

arborescence root(Digraph) -> no | {yes, Root}
Types:
Digraph = di graph: graph()
Root = di graph: vertex()
Returns{yes, Root} if Root istheroot of the arborescence Di gr aph, no otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 97

digraph_utils

components(Digraph) -> [Component]
Types:
Digraph = di graph: graph()
Component = [di graph: vertex()]

Returns alist of connected components. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of the digraph Di gr aph occurs in exactly one component.

condensation(Digraph) -> CondensedDigraph
Types.
Digraph = CondensedDigraph = di graph: graph()
Creates a digraph where the vertices are the strongly connected components of Di gr aph as returned by
st rong_conponent s/ 1. If X and Y are two different strongly connected components, and there exist vertices x

andyin X and Y respectively such that there is an edge emanating from x and incident on y, then an edge emanating
from X and incident on Y is created.

The created digraph has the same type as Di gr aph. All vertices and edges have the default label [] .

Each and every cycle is included in some strongly connected component, which implies that there aways exists a
topological ordering of the created digraph.

cyclic strong components(Digraph) -> [StrongComponent]
Types:

Digraph = di graph: graph()

StrongComponent = [digraph:vertex()]

Returnsalist of strongly connected components. Each strongly component is represented by its vertices. The order of
the vertices and the order of the components are arbitrary. Only verticesthat are included in some cyclein Di gr aph
are returned, otherwise the returned list is equal to that returned by st r ong_conponent s/ 1.

is acyclic(Digraph) -> boolean()
Types:
Digraph = di gr aph: graph()
Returnst r ue if and only if the digraph Di gr aph isacyclic.

is arborescence(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if the digraph Di gr aph is an arborescence.

is tree(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if the digraph Di gr aph isatree.

loop vertices(Digraph) -> Vertices
Types:

98 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Vertices = [di graph:vertex()]
Returnsalist of all verticesof Di gr aph that are included in some loop.

postorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [di graph:vertex()]
Returns al vertices of the digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting

visited vertices in postorder. More precisely, the vertices visited while searching from an arbitrarily chosen vertex are
collected in postorder, and al those collected vertices are placed before the subsequently visited vertices.

preorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [digraph:vertex()]

Returns all vertices of the digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting
visited vertices in pre-order.

reachable(Vertices, Digraph) -> Reachable
Types:
Digraph = di graph: graph()
Vertices = Reachable = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex inthelist, thereisapathin Di gr aph from some

vertex of Ver ti ces to the vertex. In particular, since paths may have length zero, the vertices of Verti ces are
included in the returned list.

reachable neighbours(Vertices, Digraph) -> Reachable
Types:
Digraph = di graph: graph()
Vertices = Reachable = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, thereisapath in Di gr aph of length

one or more from some vertex of Ver t i ces to the vertex. Asa consequence, only those verticesof Ver t i ces that
areincluded in some cycle are returned.

reaching(Vertices, Digraph) -> Reaching
Types:
Digraph = di graph: graph()
Vertices = Reaching = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to

some vertex of Ver ti ces. In particular, since paths may have length zero, the vertices of Ver t i ces are included
in the returned list.

Ericsson AB. All Rights Reserved.: STDLIB | 99

digraph_utils

reaching neighbours(Vertices, Digraph) -> Reaching
Types:

Digraph = di graph: graph()

Vertices = Reaching = [di graph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more
from the vertex to some vertex of Ver t i ces. Asaconsequence, only those verticesof Ver t i ces that areincluded
in some cycle are returned.

strong_components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [di graph: vertex()]
Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order

of the vertices and the order of the components are arbitrary. Each vertex of the digraph Di gr aph occursin exactly
one strong component.

subgraph(Digraph, Vertices) -> SubGraph
subgraph(Digraph, Vertices, Options) -> SubGraph
Types:
Digraph = SubGraph = di graph: graph()
Vertices = [digraph:vertex()]
Options = [{type, SubgraphType} | {keep labels, boolean()}]
SubgraphType = inherit | [digraph:d_type()]
Creates a maximal subgraph of Di gr aph having as vertices those vertices of Di gr aph that are mentioned in
Verti ces.

If thevalue of theoptiont ype isi nheri t , whichisthe default, then the type of Di gr aph is used for the subgraph
aswell. Otherwise the option value of t ype isused asargument to di gr aph: new/ 1.

If the value of the option keep_| abel s istrue, which is the default, then the labels of vertices and edges of
Di gr aph areused for the subgraph aswell. If thevalueisf al se, thenthedefaultlabel, [] , isused for the subgraph's
vertices and edges.

subgraph(Di graph, Vertices) isequivaenttosubgraph(Di graph, Vertices, []).
Therewill beabadar g exception if any of the arguments are invalid.

topsort(Digraph) -> Vertices | false
Types:
Digraph = di graph: graph()
Vertices = [digraph:vertex()]

Returns atopological ordering of the vertices of the digraph Di gr aph if such an ordering exists, f al se otherwise.
For each vertex in the returned list, there are no out-neighbours that occur earlier in thelist.

See Also
digraph(3)

100 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

€pp

Erlang module

The Erlang code preprocessor includes functions which are used by conpi | e to preprocess macros and include files
before the actual parsing takes place.

The Erlang source file encoding is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is not a valid encoding it is ignored. The valid encodings are Lat i n- 1 and UTF- 8 where the case
of the characters can be chosen freely. Examples:

%% coding: utf-8

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Data Types

macros() = [atom() | {atom(), term()}]
epp_handle() = pid()

Handle to the epp server.

source_encoding() = latinl | utf8

Exports

open(Options) ->
{ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}

Types:
Options =
[{default _encoding, DefEncoding :: source_encoding()} |
{includes, IncludePath :: [DirectoryName :: file:nanme()1} |
{macros, PredefMacros :: macros()} |
{name, FileName :: file:nanme()} |
extral

Epp = epp_handl e()
Extra = [{encoding, source_encodi ng() | none}]
ErrorDescriptor = term()

Opens afile for preprocessing.
If extraisgivenin Opti ons, thereturn valuewill be{ ok, Epp, Extra} instead of { ok, Epp}.

open(FileName, IncludePath) ->

Ericsson AB. All Rights Reserved.: STDLIB | 101

€pp

{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: nane()
IncludePath = [DirectoryName :: file:name()]

Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{nanme, FileNane}, {includes, |ncludePath}]).

open(FileName, IncludePath, PredefMacros) ->
{ok, Epp} | {error, ErrorDescriptor}

Types.
FileName = fil e: name()
IncludePath = [DirectoryName :: file:name()]

PredefMacros = macros()
Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{nane, Fi | eNane}, {i ncl udes, I ncl udePat h}, {macr os,
Pr edef Macr os}]).

close(Epp) -> ok
Types:

Epp = epp_handl e()
Closes the preprocessing of afile.

parse erl form(Epp) ->
{ok, AbsForm} | {eof, Line} | {error, ErrorInfo}

Types:
Epp = epp_handl e()
AbsForm = erl parse: abstract_form()
Line = erl _scan:line()
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()

Returns the next Erlang form from the opened Erlang source file. Thetuple{ eof , Li ne} isreturned at end-of-file.
Thefirst form correspondsto an implicit attribute- fi | e(Fi | e, 1) . , whereFi | e isthe name of thefile.

parse file(FileName, Options) ->
{ok, [Form]l} |
{ok, [Form], Extra} |
{error, OpenError}

Types:
FileName = file: nane()
Options =
[{includes, IncludePath :: [DirectoryName :: file:name() 1} |
{macros, PredefMacros :: macros()} |
{default _encoding, DefEncoding :: source_encoding()} |

102 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

extra]

Form = erl _parse: abstract_form))
| {error, ErrorInfo}
| {eof, Line}

Line = erl _scan:line()

ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
Extra = [{encoding, source_encodi ng() | none}l]
OpenError = file:posix() | badarg | system limit

Preprocesses and parses an Erlang source file. Note that the tuple { eof , Li ne} returned at end-of-fileisincluded
asa"form".

If extraisgiveninOpti ons, thereturn valuewill be{ ok, [Forn], Extra} insteadof{ok, [Forni}.

parse file(FileName, IncludePath, PredefMacros) ->
{ok, [Form]} | {error, OpenError}

Types:
FileName = fil e: nane()
IncludePath = [DirectoryName :: file:name()]
Form erl _parse:abstract form()

| {error, ErrorInfo}
| {eof, Line}

PredefMacros = macros()
Line = erl _scan:line()

ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
OpenError = file:posix() | badarg | system limit
Equivalent to epp: parse_fil e(Fil eNane, [{includes, I ncl udePat h}, {macr os,

Pr edef Macros}]).

default encoding() -> source_encodi ng()
Returns the default encoding of Erlang source files.

encoding to string(Encoding) -> string()
Types:
Encoding = source_encodi ng()

Returns a string representation of an encoding. The string is recognized by read_encodi ng/ 1, 2,
read_encodi ng_frombinary/1, 2,andset _encodi ng/ 1, 2 asavalid encoding.

read encoding(FileName) -> source_encoding() | none
read encoding(FileName, Options) -> source_encoding() | none
Types:
FileName = file: nane()
Options = [Option]
Option = {in_comment only, boolean()}
Read the encoding from afile. Returns the read encoding, or none if no valid encoding was found.

Ericsson AB. All Rights Reserved.: STDLIB | 103

€pp

The optioni n_comrent _onl y ist rue by default, which is correct for Erlang source files. If set to f al se the
encoding string does not necessarily have to occur in a comment.

read encoding from binary(Binary) -> source_encoding() | none
read encoding from binary(Binary, Options) ->
source_encodi ng() | none

Types:

Binary = binary()

Options = [Option]

Option = {in comment only, boolean()}
Read the encoding from a binary. Returns the read encoding, or none if no valid encoding was found.

The option i n_conmmrent _onl y ist r ue by default, which is correct for Erlang source files. If set to f al se the
encoding string does not necessarily have to occur in a comment.

set encoding(File) -> source_encoding() | none
Types:
File = i o:device()
Reads the encoding from an 1O device and sets the encoding of the device accordingly. The position of the IO device

referenced by Fi | e isnot affected. If no valid encoding can be read from the 10 device the encoding of the 1O device
is set to the default encoding.

Returns the read encoding, or none if no valid encoding was found.

set encoding(File, Default) -> source_encoding() | none

Types:
Default = source_encodi ng()
File = io:device()

Reads the encoding from an 1O device and sets the encoding of the device accordingly. The position of the IO device
referenced by Fi | e isnot affected. If no valid encoding can be read from the 10 device the encoding of the 1O device
is set to the encoding given by Def aul t .

Returns the read encoding, or none if no valid encoding was found.

format error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = term()

Takes an Err or Descri pt or and returns a string which describes the error or warning. This function is usually
called implicitly when processing an Er r or | nf o structure (see below).

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all |O modules. It
has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

104 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

Module: format error(ErrorDescriptor)

See Also
erl_parse(3)

Ericsson AB. All Rights Reserved.: STDLIB | 105

erl_eval

erl_eval

Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
erl _par se, the Erlang parser, or i 0.

Data Types

bindings() = [{nanme(), value()}]

binding struct() = orddict: orddict()

A binding structure.

expression() = erl _parse: abstract_expr ()

expressions() = [er| _parse: abstract _expr()]

Asreturned by er| parse: parse_exprs/lorio:parse_erl _exprs/ 2.
expression list() = [expression()]

func_spec() = {Module :: module(), Function :: atom()}
| function()

1fun_eval handler() =

fun((Name :: atom(),
Arguments :: expression_list(),
Bindings :: binding struct()) ->
{value,
Value :: value(),

NewBindings :: binding_struct()})

1fun value handler() =
fun((Name :: atom(), Arguments :: [term()]) ->
Value :: value())

local function handler() = {value, |fun_value_handler()}
| {eval, Ifun_eval handler()}
| none

Further described bel ow.

name() = term()

nlfun_handler() =
fun((FuncSpec :: func_spec(), Arguments :: [term()]) -> term())

non local function handler() = {value, nlfun_handler()} | none
Further described below.
value() = term()

Exports

exprs(Expressions, Bindings) -> {value, Value, NewBindings}

exprs(Expressions, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}

exprs(Expressions,

106 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

Bindings,

LocalFunctionHandler,

NonLocalFunctionHandler) ->
{value, Value, NewBindings}

Types:
Expressions = expressions()
Bindings = bi ndi ng_struct ()
LocalFunctionHandler = | ocal _function_handl er()
NonLocalFunctionHandler = non_Il ocal function_handl er()
Value = val ue()
NewBindings = bi ndi ng_struct()
Evaluates Expr essi ons with the set of bindings Bi ndi ngs, where Expr essi ons isasequence of expressions

(in abstract syntax) of atype which may bereturned by i o: parse_er| _expr s/ 2. Seebelow for an explanation
of how and when to use the arguments Local Funct i onHandl er and NonLocal Funct i onHandl er .

Returns{val ue, Val ue, NewBi ndi ngs}

expr(Expression, Bindings) -> {value, Value, NewBindings}
expr(Expression, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}
expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler,
ReturnFormat) ->
{value, Value, NewBindings} | Value

Types:
Expression = expression()
Bindings = bi ndi ng_struct ()
LocalFunctionHandler = | ocal function_handl er ()
NonLocalFunctionHandler = non_l ocal _function_handl er()
ReturnFormat = none | value
Value = val ue()
NewBindings = bi ndi ng_struct ()
Evaluates Expr essi on with the set of bindings Bi ndi ngs. Expressi on is an expression in abstract

syntax. See below for an explanation of how and when to use the arguments Local Functi onHandl er and
NonLocal Functi onHandl er.

Returns{val ue, Val ue, NewBi ndi ngs} by default. But if the Ret ur nFor mat isval ue only the Val ue
is returned.
expr list(ExpressionList, Bindings) -> {ValuelList, NewBindings}

expr list(ExpressionList, Bindings, LocalFunctionHandler) ->

Ericsson AB. All Rights Reserved.: STDLIB | 107

erl_eval

{ValuelList, NewBindings}
expr list(ExpressionList,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{ValuelList, NewBindings}

Types.
ExpressionlList = expression_list()
Bindings = bi nding_struct()
LocalFunctionHandler = | ocal function_handl er ()
NonLocalFunctionHandler = non_l ocal _function_handl er ()
ValuelList = [val ue()]
NewBindings = bi ndi ng_struct ()
Evaluates a list of expressions in paralel, using the same initial bindings for each expression. Attempts are made to

merge the bindings returned from each evaluation. This function is useful in the Local Funct i onHandl er . See
below.

Returns{ Val uelLi st, NewBi ndi ngs}.

new bindings() -> binding_struct ()
Returns an empty binding structure.

bindings (BindingStruct :: binding_struct()) -> bindings()
Returnsthe list of bindings contained in the binding structure.

binding(Name, BindingStruct) -> {value, value()} | unbound
Types:

Name = nane()

BindingStruct = bi ndi ng_struct ()

Returns the binding of Nane in Bi ndi ngSt r uct .

add binding(Name, Value, BindingStruct) -> bindi ng_struct()
Types.

Name = nane()

Value = val ue()

BindingStruct = bi ndi ng_struct ()

Adds the binding Narre

Val ue to Bi ndi ngSt r uct . Returns an updated binding structure.

del binding(Name, BindingStruct) -> binding_struct()
Types.

Name = nane()

BindingStruct = bi ndi ng_struct()

Removes the binding of Nane in Bi ndi ngSt r uct . Returns an updated binding structure.

108 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument Local Funct i onHandl er may be used to define a function which is
called when thereisacall to alocal function. The argument can have the following formats:

{val ue, Func}
This defines alocal function handler which is called with:

Func(Name, Arguments)

Nane is the name of the local function (an atom) and Ar gunent s is alist of the evaluated arguments. The
function handler returnsthevalue of thelocal function. Inthiscase, itisnot possibleto accessthe current bindings.
To signal an error, the function handler just callsexi t / 1 with a suitable exit value.

{eval , Func}
This defines alocal function handler whichis called with:

Func(Name, Arguments, Bindings)

Nane is the name of the local function (an atom), Ar gunent s is a list of the unevaluated arguments, and
Bi ndi ngs are the current variable bindings. The function handler returns:

{value,Value,NewBindings}

Val ue isthe value of thelocal function and NewBi ndi ngs are the updated variable bindings. In this case, the
function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the
function handler just callsexi t / 1 with a suitable exit value.

none

Thereisno local function handler.

Non-local Function Handler

The optional argument Nonl ocal Functi onHandl er may be used to define a function which is caled in the
following cases: a functional object (fun) is called; a built-in function is called; a function is called using the M:F
syntax, where M and F are atoms or expressions; an operator Op/A iscaled (thisis handled as a call to the function
erl ang: Op/ A). Exceptions are callsto er | ang: appl y/ 2, 3; neither of the function handlers will be called for
such calls. The argument can have the following formats:

{val ue, Func}
This defines an nonlocal function handler which is called with:

Func (FuncSpec, Arguments)

FuncSpec isthe name of the function on the form { Modul e, Functi on} or afun, and Ar gunent s isa
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler just callsexi t / 1 with a suitable exit value.

Ericsson AB. All Rights Reserved.: STDLIB | 109

erl_eval

none
Thereis no nonlocal function handler.

Note:

For cals such as erl ang: appl y(Fun, Args) or erlang: appl y(Modul e, Functi on,
Args) the cal of the non-local function handler corresponding to the call to erl ang: appl y/ 2, 3
itself--Func({erl ang, apply}, [Fun, Args]) or Func({erlang, apply}, [Module,
Function, Args])--will never take place. The non-local function handler will however be caled with
the evaluated arguments of the call to er | ang: appl y/ 2, 3: Func(Fun, Args) or Func({Modul e,
Function}, Args) (assumingthat{ Modul e, Function} isnot{erl ang, apply}).

Calls to functions defined by evaluating fun expressions"fun ... end" are aso hidden from non-local
function handlers.

The nonlocal function handler argument is probably not used as frequently as the local function handler argument. A
possible useisto cal exi t / 1 on callsto functions that for some reason are not allowed to be called.

Bugs

Undocumented functionsiner | _eval should not be used.

110 | Ericsson AB. All Rights Reserved.: STDLIB

erl_expand_records

erl_expand_records

Erlang module

Exports

module(AbsForms, CompileOptions) -> AbsForms
Types:
AbsForms = [er| _parse:abstract_forn()]
CompileOptions = [conpil e:option()]
Expands all recordsin amodule. The returned module has no references to records, neither attributes nor code.

See Also
The abstract format documentation in ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 111

erl_id_trans

erl_id_trans

Erlang module

This module performs an identity parse transformation of Erlang code. It isincluded as an example for users who may
wish to writetheir own parsetransformers. If theoption { par se_t r ansf or m Modul e} ispassed to the compiler,
auser written function par se_t r ansf or m 2 iscalled by the compiler before the code is checked for errors.

Exports

parse_transform(Forms, Options) -> Forms
Types:
Forms = [er| _parse:abstract_forn()]
Options = [conpile:option()]
Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Note:

Programmers are strongly advised not to engage in parse transformations and no support is offered for problems
encountered.

See Also
erl_parse(3), compile(3).

112 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal

erl_internal

Erlang module

This module defines Erlang BIFs, guard tests and operators. This module is only of interest to programmers who
mani pulate Erlang code.

Exports

bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ar i t y isan Erlang BIF whichisautomatically recognized by the compiler, otherwisef al se.

guard bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF which is allowed in guards, otherwisef al se.

type test(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isavalid Erlang type test, otherwisef al se.

arith op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isan arithmetic operator, otherwisef al se.

bool op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isaBoolean operator, otherwisef al se.

comp_op(OpName, Arity) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 113

erl_internal

OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isacomparison operator, otherwisef al se.

list op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNarnre/ Ari ty isalist operator, otherwisef al se.

send op(OpName, Arity) -> boolean()
Types:

OpName = atom()

Arity = arity()

Returnst r ue if OpName/ Ari t y isasend operator, otherwisef al se.

op_type(OpName, Arity) -> Type
Types:
OpName = atom()
Arity = arity()
Type = arith | bool | comp | list | send
Returns the Type of operator that OpNane/ Ari t y belongs to, or generates af unct i on_cl ause error if it is
not an operator at all.

114 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint

erl_lint

Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It also warns against coding practices
which are not recommended.

The errors detected include:

» redefined and undefined functions

* unbound and unsafe variables

* illega record usage.

Warnings include:

e unused functions and imports

e unused variables

e variablesimported into matches

* variablesexported fromi f /case/r ecei ve

e variables shadowed in lambdas and list comprehensions.
Some of the warnings are optional, and can be turned on by giving the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler and there is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Data Types

error_info() = {erl _scan:line(), module(), error_description()}
error _description() = term()

Exports

module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}
module(AbsForms, FileName) ->

{ok, Warnings} | {error, Errors, Warnings}
module(AbsForms, FileName, CompileOptions) ->

{ok, Warnings} | {error, Errors, Warnings}

Types.
AbsForms = [erl _parse:abstract_form)]
FileName = atom() | string()

CompileOptions = [conpile:option()]

Warnings = [{file:filenane(), [ErrorInfo]}]

Errors = [{FileName2 :: file:filenane(), [ErrorInfo]l}]
ErrorInfo = error_info()

This function checks all the formsin amodule for errors. It returns:
{ ok, Var ni ngs}
There were no errors in the module.

Ericsson AB. All Rights Reserved.: STDLIB | 115

erl_lint

{error, Errors, Vr ni ngs}
There were errors in the module.

Since this module is of interest only to the maintainers of the compiler, and to avoid having the same description in
two places to avoid the usual maintenance nightmare, the elements of Opt i ons that control the warnings are only
described in compile(3).

The AbsFor s of a module which comes from afile that is read through epp, the Erlang pre-processor, can come
frommany files. Thismeansthat any referencesto errorsmust includethefile name (seeepp(3), or parser erl_parse(3)).
The warnings and errors returned have the following format:

[{,[1}]

The errors and warnings are listed in the order in which they are encountered in the forms. This means that the errors
from one file may be split into different entriesin the list of errors.

is guard test(Expr) -> boolean()
Types.
Expr = erl _parse: abstract _expr ()

This function tests if Expr is alega guard test. Expr is an Erlang term representing the abstract form for the
expression. er | _par se: par se_expr s(Tokens) can be used to generate alist of Expr .

format error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = error_description()

Takes an Err or Descri pt or and returns a string which describes the error or warning. This function is usualy
called implicitly when processing an Er r or | nf o structure (see below).

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also
erl_parse(3), epp(3)

116 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

erl_parse

Erlang module

This module is the basic Erlang parser which converts tokens into the abstract form of either forms (i.e., top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Note that a token list
must end with the dot token in order to be acceptable to the parse functions (see erl_scan(3)).

Data Types

abstract clause() = term()
Parse tree for Erlang clause.
abstract expr() = term()
Parse tree for Erlang expression.
abstract form() = term()
Parse tree for Erlang form.

error_description() = term()
error_info() = {erl _scan:line(), module(), error_description()}
token() = erl _scan:token()

Exports

parse form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
Types.

Tokens = [token()]

AbsForm = abstract form()

ErrorInfo = error_info()

Thisfunction parses Tokens asif it wereaform. It returns:
{ok, AbsForni}

The parsing was successful. Abs For mis the abstract form of the parsed form.
{error, Errorlnfo}

An error occurred.

parse _exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo}
Types:
Tokens = [token()]
ExprList = [abstract _expr()]
ErrorInfo = error_info()
Thisfunction parses Tokens asif it were alist of expressions. It returns:
{ok, ExprlList}
The parsing was successful. Expr Li st isalist of the abstract forms of the parsed expressions.

Ericsson AB. All Rights Reserved.: STDLIB | 117

erl_parse

{error, Errorlnfo}
An error occurred.

parse_term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Types:

Tokens = [token()]

Term = term()

ErrorInfo = error _info()

Thisfunction parses Tokens asif it wereaterm. It returns:
{ok, Tern}

The parsing was successful. Ter misthe Erlang term corresponding to the token list.
{error, Errorlnfo}

An error occurred.

format _error(ErrorDescriptor) -> Chars
Types.
ErrorDescriptor = error_description()
Chars = [char() | Chars]

Usesan Err or Descri pt or andreturnsastring which describesthe error. Thisfunctionisusualy called implicitly
when an Er r or | nf o structure is processed (see below).

tokens (AbsTerm) -> Tokens
tokens (AbsTerm, MoreTokens) -> Tokens
Types.
AbsTerm = abstract expr()
MoreTokens = Tokens = [token()]

This function generates a list of tokens representing the abstract form AbsTer mof an expression. Optionaly, it
appends Mor eTokens.

normalise(AbsTerm) -> Data
Types.
AbsTerm = abstract expr()
Data = term()

Converts the abstract form AbsTer mof aterm into a conventional Erlang data structure (i.e., the term itself). This
istheinverse of abstract/ 1.

abstract(Data) -> AbsTerm
Types:

Data = term()

AbsTerm = abstract_expr()

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m This is the inverse of
normal i se/ 1.

118 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

erl _parse:abstract (T) isequivaenttoer| parse: abstract(T, 0).

abstract(Data, Options) -> AbsTerm
Types.
Data = term()
Options = Line | [Option]
Option = {line, Line} | {encoding, Encoding}
Encoding = latinl | unicode | utf8 | none | encodi ng_func()
Line = erl _scan:line()
AbsTerm = abstract _expr()
encoding func() = fun((integer() >= 0) -> boolean())
Converts the Erlang data structure Dat a into an abstract form of type AbsTer m
TheLi ne option istheline that will be assigned to each node of the abstract form.

The Encodi ng option is used for selecting which integer listswill be considered as strings. The default isto use the
encoding returned by epp: def aul t _encodi ng/ 0. Thevaluenone meansthat no integer listswill be considered
asstrings. Theencodi ng_f unc() will becalled with oneinteger of alist at atime, and if it returnst r ue for every
integer the list will be considered a string.

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Module: format error(ErrorDescriptor)

See Also
i0(3), erl_scan(3), ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 119

erl_pp

erl_pp

Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the formiswrong.

All functions can have an optiona argument which specifies a hook that is called if an attempt is made to print an
unknown form

Data Types
hook function() = none
| fun((Expr :: erl_parse:abstract_expr(),
CurrentIndentation :: integer(),
CurrentPrecedence :: integer() >= 0,
Options :: options()) ->

io_lib:chars())

The optional argument HookFunct i on, shown in the functions described below, defines afunction which is called
when an unknown form occurs where there should be a valid expression.

If HookFunct i on isequal to none there is no hook function.
The called hook function should return a (possibly deep) list of characters. expr / 4 isuseful in a hook.
If Current | ndent at i on isnegative, there will be no line breaks and only a spaceis used as a separator.

option() = {hook, hook function()}
| {encoding, latinl | unicode | utf8}

options() = hook_function() | [option()]

Exports

form(Form) -> io_lib:chars()
form(Form, Options) -> io_lib:chars()
Types.
Form = erl _parse:abstract _form))
Options = options()
Pretty prints a For mwhich is an abstract form of atype which isreturned by er| _par se: parse_form 1.

attribute(Attribute) -> io_lib:chars()
attribute(Attribute, Options) -> io_lib:chars()
Types:
Attribute = erl _parse:abstract form)
Options = options()
Thesame asf or m but only for the attribute At t r i but e.

function(Function) -> io_lib:chars()

function(Function, Options) -> io_lib:chars()
Types:

120 | Ericsson AB. All Rights Reserved.: STDLIB

erl_pp

Function = erl parse:abstract _form))
Options = options()
Thesame asf or m but only for the function Funct i on.

guard(Guard) -> io_lib:chars()
guard(Guard, Options) -> io_lib:chars()

Types:
Guard = [erl _parse: abstract _expr()]
Options = options()

The same asf or m but only for the guard test Guar d.

exprs(Expressions) -> io_lib:chars()
exprs(Expressions, Options) -> io_lib:chars()
exprs(Expressions, Indent, Options) -> io_lib:chars()
Types.

Expressions = [er| _parse: abstract _expr()]

Indent = integer()

Options = options()
Thesame asf or m but only for the sequence of expressionsin Expr essi ons.

expr(Expression) -> io_lib:chars()
expr(Expression, Options) -> io_lib:chars()
expr(Expression, Indent, Options) -> io_lib:chars()
expr(Expression, Indent, Precedence, Options) -> io_lib:chars()
Types:

Expression = erl _parse: abstract_expr()

Indent = integer()

Precedence = integer() >= 0

Options = options()
This function prints one expression. It is useful for implementing hooks (see below).

Bugs

It should be possible to have hook functions for unknown forms at places other than expressions.

See Also
i0(3), erl_parse(3), erl_eval(3)

Ericsson AB. All Rights Reserved.: STDLIB | 121

erl_scan

erl_scan

Erlang module

This module contains functions for tokenizing characters into Erlang tokens.

Data Types

attribute info() {column, colum()}

| {length, integer() >= 1}

| {line, info_line()}

| {location, info_location()}
| {text, string()}

attributes() = line() | attributes_data()

attributes data() = [{column, colum()} |
{line, info_line()} |

{text, string()}]

| {line(), colum()}

category() = atom()

column() = integer() >=1

error_description() = term()

error_info() = {location(), module(), error_description()}
info line() = integer() | term()

info location() = location() | term()
line() = integer()
location() = line() | {line(), colum()}

return

)
option() =
| return white spaces
|
|
|

return_comments
text
{reserved word fun, resword_fun()}

options() = option() | [option()]
symbol() = atom() | float() | integer() | string()
resword fun() = fun((atom()) -> boolean())

token() = {category(), attributes(), symbol ()}
| {category(), attributes()}

token info() = {category, category()}
| {symbol, synbol ()}
| attribute_info()
tokens() = [token()]

tokens result() = {ok,

Tokens :: tokens(),

EndLocation :: location()}
| {eof, EndLocation :: location()}
| {error,

ErrorInfo :: error_info(),

122 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

EndLocation :: location()}

Exports

string(String) -> Return
string(String, StartLocation) -> Return
string(String, StartLocation, Options) -> Return
Types:

String = string()

Options = options()

Return = {ok, Tokens :: tokens(), EndLocation}
| {error, ErrorInfo :: error_info(), ErrorLocation}
StartLocation = EndLocation = ErrorLocation = | ocati on()

Takesthelist of characters St r i ng and tries to scan (tokenize) them. Returns{ ok, Tokens, EndLocati on},
where Tokens are the Erlang tokensfrom St r i ng. EndLocat i on isthefirst location after the last token.

{error, Errorlnfo, ErrorLocation} isreturnedif anerror occurs. Er r or Locat i on isthefirst location
after the erroneous token.

string(String) isequivdenttostring(String, 1),andstring(String, StartLocation) is
equivalenttostri ng(String, StartLocation, []).

St art Locat i onindicatestheinitial locationwhen scanning starts. If St art Locat i onisalineattri but es()

aswell asEndLocat i onandErr or Locat i on will belines. If St art Locat i on isapair of alineand acolumn
attri but es() takestheform of an opague compound datatype, and EndLocat i on and Er r or Locat i on will
be pairs of aline and a column. The token attributes contain information about the column and the line where the
token begins, as well as the text of the token (if thet ext option is given), all of which can be accessed by calling
token_info/1,2 or attributes_info/1,2.

A token isatuple containing information about syntactic category, the token attributes, and the actual terminal symbol.
For punctuation characters (e.g. ; , |) and reserved words, the category and the symbol coincide, and the token is
represented by a two-tuple. Three-tuples have one of the following forms: {at om I nfo, atom()},{char,
Info, integer()},{coment, Info, string()},{float, Info, float()}, {integer,
Info, integer()},{var, Info, atom()},and{white space, Info, string()}.

Thevalid options are:
{reserved_word_fun, reserved_word_fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returnst r ue, the
unquoted atom itself will be the category of the token; if the function returnsf al se, at omwill be the category
of the unquoted atom.

return_conmments
Return comment tokens.
return_white_spaces

Return white space tokens. By convention, if there is a newline character, it is always the first character of the
text (there cannot be more than one newline in a white space token).

return

Short for [ret urn_comments, return_white_spaces].

Ericsson AB. All Rights Reserved.: STDLIB | 123

erl_scan

t ext

Include the token's text in the token attributes. Thetext is the part of the input corresponding to the token.

tokens(Continuation, CharSpec, StartLocation) -> Return
tokens(Continuation, CharSpec, StartLocation, Options) -> Return
Types.

Continuation = return_cont() | []
CharSpec = char_spec()
StartLocation = |l ocation()

Options = options()
Return = {done,
Result :: tokens_result(),
LeftOverChars :: char_spec()}
| {more, Continuationl :: return_cont()}

char spec() = string() | eof
return_cont()
An opague continuation

Thisisthere-entrant scanner which scans charactersuntil adot ('.' followed by awhite space) or eof has been reached.
It returns:

{done, Result, LeftOverChars}
This return indicates that there is sufficient input datato get aresult. Resul t is:
{ok, Tokens, EndLocati on}
The scanning was successful. Tokens isthelist of tokensincluding dot.
{eof, EndLocati on}
End of file was encountered before any more tokens.
{error, Errorlnfo, EndLocation}

An error occurred. Left Over Chars is the remaining characters of the input data, starting from
EndLocat i on.

{nore, Continuationl}

More data is required for building a term. Cont i nuat i on1 must be passed in a new call to t okens/ 3, 4
when more dataiis available.

The Char Spec eof signalsend of file. Lef t Over Char s will then take the value eof aswell.

t okens(Conti nuati on, CharSpec, StartlLocation) iseqguivalenttotokens(Conti nuati on,
Char Spec, StartlLocation, []).

See string/3 for adescription of the various options.

reserved word(Atom :: atom()) -> boolean()
Returnst r ue if At omis an Erlang reserved word, otherwisef al se.

token info(Token) -> TokenInfo
Types:

124 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Token = token()
TokenInfo = [TokenInfoTuple :: token_info()]

Returns alist containing information about the token Token. The order of the Tokenl nf oTupl esis not defined.
See token_info/2 for information about specific Tokenl nf oTupl es.

Note that if t oken_i nf o(Token, Tokenltem returnsundefi ned for some Tokenl t em the item is not
included in Tokenl nf o.

token info(Token, TokenItem) -> TokenInfoTuple | undefined
token info(Token, TokenItems) -> TokenInfo
Types:
Token = token()
TokenItems = [TokenItem :: token_iten()]
TokenInfo = [TokenInfoTuple :: token_info()]
token item() = category | symbol | attribute_item()
attribute item() = column | length | line | location | text

Returnsalist containing information about the token Token. If onesingle Tokenl t emisgiven thereturned valueis
the corresponding Tokenl nf oTupl e, or undef i ned if the Tokenl t emhas no value. If alist of Tokenl t ens
is given the result is a list of Tokenl nf oTupl e. The Tokenl nf oTupl es will appear with the corresponding
Tokenl t ensinthesameorder asthe Tokenl t ensappear inthelist of Tokenl t ens. Tokenl t enswith novalue
are not included in thelist of Tokenl nf oTupl e.

Thefollowing Tokenl nf oTupl eswith corresponding Tokenl t ensare valid:
{category, category()}
The category of the token.
{colum, colum()}
The column where the token begins.
{length, integer() > 0}
The length of the token's text.
{line, line()}
The line where the token begins.
{location, location()}
The line and column where the token begins, or just the line if the column unknown.
{synbol, synbol ()}
The token's symbol.
{text, string()}
The token's text.

attributes info(Attributes) -> AttributesInfo
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 125

erl_scan

Attributes = attributes()
AttributesInfo = [AttributeInfoTuple :: attribute_info()]

Returns a list containing information about the token attributes Attri butes. The order of
the Attributel nfoTuples is not defined. See attributes info/2 for information about specific
Attributel nfoTupl es.

Notethatifattri but es_i nf o(Token, Attri buteltem returnsundefi nedforsomeAttri buteltem
inthelist above, theitemisnot included in At t ri but esl nf o.

attributes info(Attributes, AttributeItem) ->
AttributeInfoTuple | undefined

attributes info(Attributes, AttributeItems) -> AttributeInfo
Types:
Attributes = attributes()
AttributeItems = [AttributeItem :: attribute_iten()]
AttributeInfo = [AttributeInfoTuple :: attribute_info()]
attribute item() = column | length | line | location | text

Returns a list containing information about the token attributes At t ri but es. If one single Attri but el t emis
given the returned value is the corresponding At t r i but el nf oTupl e, or undef i ned if theAttri buteltem
has no value. If a list of Attri buteltemis given the result is a list of Attri butel nfoTupl e. The
Attributel nfoTupl es will appear with the corresponding Attri but el t ens in the same order as the
Attributeltensappearinthelistof Attributeltens Attributeltenmswithnovauearenotincludedin
thelistof Attri but el nf oTupl e.

Thefollowing At t r i but el nf oTupl eswith corresponding At t ri but el t ensare valid:
{colum, colum()}

The column where the token begins.
{length, integer() > 0}

The length of the token's text.
{line, line()}

The line where the token begins.
{location, location()}

The line and column where the token begins, or just the line if the column unknown.
{text, string()}

The token's text.

set attribute(AttributeItem, Attributes, SetAttributeFun) ->
Attributes

Types.
Attributeltem = line
Attributes = attributes()
SetAttributeFun = fun((info_line()) -> info_line())

Setsthe value of the |l i ne attribute of the token attributes At t r i but es.

126 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

The Set At t ri but eFun iscalled with the value of thel i ne attribute, and is to return the new value of thel i ne
attribute.

format error(ErrorDescriptor) -> string()
Types.
ErrorDescriptor = error_description()

Takes an Err or Descri pt or and returns a string which describes the error or warning. This function is usualy
called implicitly when processing an Er r or | nf o structure (see below).

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the following format:

{ErrorLocation, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Module:format error(ErrorDescriptor)

Notes

The continuation of the first call to the re-entrant input functions must be [] . Refer to Armstrong, Virding and
Williams, 'Concurrent Programming in Erlang', Chapter 13, for a complete description of how the re-entrant input
scheme works.

See Also
i0(3), erl_parse(3)

Ericsson AB. All Rights Reserved.: STDLIB | 127

erl_tar

erl_tar

Erlang module

Theer| _tar modulearchives and extract filesto and from atar file. er | _t ar supportstheust ar format (IEEE
Std 1003.1 and ISO/IEC 9945-1). All modernt ar programs (including GNU tar) can read this format. To ensure that
that GNU tar produces atar filethat er | _t ar canread, givethe- - f or mat =ust ar option to GNU tar.

By convention, the name of atar file should endin". t ar ". To abide to the convention, you'll needtoadd ". t ar "
yourself to the name.

Tar files can be created in one operation using the create/2 or create/3 function.
Alternatively, for more control, the open, add/3,4, and close/1 functions can be used.

To extract al files from atar file, use the extract/1 function. To extract only some files or to be able to specify some
more options, use the extract/2 function.

To return alist of thefilesin atar file, use either the table/1 or table/2 function. To print alist of files to the Erlang
shell, use either the t/1 or tt/1 function.

To convert an error term returned from one of the functions above to a readable message, use the format_error/1
function.

UNICODE SUPPORT

If file:native_name_encoding/O returns ut f 8, path names will be encoded in UTF-8 when creating tar files and path
names will be assumed to be encoded in UTF-8 when extracting tar files.

If file:native_name_encoding/0 returns| at i n1, no translation of path names will be done.

OTHER STORAGE MEDIA

Theer | _ft p module normally accesses the tar-file on disk using the file module. When other needs arise, there is
away to define your own low-level Erlang functions to perform the writing and reading on the storage media. See
init/3 for usage.

An example of thisisthe sftp support in ssh_sftp:open_tar/3. That function opens atar file on aremote machine using
an sftp channel.

LIMITATIONS

For maximum compatibility, it is safe to archive files with names up to 100 characters in length. Such tar files can
generally be extracted by any t ar program.

If filenames exceed 100 characters in length, the resulting tar file can only be correctly extracted by a POSIX-
compatiblet ar program (such as Solarist ar), not by GNU tar.

File have longer names than 256 bytes cannot be stored at al.

The filename of the file a symbolic link pointsis always limited to 100 characters.

Exports
add(TarDescriptor, Filename, Options) -> RetValue

Types:
Tar Descriptor = term()

128 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

Filename = fil ename()

Options = [Option]

Option = dereference| verbose| {chunks, ChunkSi ze}
ChunkSi ze = positive_integer()

Ret Val ue = ok| {error, {Fi |l enane, Reason}}

Reason = term()

Theadd/ 3 function adds afileto atar file that has been opened for writing by open/1.
der ef erence

By default, symbolic links will be stored as symbalic links in the tar file. Use the der ef er ence option to
override the default and store the file that the symbolic link pointsto into the tar file.

ver bose
Print an informational message about the file being added.
{chunks, ChunkSi ze}

Read datain parts from the file. Thisisintended for memory-limited machines that for example builds atar file
on aremote machine over sftp.

add(TarDescriptor, FilenameOrBin, NameInArchive, Options) -> RetValue
Types.

Tar Descriptor = term()

Fil enameOrBin = fil enanme()| binary()

Filename = fil ename()

Nanel nArchive = fil enane()

Options = [Option]

Option = dereference|verbose

Ret Val ue = ok| {error, {Fi |l enane, Reason}}

Reason = term()

The add/ 4 function adds a file to a tar file that has been opened for writing by open/1. It accepts the same options
as add/3.

Nanel nAr chi ve isthe name under which the file will be stored in the tar file. That is the name that the file will
get when it will be extracted from the tar file.

close(TarDescriptor)
Types.
Tar Descriptor = term()
Thecl ose/ 1 function closes atar file opened by open/1.

create(Name, FilelList) ->RetValue
Types.
Name = fil enane()
Fi |l eLi st = [Fil enane| { Nanel nArchi ve, binary()},{Nanel nArchive, Filename}]
Filename = fil ename()
Nanel nArchive = fil enane()

Ericsson AB. All Rights Reserved.: STDLIB | 129

erl_tar

Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

The cr eat e/ 2 function creates a tar file and archives the files whose names are given in Fi | eLi st into it. The
files may either be read from disk or given as binaries.

create(Name, FilelList, OptionList)
Types.
Name = fil enane()
Fil eLi st = [Fil enane| { Nanel nArchi ve, binary()}, {Nanel nArchi ve, Fil enane}]
Filename = fil enanme()
Namel nArchive = fil ename()
OptionList = [Option]
Option = conpressed| cooked| der ef erence| ver bose
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

The cr eat e/ 3 function creates a tar file and archives the files whose names are given in Fi | eLi st into it. The
files may either be read from disk or given as binaries.

Theoptionsin Opt i onLi st modify the defaults as follows.
conpr essed

Theentiretar filewill be compressed, asif it hasbeen run throughthegzi p program. To abideto the convention
that a compressed tar file should end in". tar. gz" or ". t gz", you'll need to add the appropriate extension
yourself.

cooked

By default, the open/ 2 function will open thetar filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file
without the r aw option.

der ef erence

By default, symbolic links will be stored as symbolic links in the tar file. Use the der ef er ence option to
override the default and store the file that the symboalic link pointsto into thetar file.

ver bose
Print an informational message about each file being added.

extract(Name) -> RetValue

Types:
Name = fil enane()
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Theext ract/ 1 function extracts al files from atar archive.
If the Nanme argument isgiven as"{ bi nary, Bi nary}", the contents of the binary is assumed to be atar archive.

If the Name argument is given as "{fil e, Fd}", Fd is assumed to be a file descriptor returned from the
fil e:open/ 2 function.

Otherwise, Nanme should be afilename.

130 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

extract(Name, OptionList)
Types:
Name = filenane() | {binary,Binary} | {file, Fd}
Bi nary = binary()
Fd = file_descriptor()
OptionList = [Option]
Option = {cwd, Owd} | {files, FileList}|keep_old files|verbose| nenory
owd = [dirnanme()]
FileList = [fil enane()]
Ret Val ue = ok| Menor yRet Val ue| {error, { Nane, Reason}}
Menor yRet Val ue = {ok, [{NamelnArchive, binary()}]}
Nanel nArchive = fil enane()
Reason = term()

Theext ract / 2 function extractsfiles from atar archive.
If the Name argument isgiven as"{ bi nary, Bi nary}", the contents of the binary is assumed to be atar archive.

If the Name argument is given as "{fil e, Fd}", Fd is assumed to be a file descriptor returned from the
fil e:open/ 2 function.

Otherwise, Name should be a filename.
The following options modify the defaults for the extraction as follows.
{cwd, Owd}

Fileswith relative filenameswill by default be extracted to the current working directory. Giventhe{ cwd, Cwd}
option, theext r act / 2 function will extract into the directory Owd instead of to the current working directory.

{files,FileList}

By default, all files will be extracted from the tar file. Given the {fi | es, Fi | es} option, theextract/ 2
function will only extract the fileswhose names areincluded in Fi | eLi st .

conpr essed

Given the conpr essed option, the ext r act / 2 function will uncompress the file while extracting If the tar
fileis not actually compressed, the conpr essed will effectively be ignored.

cooked

By default, the open/ 2 function will open the tar filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file
without the r aw option.

menory

Instead of extracting to adirectory, the memory option will give the result asalist of tuples{Filename, Binary},
where Binary is abinary containing the extracted data of the file named Filenamein the tar file.

keep_old files

By default, all existing files with the same name as file in the tar file will be overwritten Given the
keep_ol d_fil es option, theext r act / 2 function will not overwrite any existing files.

ver bose

Print an informational message as each fileis being extracted.

Ericsson AB. All Rights Reserved.: STDLIB | 131

erl_tar

format_error(Reason) -> string()
Types:
Reason = term()

Thef or mat _er r or/ 1 function converts an error reason term to a human-readable error message string.

open(Name, OpenModelList) -> RetValue
Types:
Name = fil enane()
OpenMbdeli st = [OQpenMbde]
Mbde = wite| conpressed| cooked
Ret Val ue = {ok, TarDescriptor}|{error, {Nane, Reason}}
Tar Descriptor = tern()
Reason = term()

Theopen/ 2 function creates atar file for writing. (Any existing file with the same name will be truncated.)

By convention, the name of atar file should endin". t ar ". To abide to the convention, you'll needto add ". t ar "
yourself to the name.
Except for thewr i t e atom the following atoms may be added to OpenModeli st :
conpr essed
Theentiretar filewill be compressed, asif it hasbeen run throughthegzi p program. To abideto the convention

that a compressed tar file should end in". tar. gz" or ". t gz", you'll need to add the appropriate extension
yourself.

cooked

By default, the open/ 2 function will open thetar filein r aw mode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file
without the r aw option.

Use the add/3,4 functions to add one file at the time into an opened tar file. When you are finished adding files, use
the close function to close the tar file.

Warning:

The Tar Descri pt or term is not a file descriptor. You should not rely on the specific contents of the
Tar Descr i pt or term, asit may changein future versions as morefeaturesareaddedtotheer | _t ar module.

init(UserPrivate, AccessMode, Fun) -> {ok,TarDescriptor} | {error,Reason}
Types:

UserPrivate = term))

AccessWbde = [write] | [read]

Fun when AccesshMbde is [wite] = fun(wite, {UserPrivate, DataToWite})-

> ..; (position,{UserPrivate,Position})->...; (close, UserPrivate)->...
end

Fun when AccessMdde is [read] = fun(read2, {UserPrivate, Size})->...;
(position,{UserPrivate, Position})->...; (close, UserPrivate)->... end

Tar Descriptor = term()

132 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

Reason = term()

The Fun isthe definition of what to do when the different storage operations functions are to be called from the higher
tar handling functions (add/ 3, add/ 4, cl ose/ 1...).

The Fun will be called when the tar function wantsto do alow-level operation, like writing ablock to afile. The Fun
iscaled asFun(Qp, { User Pri vat e, Paranet ers. ..}) where Op isthe operation name, User Pri vat e is
the term passed as the first argument toi ni t / 1 and Par anet er s. . . are the data added by the tar function to be
passed down to the storage handling function.

The parameter User Pri vat e is typically the result of opening a low level structure like a file descriptor, a sftp
channel id or such. The different Fun clauses operates on that very term.

The fun clauses parameter lists are:

(wite, {UserPrivate, DataToWite})
Writetheterm Dat aToW i t e using User Pri vat e
(close, UserPrivate)
Close the access.
(read2, {UserPrivate, Size})
Read using User Pri vat e but only Si ze bytes. Note that there is only an arity-2 read function, not an arity-1
(position, {UserPrivate, Position})
Setsthe position of User Pri vat e asdefined for filesin file: position/2

A complete Fun parameter for reading and writing on files using the file modul e could be:

ExampleFun =
fun(write, {Fd,Data}) -> file:write(Fd, Data);
(position, {Fd,Pos}) -> file:position(Fd, Pos);
(read2, {Fd,Size}) -> file:read(Fd,Size);
(close, Fd) -> file:close(Fd)
end

where Fd was given to thei ni t / 3 function as:

{ok,Fd} = file:open(Name,...).
{ok,TarDesc} = erl tar:init(Fd, [write], ExampleFun),

The Tar Desc isthen used:

erl tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),

erl tar:close(TarDesc)

When the erl tar core wants to eg. write a piece of Data, it would cal Exanpl eFun(wite,
{UserPrivate, Data}).

Ericsson AB. All Rights Reserved.: STDLIB | 133

erl_tar

Note:

The example above with f i | @ module operations is not necessary to use directly since that is what the open
function in principle does.

Warning:

The Tar Descri pt or term is not a file descriptor. You should not rely on the specific contents of the
Tar Descri pt or term, asit may changein future versionsas morefeaturesareaddedtotheer | _t ar module.

table(Name) -> RetValue

Types.
Name = fil enane()
Ret Val ue = {ok,[string()]}]|{error, {Nane, Reason}}
Reason = term()

Thet abl e/ 1 function retrieves the names of al filesin thetar file Nane.

table(Name, Options)
Types.
Name = fil enane()
Thet abl e/ 2 function retrieves the names of al filesin the tar file Nane.

t (Name)
Types:
Name = fil enane()
Thet / 1 function prints the names of al filesin the tar file Nane to the Erlang shell. (Similarto"t ar t".)

tt (Name)
Types:
Name = fil enane()

Thett/ 1 function prints names and information about al files in the tar file Nane to the Erlang shell. (Similar to
"tar tv")

134 | Ericsson AB. All Rights Reserved.: STDLIB

ets

ets

Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
quantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
ordered_set, seebelow, accesstimeis proportional to the logarithm of the number of objects stored).

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag and duplicate bag. A set or
ordered_set table can only have one object associated with each key. A bag or dupl i cat e_bag can have
many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is approximately 1400 tables.
The upper limit can be increased by setting the environment variable ERL_ MAX_ETS_TABLES before starting the
Erlang runtime system (i.e. with the - env optionto er | /wer |). The actual limit may be dlightly higher than the one
specified, but never lower.

Notethat thereisno automatic garbage collection for tables. Even if there are no referencesto atable from any process,
it will not automatically be destroyed unless the owner process terminates. It can be destroyed explicitly by using
del et e/ 1. The default owner is the process that created the table. Table ownership can be transferred at process
termination by using the heir option or explicitly by calling give_away/3.

Some implementation details:

« Inthe current implementation, every object insert and |ook-up operation resultsin a copy of the object.

e '"$end_of _tabl e' should not be used as akey since this atom is used to mark the end of the table when
usingfirst/next.

Also worth noting is the subtle difference between matching and comparing equal, which is demonstrated by the
different table types set and or der ed_set . Two Erlang terms nat ch if they are of the same type and have the
same value, so that 1 matches 1, butnot 1. 0 (as1. Oisafl oat () and not ani nt eger ()). Two Erlang terms
compare equal if they either are of the same type and value, or if both are numeric types and extend to the same value,
so that 1 compares equal to both 1 and 1. 0. The or der ed_set works on the Erlang term order and there is no
defined order between ani nt eger () andaf | oat () that extends to the same value, hence the key 1 and the key
1. 0 areregarded asequal in an or der ed_set table.

Failure

In general, the functions below will exit with reason badar g if any argument is of the wrong format, if the table
identifier isinvalid or if the operation is denied due to table access rights (protected or private).

Concurrency

This module provides some limited support for concurrent access. All updates to single objects are guaranteed to
be both atomic and isolated. This means that an updating operation towards a single object will either succeed or
fail completely without any effect at al (atomicy). Nor can any intermediate results of the update be seen by other
processes (isolation). Some functions that update several objects state that they even guarantee atomicy and isolation
for the entire operation. In database terms the isolation level can be seen as "serializable”, asif all isolated operations
were carried out serialy, one after the other in a strict order.

No other support is available within ETS that would guarantee consistency between objects. However, the
saf e_fi xt abl e/ 2 function can be used to guarantee that asequenceof f i r st/ 1 andnext / 2 callswill traverse
the table without errors and that each existing object in the table is visited exactly once, even if another process (or

Ericsson AB. All Rights Reserved.: STDLIB | 135

ets

the same process) simultaneously deletes or inserts objects into the table. Nothing more is guaranteed; in particular
objects that are inserted or deleted during such atraversal may be visited once or not at all. Functions that internally
traverse over atable, likesel ect and mat ch, will givethe same guaranteeassaf e_fi xt abl e.

Match Specifications

Some of the functions uses a match specification, match_spec. A brief explanation is given in select/2. For a detailed
description, see the chapter "Match specificationsin Erlang” in ERTS User's Guide.

Data Types

access() = public | protected | private
continuation()

Opaque continuation wused by select/ 1, 3, sel ect _reverse/1, 3, mat ch/ 1, 3, and
mat ch_obj ect/ 1, 3.

match spec() = [{match_pattern(), [term()], [term()]}]
A match specification, see above.

comp_match spec()

A compiled match specification.

match pattern() = atom() | tuple()

tab() = atom() | tid()

tid()

A tableidentifier, as returned by new/2.

type() = set | ordered set | bag | duplicate bag

Exports

all() -> [Tab]
Types:
Tab = tab()

Returns a list of al tables at the node. Named tables are given by their names, unnamed tables are given by their
table identifiers.

There is no guarantee of consistency in the returned list. Tables created or deleted by other processes "during” the
ets:all() call may or may not beincluded in thelist. Only tables created/del eted before ets:all () is called are guaranteed
to be included/excluded.

delete(Tab) -> true
Types:

Tab = tab()
Deletes the entire table Tab.

delete(Tab, Key) -> true
Types.

136 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab
Key
Deletes all objects with the key Key from the table Tab.

tab()
term()

delete all objects(Tab) -> true
Types:
Tab = tab()
Delete all objectsin the ETS table Tab. The operation is guaranteed to be atomic and isolated.

delete object(Tab, Object) -> true
Types:
Tab = tab()
Object = tuple()
Delete the exact object Cbj ect from the ETS table, leaving objects with the same key but other differences (useful
for typebag). Inadupl i cat e_bag, al instances of the object will be deleted.

file2tab(Filename) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: name()
Tab = tab()

Reason = term()
Reads afile produced by tab2file/2 or tab2file/3 and creates the corresponding table Tab.
Equivalenttofi | e2t ab(Fi | enane, []).

file2tab(Filename, Options) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: nane()
Tab = tab()

Options = [Option]
Option = {verify, boolean()}
Reason = term()
Reads afile produced by tab2file/2 or tab2file/3 and creates the corresponding table Tab.

The currently only supported optionis{ veri fy, bool ean() } . If verification isturned on (by means of specifying
{verify, true}), the function utilizes whatever information is present in the file to assert that the information is
not damaged. How this is done depends on which ext ended_i nf o was written using tab2file/3.

If no ext ended_i nf o ispresent in thefileand { veri fy, true} isspecified, the number of objects written is
compared to the size of the original table when the dump was started. This might make verification fail if the table was
publ i ¢ and objectswere added or removed while the table was dumped to file. To avoid thistype of problems, either
do not verify files dumped while updated simultaneoudly or use the { ext ended_i nf o, [object_count]}
option to tab2file/3, which extends the information in the file with the number of objects actually written.

If verification is turned on and the file was written with the option { ext ended_i nf o, [nd5sun }, reading the
fileis slower and consumes radically more CPU time than otherwise.

{verify, fal se} isthedefault.

Ericsson AB. All Rights Reserved.: STDLIB | 137

ets

first(Tab) -> Key | '$end of table'’

Types:
Tab = tab()
Key = term()

Returnsthefirst key Key inthetable Tab. If thetableisof theor der ed_set type, thefirst key in Erlang term order
will be returned. If the table is of any other type, the first key according to the table's internal order will be returned.
If thetableisempty,' $end_of _t abl e' will be returned.

Use next / 2 to find subsequent keysin the table.

foldl(Function, AccO, Tab) -> Accl

Types.
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dl / 3. The order in which the elements
of the table are traversed is unspecified, except for tables of type or der ed_set , for which they are traversed first
to last.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects may
(depending on key ordering) be included in the traversal.

foldr(Function, AccO, Tab) -> Accl

Types.
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st's: f ol dr/ 3. Theorder in which the elements
of the table are traversed is unspecified, except for tables of type or der ed_set , for which they are traversed last
to first.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects may
(depending on key ordering) be included in the traversal.

from dets(Tab, DetsTab) -> true
Types:

Tab = tab()

DetsTab = dets:tab_nane()

Fills an already created ETS table with the objects in the already opened Dets table named Det sTab. The existing
objects of the ETS table are kept unless overwritten.

Throws abadarg error if any of the tables does not exist or the dets table is not open.

fun2ms (LiteralFun) -> MatchSpec
Types:

138 | Ericsson AB. All Rights Reserved.: STDLIB

ets

LiteralFun = function()
MatchSpec = mat ch_spec()

Pseudo function that by meansof apar se_t r ansf or mtrandatesLi t er al Fun typed as parameter in the function
call to amatch_spec. With "literal” is meant that the fun needsto textually be written as the parameter of the function,
it cannot be held in avariable which in turn is passed to the function).

The parse transform is implemented in the module ns_t ransf or m and the source must include the file
ns_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
include lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefunisvery restricted, it can take only asingle parameter (the object to match): asole variable or atuple. It needsto
usethei s_ guard tests. Language constructs that have no representation in amatch_spec (likei f , case, r ecei ve
etc) are not allowed.

The return value is the resulting match_spec.
Example:

1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{"$1","$2"},[{">","$2",3}],["$1"1}]

Variables from the environment can be imported, so that this works:

2> X=3.

3

3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'$1",'$2"},[{'>","$2",{const,3}}],['$1'1}]

Theimported variableswill be replaced by match_spec const expressions, which is consistent with the static scoping
for Erlang funs. Local or global function calls can not be in the guard or body of the fun however. Calls to builtin
match_spec functions of courseis allowed:

4> ets:fun2ms(fun({M,N}) when N > X, is atomm(M) -> M end).
Error: fun containing local Erlang function calls

('is_atomm' called in guard) cannot be translated into match spec
{error,transform error}

5> ets:fun2ms(fun({M,N}) when N > X, is atom(M) -> M end).
[{{'$1","$2"},[{'>","'$2",{const,3}},{is_atom, "$1'}],['$1'1}]

As can be seen by the example, the function can be called from the shell too. The fun needs to be literally in the call
when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or less
the same restrictions apply (the exception being records, as they are not handled by the shell).

Ericsson AB. All Rights Reserved.: STDLIB | 139

ets

Warning:

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(withabadar g). Themoduleet s actually exports afunction with this name, but it should never really becalled
except for when using the function in the shell. If thepar se_t r ansf or mis properly applied by including the
ns_transform hrl header file, compiled code will never call the function, but the function call is replaced
by aliteral match_spec.

For more information, see ms_transform(3).

give away(Tab, Pid, GiftData) -> true

Types.
Tab = tab()
Pid = pid()

GiftData = term()

Make process Pid the new owner of table Tab. |If successful, the message {'ETS-
TRANSFER , Tab, FronPi d, G f t Dat a} will be sent to the new owner.

The process Pi d must be alive, local and not already the owner of the table. The calling process must be the table
owner.

Notethat gi ve_away does nhot at all affect the heir option of the table. A table owner can for example set the hei r
toitself, give the table away and then get it back in case the receiver terminates.

i() -> ok
Displaysinformation about all ETS tables on tty.

i(Tab) -> ok
Types.
Tab = tab()

Browsesthetable Tab on tty.

info(Tab) -> InfolList | undefined
Types.

Tab = tab()

InfolList = [InfoTuple]

InfoTuple = {compressed, boolean()}
| {heir, pid() | none}

| {keypos, integer() >= 1}
| {memory, integer() >= 0}
| {name, atom()}

| {named table, boolean()}
| {node, node()}

| {owner, pid()}

| {protection, access()}

| {size, integer() >= 0}

140 | Ericsson AB. All Rights Reserved.: STDLIB

ets

| {type, type()}
Returns information about the table Tab asalist of tuples. If Tab has the correct type for atable identifier, but does

not refer to an existing ETS table, undef i ned isreturned. If Tab is not of the correct type, this function fails with
reason badar g

e {conpressed, bool ean()}
Indicatesif the table is compressed or not.
e {heir, pid() | none}
The pid of the heir of the table, or none if no heir is set.
 {keypos, integer() >= 1}
The key position.
e {nenory, integer() >=0
The number of words allocated to the table.

e {nane, atom()}
The name of the table.

e {naned_table, boolean()}
Indicatesif the table is named or not.

e {node, node()}
The node where the table is stored. Thisfield is no longer meaningful as tables cannot be accessed from other
nodes.
e {owner, pid()}
The pid of the owner of the table.
« {protection, access()}
The table accessrights.
e {size, integer() >=0
The number of objectsinserted in the table.
« {type, type()}
The table type.

info(Tab, Item) -> Value | undefined
Types.
Tab = tab()

Item = compressed
| fixed
| heir
| keypos
| memory
| name
| named table
| node
| owner
| protection
| safe fixed
| size
| stats

Ericsson AB. All Rights Reserved.: STDLIB | 141

ets

| type
Value = term()
Returns the information associated with | t emfor the table Tab, or returns undef i ned if Tab does not refer an

existing ETS table. If Tab is not of the correct type, or if | t emis not one of the allowed values, this function fails
with reason badar g.

Warning:

In R11B and earlier, this function would not fail but return undef i ned for invalid valuesfor | t em

Inadditiontothe {1t em Val ue} pairsdefined fori nf o/ 1, thefollowing items are allowed:
« Iltenfixed, Val ue=bool ean()

Indicatesif the tableis fixed by any process or not.
* Itenrsafe_fixed, Value={FirstFixed,Info}|false

If the table has been fixed using saf e_fi xt abl e/ 2, the call returnsatuple where Fi r st Fi xed isthetime
when the table wasfirst fixed by a process, which may or may not be one of the processesit is fixed by right now.

I nf o isapossibly empty lists of tuples { Pi d, Ref Count }, one tuple for every process the table is fixed by
right now. Ref Count isthe value of the reference counter, keeping track of how many times the table has been
fixed by the process.

If the table never has been fixed, the call returnsf al se.

e |tenrstats, Val ue=tuple()
Returnsinternal statistics about set, bag and duplicate bag tables on an internal format used by OTP test suites.
Not for production use.

init table(Tab, InitFun) -> true
Types:
Tab = tab()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res = end of input | {Objects :: [term()], InitFun} | term()
Replaces the existing objects of thetable Tab with objects created by calling the input function | ni t Fun, see below.

Thisfunction is provided for compatibility with thedet s module, it is not more efficient than filling atable by using
ets:insert/2.

When called with the argument r ead thefunction | ni t Fun isassumedtoreturnend_of _i nput whenthereisno
moreinput, or { Obj ect's, Fun},where Obj ect s isalist of objectsand Fun isanew input function. Any other
valueVaueisreturnedasanerror{error, {init_fun, Val ue}}.Eachinputfunctionwill be called exactly
once, and should an error occur, the last function is called with the argument cl ose, the reply of which isignored.

If the type of the tableis set and there is more than one object with a given key, one of the objects is chosen. This
is not necessarily the last object with the given key in the sequence of objects returned by the input functions. This
holds also for duplicated objects stored in tables of type bag.

insert(Tab, ObjectOrObjects) -> true
Types:

142 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()

ObjectOrObjects = tuple() | [tuple()]
Insertsthe object or al of the objectsin thelist Obj ect Or Obj ect s into thetable Tab. If thetableisaset andthe
key of the inserted objects matches the key of any object in the table, the old object will be replaced. If the tableisan
or der ed_set andthekey of theinserted object comparesequal to the key of any object in thetable, the old object is
also replaced. If the list contains more than one object with matching keys and the tableisaset , one will beinserted,
which oneis not defined. The same thing holds for or der ed_set , but will aso happen if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when alist of objectsisinserted.

insert new(Tab, ObjectOrObjects) -> boolean()
Types.

Tab = tab()

ObjectOrObjects = tuple() | [tuple()]
Thisfunction works exactly likei nsert / 2, with the exception that instead of overwriting objects with the same key
(inthe case of set or or der ed_set) or adding more objects with keys already existing in the table (in the case of
bag and dupl i cat e_bag), it simply returnsf al se. If Obj ect Or Obj ect s isaligt, the function checks every

key prior to inserting anything. Nothing will be inserted if not all keys present in the list are absent from the table.
Likei nsert/ 2, theentire operation is guaranteed to be atomic and isolated.

is compiled ms(Term) -> boolean()
Types:
Term = term()

Thisfunctionisusedto check if atermisavalid compiled match_spec. The compiled match_specisan opaque datatype
which can not be sent between Erlang nodes nor be stored on disk. Any attempt to create an external representation of
acompiled match_spec will result in an empty binary (<<>>). As an example, the following expression:;

ets:is compiled ms(ets:match spec compile([{' ',[],[truel}])).

will yield t r ue, while the following expressions:

MS = ets:match spec compile([{' ',[],[truel}l),
Broken = binary to term(term to binary(MS)),
ets:is compiled ms(Broken).

will yield false, as the variable Br oken will contain a compiled match_spec that has passed through external
representation.

Note:

The fact that compiled match_specs has no external representation is for performance reasons. It may be subject
to change in future rel eases, while thisinterface will still remain for backward compatibility reasons.

last(Tab) -> Key | '$end of table'
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 143

ets

Tab = tab()
Key = term()

Returns the last key Key according to Erlang term order in the table Tab of the or der ed_set type. If thetableis
of any other type, the function is synonymoustof i r st/ 2. If thetableisempty, ' $end_of _t abl e' isreturned.

Use pr ev/ 2 to find preceding keysin the table.

lookup(Tab, Key) -> [Object]

Types.
Tab = tab()
Key = term()

Object = tuple()
Returns alist of all objects with the key Key in thetable Tab.

Inthecaseof set, bag and dupl i cat e_bag, an object isreturned only if the given key matches the key of the
object in the table. If thetableisan or der ed_set however, an object is returned if the key given compares equal
to the key of an object in the table. The difference being the same as between =: = and ==. As an example, one might
insert an object withthei nt eger () 1 asakeyinanor der ed_set and get the object returned as aresult of doing
al ookup/ 2 withthef | oat () 1. 0 asthekey to search for.

If thetableisof typeset or or der ed_set , the function returns either the empty list or alist with one element, as
there cannot be more than one object with the sasme key. If thetableisof typebag or dupl i cat e_bag, thefunction
returns alist of arbitrary length.

Note that the time order of object insertions is preserved; the first object inserted with the given key will be first in
the resulting list, and so on.

Insert and look-up timesin tables of typeset , bag and dupl i cat e_bag are constant, regardless of the size of the
table. For the or der ed_set data-type, timeis proportional to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types:
Tab = tab()
Key = term()
Pos = integer() >=1

Elem = term() | [term()]

If the table Tab is of type set or or der ed_set , the function returns the Pos:th element of the object with the
key Key.

If thetableis of type bag or dupl i cat e_bag, the functions returns a list with the Pos :th element of every object
with the key Key.

If no object with the key Key exists, the function will exit with reason badar g.

The difference between set , bag and dupl i cat e_bag on one hand, and or der ed_set on the other, regarding
thefact that or der ed_set 'sview keys as equal when they compare egqual whereas the other table types only regard
them equal when they match, naturally holds for | ookup_el ement aswell asfor | ookup.

match(Tab, Pattern) -> [Match]
Types:

144 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()
Pattern = match_pattern()
Match = [term()]

Matches the objects in the table Tab against the pattern Pat t er n.
A pattern isaterm that may contain:
e bound parts (Erlang terms),

e ' ' which matches any Erlang term, and

* paternvariables:' $N where N=0,1,...

The function returns alist with one element for each matching object, where each element is an ordered list of pattern
variable bindings. An example:

6> ets:match(T, '$1'). % Matches every object in the table
[[{rufsen,dog,7}],[{brunte,horse,5}], [{ludde,dog,5}11]

7> ets:match(T, {' ',dog,'$1'}).

[[71,[5]]

8> ets:match(T, {' ',cow,'$1'}).

[]

If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if it isavariable or an
underscore, the entire table must be searched. The search time can be substantial if the tableisvery large.

On tables of theor der ed_set type, theresultisinthesameorder asinafi r st/ next traversal.

match(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table'’

Types.

Tab = tab()

Pattern = natch_pattern()

Limit = integer() >=1

Match = [term()]

Continuation = continuation()
Works like et s: mat ch/ 2 but only returns alimited (Li ni t) number of matching objects. The Cont i nuat i on
term can then be used in subsequent calls to et s: mat ch/ 1 to get the next chunk of matching objects. Thisis a

space efficient way to work on objects in a table which is still faster than traversing the table object by object using
ets:first/landets: next/1.

" $end_of _tabl e' isreturned if thetableis empty.

match(Continuation) -> {[Match], Continuation} | '$end of table'
Types.

Match = [term()]

Continuation = continuation()

Continues a match started with et s: mat ch/ 3. The next chunk of the size given in theinitial et s: mat ch/ 3 call
isreturned together with anew Cont i nuat i on that can be used in subsequent callsto this function.

' $end_of _t abl e' isreturned when there are no more objects in the table.

Ericsson AB. All Rights Reserved.: STDLIB | 145

ets

match delete(Tab, Pattern) -> true
Types:

Tab = tab()

Pattern = match_pattern()

Deletesall objectswhich match the pattern Pat t er n fromthetable Tab. Seemat ch/ 2 for adescription of patterns.

match object(Tab, Pattern) -> [Object]
Types.
Tab = tab()
Pattern = natch_pattern()
Object = tuple()
Matches the objects in the table Tab against the pattern Pat t er n. See mat ch/ 2 for a description of patterns. The
function returns alist of al objects which match the pattern.

If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if itisavariable or an
underscore, the entire table must be searched. The search time can be substantial if the tableis very large.

Ontables of theor der ed_set type, theresult isinthe sameorder asinafir st/ next traversal.

match object(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table'

Types:

Tab = tab()

Pattern = match_pattern()

Limit = integer() >=1

Match = [term()]

Continuation = continuation()
Works like et s: mat ch_obj ect/ 2 but only returns a limited (Li mi t) number of matching objects. The
Cont i nuat i on term can then be used in subsequent callsto et s: mat ch_obj ect/ 1 to get the next chunk of

matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the
table object by object usinget s: first/1andets: next/ 1.

' $end_of _tabl e' isreturned if thetableis empty.

match _object(Continuation) ->
{[Match], Continuation} | '$end of table’

Types:
Match = [term()]
Continuation = continuation()

Continues a match started with et s: nat ch_obj ect/ 3. The next chunk of the size given in the initial
et s: mat ch_obj ect/ 3 call isreturned together with anew Cont i nuat i on that can be used in subsequent calls
to this function.

' $end_of _t abl e' isreturned when there are no more objectsin the table.

match spec compile(MatchSpec) -> CompiledMatchSpec
Types:

146 | Ericsson AB. All Rights Reserved.: STDLIB

ets

MatchSpec = mat ch_spec()
CompiledMatchSpec = conp_match_spec()

This function transforms a match_spec into an internal representation that can be used in subsequent calls to
et s: mat ch_spec_run/ 2. Theinternal representation is opague and can not be converted to external term format
and then back again without losing its properties (meaning it can not be sent to a process on another node and still
remain a valid compiled match_spec, nor can it be stored on disk). The validity of a compiled match_spec can be
checkedusinget s: i s_conpi |l ed_ns/ 1.

If the term Mat chSpec can not be compiled (does not represent avalid match_spec), abadar g fault is thrown.

Note:

This function has limited use in normal code, it is used by Detsto performthedet s: sel ect operations.

match spec run(List, CompiledMatchSpec) -> list()
Types:

List = [tuple()]

CompiledMatchSpec = conp_match_spec()

This function executes the matching specified in a compiled match_spec on a list of tuples. The
Conpi | edMat chSpec term should be the result of acall toet s: mat ch_spec_conpi | e/ 1 and is hence the
internal representation of the match_spec one wants to use.

The matching will be executed on each element in Li st and the function returns a list containing all results. If an
element in Li st does not match, nothing is returned for that element. The length of the result list is therefore equal
or less than the the length of the parameter Li st . The two cals in the following example will give the same result
(but certainly not the same execution time...):

Table = ets:new...

MatchSpec =

% The following call...

ets:match spec run(ets:tab2list(Table),
ets:match spec compile(MatchSpec)),

% ...will give the same result as the more common (and more efficient)
ets:select(Table,MatchSpec),

Note:

This function has limited use in normal codg, it is used by Dets to perform the det s: sel ect operations and
by Mnesia during transactions.

member(Tab, Key) -> boolean()

Types.
Tab = tab()
Key = term()

Works like | ookup/ 2, but does not return the objects. The function returnst r ue if one or more elements in the
table has the key Key, f al se otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 147

ets

new(Name, Options) -> tid() | atom()
Types:

Name = atom()

Options = [Option]

Option = Type

| Access

| named table
| {keypos, Pos}
| {heir, Pid :: pid(), HeirData}
| {heir, none}
| Tweaks
Type = type()
Access access()

Tweaks = {write concurrency, boolean()}
| {read concurrency, boolean()}
| compressed

Pos = integer() >=1
HeirData = term()

Creates anew table and returns a table identifier which can be used in subsequent operations. The table identifier can
be sent to other processes so that a table can be shared between different processes within a node.

The parameter Opt i ons is a list of atoms which specifies table type, access rights, key position and if the
table is named or not. If one or more options are left out, the default values are used. This means that not
specifying any options ([]) isthe same as specifying [set, protected, {keypos, 1}, {heir, none},
{write_concurrency, fal se}, {read_concurrency,false}].

« set Thetableisaset table- onekey, one abject, no order among objects. Thisis the default table type.

« ordered_set Thetableisaor der ed_set table- onekey, one object, ordered in Erlang term order, which
is the order implied by the < and > operators. Tables of this type have a somewhat different behavior in some
situations than tables of the other types. Most notably the or der ed_set tablesregard keys as equal when they
compare egual, not only when they match. This means that to an or der ed_set , thei nt eger () 1 and the
float () 1.0 areregarded as equal. This also means that the key used to lookup an element not necessarily
matches the key in the elements returned, if f | oat () 'sandi nt eger () 'sare mixed in keys of atable.

e bag Thetableisabag table which can have many objects, but only one instance of each object, per key.

 duplicate_bag Thetableisadupl i cat e_bag table which can have many objects, including multiple
copies of the same object, per key.

e publ i c Any process may read or write to the table.

« protected The owner process can read and write to the table. Other processes can only read the table. This
isthe default setting for the access rights.

e privat e Only the owner process can read or write to the table.

« naned_t abl e If this option is present, the name Nane is associated with the table identifier. The name can
then be used instead of the table identifier in subsequent operations.

* {keypos, Pos} Specfies which element in the stored tuples should be used as key. By default, it is the first
element, i.e. Pos=1. However, thisis not always appropriate. In particular, we do not want the first element to
be the key if we want to store Erlang recordsin atable.

Note that any tuple stored in the table must have at least Pos number of elements.
e {heir,Pid,HeirData} | {heir, none}

148 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Set a process as heir. The heir will inherit the table if the owner terminates. The message {' ETS-
TRANSFER , ti d(), FronPi d, Hei r Dat a} will be sent to the heir when that happens. The heir must be a
local process. Default heir isnone, which will destroy the table when the owner terminates.

« {wite_concurrency, bool ean()} Performance tuning. Default is f al se, in which case an operation
that mutates (writes to) the table will obtain exclusive access, blocking any concurrent access of the same
table until finished. If set to t r ue, the table is optimized towards concurrent write access. Different objects
of the same table can be mutated (and read) by concurrent processes. This is achieved to some degree at
the expense of memory consumption and the performance of sequential access and concurrent reading. The
write_concurrency option can be combined with the read_concurrency option. You typically want to
combine these when large concurrent read bursts and large concurrent write bursts are common (see the
documentation of the read_concurrency option for more information). Note that this option does not change
any guarantees about atomicy and isolation. Functions that makes such promises over several objects (like
i nsert/ 2) will gainless (or nothing) from this option.

In current implementation, table type or der ed_set is not affected by this option. Also, the memory
consumption inflicted by bothwri t e_concurrency andread_concurr ency isaconstant overhead per
table. This overhead can be especially large when both options are combined.

« {read_concurrency, bool ean()} Performancetuning. Defaultisf al se. Whensettot r ue, thetableis
optimized for concurrent read operations. When this option is enabled on aruntime system with SMP support, read
operations become much cheaper; especialy on systems with multiple physical processors. However, switching
between read and write operations becomes more expensive. You typicaly want to enable this option when
concurrent read operations are much more frequent than write operations, or when concurrent reads and writes
comesin large read and write bursts (i.e., lots of reads not interrupted by writes, and lots of writes not interrupted
by reads). You typically do not want to enable this option when the common access pattern is a few read
operations interleaved with afew write operations repeatedly. In this case you will get a performance degradation
by enabling thisoption. Ther ead_concur r ency option can be combined with thewrite_concurrency option.
You typically want to combine these when large concurrent read bursts and large concurrent write bursts are
common.

e conpressed If thisoption is present, the table data will be stored in a more compact format to consume less
memory. The downside is that it will make table operations slower. Especially operations that need to inspect
entire objects, such asnmat ch and sel ect , will get much slower. The key element is not compressed in current
implementation.

next(Tab, Keyl) -> Key2 | '$end of table'
Types:
Tab = tab()
Keyl = Key2 = term()
Returns the next key Key 2, following the key Key 1 in thetable Tab. If thetableis of the or der ed_set type, the

next key in Erlang term order isreturned. If thetableis of any other type, the next key according to the table's internal
order isreturned. If thereis no next key, ' $end_of _t abl e' isreturned.

Usefirst/1tofindthefirst key inthetable.

Unlessatableof typeset ,bag ordupl i cat e_bag isprotectedusingsaf e_f i xt abl e/ 2, seebelow, atraversal
may fail if concurrent updates are made to the table. If the table is of type or der ed_set , the function returns the
next key in order, even if the object does no longer exist.

prev(Tab, Keyl) -> Key2 | '$end of table'
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 149

ets

Tab = tab()
Keyl = Key2 = term()
Returns the previous key Key2, preceding the key Key1 according the Erlang term order in the table Tab of the

order ed_set type. If thetableis of any other type, the function is synonymousto next / 2. If thereisno previous
key,' $end_of tabl e' isreturned.

Usel ast/ 1 tofind the last key in the table.

rename(Tab, Name) -> Name
Types:

Tab = tab()

Name = atom()

Renames the named table Tab to the new name Nane. Afterwards, the old name can not be used to access the table.
Renaming an unnamed table has no effect.

repair_continuation(Continuation, MatchSpec) -> Continuation
Types.

Continuation = continuation()

MatchSpec = mat ch_spec()

This function can be used to restore an opaque continuation returned by et s: sel ect/ 3 oret s: sel ect/ 1 if the
continuation has passed through external term format (been sent between nodes or stored on disk).

Thereason for thisfunction isthat continuation terms contain compiled match_specs and therefore will be invalidated
if converted to external term format. Given that the original match_specis kept intact, the continuation can berestored,
meaning it can once again be used in subsequent et s: sel ect/ 1 calls even though it has been stored on disk or
on another node.

As an example, the following sequence of calls will fail:

T=ets:new(x,[1),

%;:C} = ets:select(T,ets: fun2ms(fun({N, }=A)

when (N rem 10) =:= ->
A
end),10),

Broken = binary to term(term to binary(C)),
ets:select(Broken).

...while the following sequence will work:

T=ets:new(x,[]1),

MS = ets:fun2ms(fun({N, }=A)

when (N rem 10) =:= 0 ->

A

end),

{ ,C} = ets:select(T,MS,10),

Broken = binary to term(term to binary(C)),
ets:select(ets:repair continuation(Broken,MS)).

150 | Ericsson AB. All Rights Reserved.: STDLIB

ets

...as the call to ets:repair_continuation/2 will reestablish the (deliberately) invalidated continuation
Br oken.

Note:

Thisfunctionisvery rarely needed in application code. It isused by Mnesiato implement distributed sel ect / 3
and sel ect / 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The reason for not having an external representation of acompiled match_spec is performance. It may be subject
to change in future releases, while this interface will remain for backward compatibility.

safe fixtable(Tab, Fix) -> true

Types:
Tab = tab()
Fix = boolean()

Fixesatable of theset , bag or dupl i cat e_bag table type for safe traversal.

A processfixesatableby callingsaf e_fi xt abl e(Tab, true).Thetableremainsfixeduntil theprocessreleases
itby calingsaf e _fi xtabl e(Tab, fal se), oruntil the process terminates.

If several processes fix a table, the table will remain fixed until al processes have released it (or terminated). A
reference counter iskept on aper processbasis, and N consecutivefixesrequiresN releasesto actually releasethetable.

When atableis fixed, asequence of first/ 1 and next/ 2 calls are guaranteed to succeed and each object in the
tablewill only be returned once, even if objects are removed or inserted during the traversal. The keysfor new objects
inserted during the traversal may be returned by next/2 (it depends on the internal ordering of the keys). An example:

clean all with value(Tab,X) ->
safe fixtable(Tab,true),
clean all with value(Tab,X,ets:first(Tab)),
safe fixtable(Tab,false).

clean all with value(Tab,X, '$end of table') ->
true;
clean all with value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
->
true
end,
clean all with value(Tab,X,ets:next(Tab,Key)).

Note that no deleted objects are actually removed from afixed table until it has been released. If a processfixesatable
but never releases it, the memory used by the deleted objects will never be freed. The performance of operations on
the table will also degrade significantly.

Usei nf o/ 2 to retrieve information about which processes have fixed which tables. A system with alot of processes
fixing tables may need a monitor which sends alarms when tables have been fixed for too long.

Note that for tables of the or der ed_set type, saf e_fi xt abl e/ 2 is nhot necessary ascalstofirst/1 and
next / 2 will always succeed.

Ericsson AB. All Rights Reserved.: STDLIB | 151

ets

select(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Matches the objects in the table Tab using a match_spec. This is a more general call than the et s: mat ch/ 2 and
et s: mat ch_obj ect/ 2 cals. Inits simplest forms the match_specs look like this:

e MatchSpec = [MatchFunction]

* MatchFunction = { MatchHead, [Guard], [Result]}
* MatchHead = "Pattern asin ets:match”

e Guard = {"Guardtest name", ...}

* Result ="Term construct"

This means that the match_spec is always alist of one or more tuples (of arity 3). The tuples first element should be
a pattern as described in the documentation of et s: mat ch/ 2. The second element of the tuple should be a list of
0 or more guard tests (described below). The third element of the tuple should be a list containing a description of
the value to actualy return. In almost al normal cases the list contains exactly one term which fully describes the
value to return for each object.

The return value is constructed using the "match variables' bound in the MatchHead or using the special match
variables ' $_' (the whole matching object) and ' $$' (all match variables in a list), so that the following
ets: mat ch/ 2 expression:

ets:match(Tab, {'$1','$2"','$3'})

is exactly equivalent to:

ets:select(Tab, [{{'$1",'$2",'$3"},[1,['$$'1}1])

- and the following et s: mat ch_obj ect/ 2 call:

ets:match object(Tab,{'$1','$2"','$1'})

is exactly equivalent to

ets:select(Tab, [{{'$1","$2","'$1"},[]1,['$_"1}1)

Composite terms can be constructed in the Resul t part either by simply writing alist, so that this code:

ets:select(Tab, [{{'$1",'$2","'$3"},[]1,['$$'1}1])

gives the same output as:

152 | Ericsson AB. All Rights Reserved.: STDLIB

ets

ets:select(Tab, [{{'$1"','$2"',"'$3"'},[1,[["'$1"',"'$2","'$3'11}1)

i.e. al the bound variablesin the match head as alist. If tuples are to be constructed, one has to write atuple of arity
1 with the single element in the tuple being the tuple one wants to construct (as an ordinary tuple could be mistaken
for aCuar d). Therefore the following call:

ets:select(Tab, [{{'$1","$2","'$1"},[]1,['$_"1}1)

gives the same output as:

ets:select(Tab, [{{'$1","'$2","$1"},[], [{{"'$1","$2","$3"}}1}1])

- this syntax is equivalent to the syntax used in the trace patterns (see dbg(3)).

The Guar ds are constructed as tuples where the first element is the name of the test and the rest of the elements are
the parameters of the test. To check for a specific type (say alist) of the element bound to the match variable' $1' ,
onewould writethetestas{i s_I| i st, '$1'}.If thetestfails, the object in the table will not match and the next
Mat chFunct i on (if any) will be tried. Most guard tests present in Erlang can be used, but only the new versions
prefixedi s_ arealowed (likei s_fl oat,i s_at ometc).

The Guar d section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that a guard test written in Erlang looking like this:

is _integer(X), is_integer(Y), X + Y < 4711

is expressed like this (X replaced with '$1' and Y with '$2"):

[{is integer, '$1'}, {is integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]

On tables of the or der ed_set type, objects are visited in the same order asin afi r st/ next traversal. This
means that the match specification will be executed against objects with keysin the fir st/ next order and the
corresponding result list will bein the order of that execution.

select(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table’

Types:

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()
Workslikeet s: sel ect/ 2 but only returnsalimited (Li mi t) number of matching objects. The Cont i nuat i on
term can then be used in subsequent callsto et s: sel ect/ 1 to get the next chunk of matching objects. Thisis a

space efficient way to work on objects in atable which is till faster than traversing the table object by object using
ets:first/landets: next/1.

" $end_of _t abl e' isreturned if the table is empty.

Ericsson AB. All Rights Reserved.: STDLIB | 153

ets

select(Continuation) -> {[Match], Continuation} | '$end of table’
Types:

Match = term()

Continuation = continuation()

Continues a match started with et s: sel ect / 3. The next chunk of the size given in the initial et s: sel ect/ 3
call isreturned together with anew Cont i nuat i on that can be used in subsequent calls to this function.

' $end_of _t abl e' isreturned when there are no more objects in the table.

select count(Tab, MatchSpec) -> NumMatched
Types.
Tab = tab()
MatchSpec = mat ch_spec()
NumMatched = integer() >= 0
Matches the objects in the table Tab using a match_spec. If the match_spec returnst r ue for an object, that object

considered a match and is counted. For any other result from the match_spec the object is not considered a match
and is therefore not counted.

The function could be described asamat ch_del et e/ 2 that does not actually delete any elements, but only counts
them.

The function returns the number of objects matched.

select delete(Tab, MatchSpec) -> NumDeleted
Types:
Tab = tab()
MatchSpec = mat ch_spec()
NumDeleted = integer() >= 0
Matches the objects in the table Tab using a match_spec. If the match_spec returnst r ue for an object, that object

isremoved from the table. For any other result from the match_spec the object isretained. Thisis amore general call
thantheet s: mat ch_del et e/ 2 cdll.

The function returns the number of objects actually deleted from the table.

Note:

Themat ch_spec hasto returntheatomt r ue if the object is to be deleted. No other return value will get the
object deleted, why one can not use the same match specification for looking up elements as for deleting them.

select reverse(Tab, MatchSpec) -> [Match]
Types.

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Works like sel ect/ 2, but returns the list in reverse order for the or der ed_set table type. For all other table
types, thereturn value isidentical to that of sel ect/ 2.

154 | Ericsson AB. All Rights Reserved.: STDLIB

ets

select reverse(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table’

Types:

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()

Workslikesel ect/ 3, but for theor der ed_set tabletype, traversing is done starting at the last object in Erlang
term order and moves towards the first. For all other table types, the return valueis identical to that of sel ect / 3.

Note that thisis not equivalent to reversing the result list of asel ect / 3 cal, astheresult list is not only reversed,
but also containsthe last Li nmi t matching objectsin the table, not the first.

select reverse(Continuation) ->
{[Match], Continuation} | '$end of table'
Types:
Continuation = continuation()
Match = term()

Continues a match started with et s: sel ect _reverse/ 3. If thetableisan or der ed_set , the traversal of the

tablewill continue towards objectswith keysearlier in the Erlang term order. Thereturned list will also contain objects
with keysin reverse order.

For all other table types, the behaviour is exactly that of sel ect/ 1.
Example:

1> T = ets:new(x, [ordered set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10) 1].

3> {RO,CO} = ets:select reverse(T,[{' ',[1,['s '1}],4).
4> Ro.

[{10},{9},{8},{7}]

5> {R1,C1l} = ets:select reverse(CO).

6> RI.
[{6},{5},{4},{3}]
7> {R2,C2} = ets:select reverse(Cl).

8> R2.
[{2},{1}]

9> '$end of table' = ets:select reverse(C2).

setopts(Tab, Opts) -> true
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 155

ets

Tab = tab()

Opts = Opt | [Opt]

Opt = {heir, pid(), HeirData} | {heir, none}
HeirData = term()

Set table options. The only option that currently is allowed to be set after the table has been created isheir. The calling
process must be the table owner.

slot(Tab, I) -> [Object] | '$end of table'
Types.
Tab = tab()
I = integer() >= 0
Object = tuple()
This function is mostly for debugging purposes, Normally one should usef i r st/ next orl ast/ pr ev instead.
Returnsall objectsinthel :th slot of thetable Tab. A table can betraversed by repeatedly calling the function, starting

with thefirst slot | =0 and endingwhen' $end_of _t abl e' isreturned. Thefunction will fail with reason badar g
if thel argument is out of range.

Unlessatableof typeset ,bag ordupl i cat e_bag isprotectedusingsaf e_fi xt abl e/ 2, seeabove, atraversal
may fail if concurrent updates are made to the table. If thetable is of type or der ed_set , the function returns alist
containing the | :th object in Erlang term order.

tab2file(Tab, Filename) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Reason = term()

Dumpsthetable Tab to thefileFi | enane.
Equivalenttot ab2fil e(Tab, Filenane,[])

tab2file(Tab, Filename, Options) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Options = [Option]

Option = {extended info, [ExtInfo]l}

ExtInfo = md5sum | object count

Reason = term()

Dumpsthetable Tab to thefile Fi | enane.

When dumping the table, certain information about the table is dumped to a header at the beginning of the dump. This
information contains data about the table type, name, protection, size, version and if it'sanamed table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and recordsin thefile.

The size field in the header might not correspond to the actual number of records in the file if the table is public
and records are added or removed from the table during dumping. Public tables updated during dump, and that one

156 | Ericsson AB. All Rights Reserved.: STDLIB

ets

wants to verify when reading, needs at least one field of extended information for the read verification process to be
reliable |ater.

Theext ended_i nf o option specifies what extrainformation is written to the table dump:
obj ect _count

The number of objects actually written to the file is noted in the file footer, why verification of file truncation is
possible even if the file was updated during dump.

nmd5sum

The header and objectsin thefile are checksummed using the built in MD5 functions. The MD5 sum of all objects
iswritten in the file footer, so that verification while reading will detect the slightest bitflip in thefile data. Using
this costs afair amount of CPU time.

Whenever the ext ended_i nf o option is used, it results in a file not readable by versions of ets prior to that in
stdlib-1.15.1

tab2list(Tab) -> [Object]
Types:

Tab = tab()

Object = tuple()
Returnsalist of all objectsin the table Tab.

tabfile info(Filename) -> {ok, TableInfo} | {error, Reason}
Types:
Filename = fil e: nane()
TableInfo = [InfoIltem]
Infoltem = {name, atom()}
| {type, Type}
| {protection, Protection}
| {named table, boolean()}
| {keypos, integer() >= 0}
| {size, integer() >= 0}
| {extended info, [ExtInfo]}
| {version,
{Major :: integer() >= 0,
Minor :: integer() >= 0}}
ExtInfo = md5sum | object count
Type = bag | duplicate bag | ordered set | set
Protection = private | protected | public
Reason = term()

Returns information about the table dumped to file by tab2file/2 or tab2file/3
The following items are returned:
name

The name of the dumped table. If the table was a named table, a table with the same name cannot exist when the
table is loaded from file with file2tab/2. If the table is not saved as a named table, this field has no significance
at al when loading the table from file.

Ericsson AB. All Rights Reserved.: STDLIB | 157

ets

type
The ets type of the dumped table (i.e. set , bag, dupl i cat e_bag or or der ed_set). Thistypewill be
used when loading the table again.

protection
The protection of the dumped table (i.e. pri vat e, pr ot ect ed or publ i c). A tableloaded from thefile
will get the same protection.

named_table
t r ue if the table was a named table when dumped to file, otherwise f al se. Note that when anamed tableis
loaded from afile, there cannot exist atable in the system with the same name.

keypos
Thekeypos of the table dumped to file, which will be used when loading the table again.

size
The number of objects in the table when the table dump to file started, which in case of apubl i ¢ table need
not correspond to the number of objects actually saved to thefile, as objects might have been added or deleted
by another process during table dump.

extended_info
The extended information written in the file footer to allow stronger verification during table loading from file,
as specified to tab2file/3. Note that this function only tells which information is present, not the valuesin the
file footer. The valueis alist containing one or more of the atoms obj ect _count and nd5sum

version
A tuple{ Maj or, M nor} containing the major and minor version of the file format for ets table dumps. This
version field was added beginning with stdlib-1.5.1, files dumped with older versionswill return { 0, 0} inthis
field.

An error isreturned if the file isinaccessible, badly damaged or not an file produced with tab2file/2 or tab2file/3.

table(Tab) -> QueryHandle
table(Tab, Options) -> QueryHandle
Types.
Tab = tab()
QueryHandle = gl c: query_handl e()
Options = [Option] | Option
Option = {n objects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >=1

TraverseMethod = first next
| last _prev
| select
| {select, MatchSpec :: match_spec()}

Returns a QLC (Query List Comprehension) query handle. The module gl ¢ implements a query language aimed
mainly at Mnesia but ETS tables, Dets tables, and lists are also recognized by QLC as sources of data. Calling
et s: tabl e/ 1, 2 isthe meansto make the ETS table Tab usable to QLC.

When there are only simple restrictions on the key position QLC useset s: | ookup/ 2 tolook up the keys, but when
that is not possible the whole table is traversed. The optiont r aver se determines how thisis done:

« first_next.Thetableistraversed onekey at atimeby callingets: first/l1landets: next/ 2.

« last_prev.Thetableistraversed onekey at atimeby calinget s: ast/ 1 andets: prev/ 2.

e sel ect. Thetableistraversed by calling et s: sel ect/ 3 and et s: sel ect/ 1. The option n_obj ect s
determines the number of objects returned (the third argument of sel ect / 3); the default is to return 100
objects at atime. The match_spec (the second argument of sel ect / 3) isassembled by QLC: simplefiltersare

158 | Ericsson AB. All Rights Reserved.: STDLIB

ets

translated into equivalent match_specs while more complicated filters have to be applied to all objects returned
by sel ect / 3 given amatch_spec that matches all objects.

« {select, Mat chSpec}. As for sel ect the table is traversed by calling ets: sel ect/3 and
et s: sel ect/ 1. Thedifferenceisthat the match_specisexplicitly given. Thisis how to state match_specsthat
cannot easily be expressed within the syntax provided by QLC.

The following example uses an explicit match_spec to traverse the table:

9> true = ets:insert(Tab = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with implicit match_spec:

10> QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)1).

The latter exampleisin fact equivalent to the former which can be verified using the function gl ¢: i nf o/ 1:

11> qlc:info(QH1l) =:= glc:info(QH2).
true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this case identical information is returned for the two
query handles.

test ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Tuple = tuple()

MatchSpec = mat ch_spec()

Result = term()

Errors = [{warning | error, string()}]
Thisfunction isautility to test amatch_spec usedincallstoet s: sel ect / 2. The function both tests Mat chSpec
for "syntactic" correctness and runs the match_spec against the object Tupl e. If the match_spec contains errors, the
tuple{error, Errors} isreturned where Error s isalist of natural language descriptions of what was wrong
with the match_spec. If the match_spec is syntactically OK, the function returns { ok, Resul t } where Resul t

is what would have been the result in area et s: sel ect/ 2 call or f al se if the match_spec does not match the
object Tupl e.

Thisis a useful debugging and test tool, especially when writing complicated et s: sel ect/ 2 cals.

to dets(Tab, DetsTab) -> DetsTab
Types:

Tab = tab()

DetsTab = dets:tab_nane()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

Ericsson AB. All Rights Reserved.: STDLIB | 159

ets

update counter(Tab, Key, UpdateOp) -> Result
update counter(Tab, Key, UpdateOp :: [UpdateOp]) -> [Result]
update counter(Tab, Key, Incr) -> Result

Types:
Tab = tab()
Key = term()

UpdateOp = {Pos, Incr} | {Pos, Incr, Threshold, SetValue}
Pos = Incr = Threshold = SetValue = Result = integer()

This function provides an efficient way to update one or more counters, without the hassle of having to look up an
object, update the object by incrementing an element and insert the resulting object into the table again. (The update
isdone atomically; i.e. no process can access the ets table in the middle of the operation.)

It will destructively update the object with key Key in the table Tab by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key
(<keypos>+1) is updated.

If aThr eshol d is specified, the counter will be reset to the value Set Val ue if the following conditions occur:

e Thel ncr isnot negative (>= 0) and the result would be greater than (>) Thr eshol d

e Thel ncr isnegative (< 0) and the result would be lessthan (<) Thr eshol d

A list of Updat eOp can be supplied to do several update operations within the object. The operations are carried out
in the order specified in the list. If the same counter position occurs more than one time in the list, the corresponding
counter will thus be updated several times, each time based on the previous result. The return value is a list of the

new counter values from each update operation in the same order asin the operation list. If an empty list is specified,
nothing is updated and an empty list isreturned. If the function should fail, no updates will be done at all.

The given Key isused to identify the object by either matching the key of an objectinaset table, or compare equal
tothe key of an objectinan or der ed_set table (seelookup/2 and new/2 for details on the difference).

The function will fail with reason badar g if:

« thetableisnot of typeset orordered_set,

e no object with theright key exists,

* theobject hasthe wrong arity,

» theelement to update is not an integer,

e theelement to update is also the key, or,

* anyof Pos, I ncr, Threshol d or Set Val ue is not an integer

update element(Tab, Key, ElementSpec :: {Pos, Value}) -> boolean()
update element(Tab, Key, ElementSpec :: [{Pos, Value}]) ->

boolean()
Types.
Tab = tab()
Key = term()

Value = term()
Pos = integer() >=1

This function provides an efficient way to update one or more elements within an object, without the hassle of having
to look up, update and write back the entire object.

160 | Ericsson AB. All Rights Reserved.: STDLIB

ets

It will destructively update the object with key Key inthetable Tab. The element at the Pos :th position will be given
thevalue Val ue.

Alistof { Pos, Val ue} canbesuppliedto update several el ementswithin the same object. If the same position occurs
more than one in the list, the last value in the list will be written. If the list is empty or the function fails, no updates
will bedone at all. The function is also atomic in the sense that other processes can never see any intermediate results.

The function returnst r ue if an object with the key Key was found, f al se otherwise.

The given Key is used to identify the object by either matching the key of an objectinaset table, or compare equal
tothekey of an objectinan or der ed_set table (seelookup/2 and new/2 for details on the difference).

The function will fail with reason badar g if:

e thetableisnot of typeset oror dered_set,
* Pos islessthan 1 or greater than the object arity, or,
e theelement to update is also the key

Ericsson AB. All Rights Reserved.: STDLIB | 161

file_sorter

file_sorter

Erlang module

The functions of this module sort terms on files, merge already sorted files, and check files for sortedness. Chunks
containing binary terms are read from a sequence of files, sorted internally in memory and written on temporary files,
which are merged producing one sorted file as output. Merging is provided as an optimization; it is faster when the
files are already sorted, but it always works to sort instead of merge.

On afile, aterm is represented by a header and a binary. Two options define the format of terms on files:

« {header, Header Lengt h}.HeaderLength determinesthe number of bytes preceding each
binary and containing the length of the binary in bytes. Default is 4. The order of the header bytesis
defined asfollows: if B isabinary containing a header only, the size Si ze of the binary is calculated as
<<Sij ze: Header Lengt h/ unit: 8>> = B.

« {format, Format}.Theformat determinesthe function that isapplied to binariesin order to
create the terms that will be sorted. The default valueisbi nary_t er m whichisequivalent to
fun binary_to_term 1. Thevauebi nary isequivaenttof un(X) -> X end, which meansthat
the binaries will be sorted asthey are. Thisisthe fastest format. If For mat istermi o: read/ 2 iscalled
to read terms. In that case only the default value of the header optionisalowed. Thef or mat option also
determines what is written to the sorted output file: if For mat ist er mtheni o: f or mat / 3 iscalled to write
each term, otherwise the binary prefixed by a header is written. Note that the binary written is the same binary
that was read; the results of applying the For nat function are thrown away as soon as the terms have been
sorted. Reading and writing terms using the i 0 module is very much slower than reading and writing binaries.

Other options are:

e {order, Order}.Thedefaultisto sorttermsin ascending order, but that can be changed by the value
descendi ng or by giving an ordering function Fun. An ordering function is antisymmetric, transitive and
total. Fun(A, B) shouldreturnt r ue if A comesbefore B in the ordering, f al se otherwise. An example of
atypical ordering function islessthan or equal to, =</ 2. Using an ordering function will slow down the sort
considerably. Thekeysort , keyner ge and keycheck functions do not accept ordering functions.

 {unique, bool ean()}.When sorting or merging files, only the first of a sequence of terms that compare
equal (==) isoutput if thisoptionissettot r ue. The default valueisf al se which impliesthat all terms
that compare equal are output. When checking files for sortedness, a check that no pair of consecutive terms
compares equal isdoneif thisoptionissettot r ue.

« {tnpdir, TenpDirectory}. Thedirectory wheretemporary filesare put can be chosen explicitly.
The default, implied by thevalue" ", isto put temporary files on the same directory as the sorted output
file. If output is afunction (see below), the directory returned by fi | e: get _cwd() isusedinstead. The
names of temporary files are derived from the Erlang nodename (node()), the process identifier of the
current Erlang emulator (os: get pi d()), and atimestamp (er | ang: now()); atypical name would be
fs_nynode@ryhost 1763 1043 337000_266005. 17, where 17 is a sequence number. Existing files
will be overwritten. Temporary files are deleted unless some uncaught EXIT signal occurs.

e {conpressed, bool ean()}. Temporary files and the output file may be compressed. The default value
f al se impliesthat written files are not compressed. Regardless of the value of the conpr essed option,
compressed files can always be read. Note that reading and writing compressed filesis significantly slower than
reading and writing uncompressed files.

« {size, Size}.By default approximately 512* 1024 bytesread from files are sorted internally. This option
should rarely be needed.

e {no_files, NoFil es}.By default 16 filesare merged at atime. This option should rarely be needed.

As an alternative to sorting files, a function of one argument can be given as input. When called with the argument
r ead thefunctionisassumedtoreturnend_of _i nput or{end_of i nput, Val ue}} whenthereisnomore

162 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

input (Val ue isexplained below), or { Obj ect's, Fun}, where Obj ect s isalist of binaries or terms depending
on the format and Fun is a new input function. Any other value is immediately returned as value of the current call
tosort orkeysort . Eachinput function will be called exactly once, and should an error occur, the last function is
called with the argument ¢l ose, the reply of which isignored.

A function of one argument can be given as output. The results of sorting or merging the input is collected in a non-
empty sequence of variable length lists of binaries or terms depending on the format. The output function is called
with onelist at atime, and is assumed to return a new output function. Any other return value isimmediately returned
as value of the current call to the sort or merge function. Each output function is called exactly once. When some
output function has been applied to al of the results or an error occurs, the last function is called with the argument
cl ose, and the reply is returned as value of the current call to the sort or merge function. If afunction is given as
input and the last input function returns { end_of _i nput, Val ue}, the function given as output will be called
with the argument { val ue, Val ue}. Thismakesit easy to initiate the sequence of output functions with avalue
calculated by the input functions.

Asan example, consider sorting the terms on adisk log file. A function that reads chunks from the disk log and returns
alist of binariesis used asinput. The results are collected in alist of terms.

sort(Log) ->
{ok, } = disk log:open([{name,Log}, {mode,read only}]l),
Input = input(Log, start),
Output = output([]),
Reply = file sorter:sort(Input, Output, {format,term}),
ok = disk log:close(Log),
Reply.

input(Log, Cont) ->
fun(close) ->
ok;
(read) ->
case disk log:chunk(Log, Cont) of
{error, Reason} ->
{error, Reason};
{Cont2, Terms} ->
{Terms, input(Log, Cont2)};
{Cont2, Terms, Badbytes} ->
{Terms, input(Log, Cont2)};
eof ->
end of input
end
end.

output(L) ->
fun(close) ->
lists:append(lists:reverse(L));
(Terms) ->
output([Terms | LJ)
end.

Further examples of functions as input and output can be found at the end of thefi | e_sort er module; thet er m
format is implemented with functions.

The possible values of Reason returned when an error occurs are:

e« bad_object,{bad_object, FileNane}. Applying the format function failed for some binary, or the
key(s) could not be extracted from some term.

e {bad _term FileNane}.io:read/?2 faledtoread someterm.

o {file_error, FileNane, file:posix()}.Seefile(3) foranexplanationof fil e: posi x().

Ericsson AB. All Rights Reserved.: STDLIB | 163

file_sorter

e {premature_eof, FileNane}.End-of-file wasencountered inside some binary term.

Data Types

file name() = file: name()
file names() = [file:nane()]
i command() read | close

i reply() = end of input
| {end of input, val ue()}
| {[object()], infun()}
| input_reply()
infun() = fun((i _conmand()) -> i _reply())

input() = file_names() | infun()

input_reply() = term()

o _command() = {value, value()} | [object()] | close
o reply() = outfun() | output_reply()

object() = term() | binary()
outfun() = fun((o_command()) -> o_reply())
output() = file_name() | outfun()

output reply() - term()
value() = term()
options() = [option()] | option()

option() = {compressed, boolean()}
| {header, header_l ength()}
| {format, format()}
| {no files, no_files()}
| {order, order()}
| {size, size()}
| {tmpdir, tnp_directory()}
| {unique, boolean()}
format() = binary term | term | binary | format_fun()

format fun() = fun((binary()) -> term())

header length() = integer() >=1

key pos() = integer() >= 1 | [integer() >= 1]

no files() = integer() >=1

order() = ascending | descending | order_fun()
order fun() = fun((term(), term()) -> boolean())
size() = integer() >= 0

tmp directory() = [1 | file:nanme()

reason() = bad object
| {bad object, file_nane()}
| {bad term, file_nane()}
| {file error,
file_name(),
file:posix() | badarg | system limit}

164 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

| {premature eof, file_nane()}

Exports

sort(FileName) -> Reply
Types.

FileName = fil e_nane()

Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortstermson files. sort (Fi | eNane) isequivalenttosort ([Fi | eNane], Fil eNane).

sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types:
Input = input()
Output = out put ()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()

Sortstermsonfiles. sort (1 nput, CQut put) isequivalenttosort (I nput, Qutput, []).

keysort (KeyPos, FileName) -> Reply
Types.

KeyPos = key_ pos()

FileName = file_nane()

Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortstupleson files. keysort (N, Fi | eNane) isequivalenttokeysort (N, [Fil eNane],

keysort (KeyPos, Input, Output) -> Reply
keysort(KeyPos, Input, Output, Options) -> Reply
Types:
KeyPos = key pos()
Input = input()
Output = out put ()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()

Fi | eName) .

Sortstupleson files. The sort is performed on the element(s) mentioned in Key Pos. If two tuples compare equal (==)

on one element, next element according to KeyPos is compared. The sort is stable.
keysort (N, |nput, Qutput) isequivalenttokeysort (N, Input, Qutput, []).

merge(FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 165

file_sorter

FileNames = file_nanes()
Output = out put ()
Options = options()
Reply = ok | {error, reason()} | output_reply()
Merges terms on files. Each input file is assumed to be sorted.
mer ge(Fi | eNanes, CQutput) isequivalenttorer ge(Fi |l eNames, Qutput, []).

keymerge (KeyPos, FileNames, Output) -> Reply
keymerge (KeyPos, FileNames, Output, Options) -> Reply
Types:

KeyPos = key pos()

FileNames = fil e_nanes()

Output = out put ()

Options = options()

Reply = ok | {error, reason()} | output_reply()
Merges tuples on files. Each input file is assumed to be sorted on key(s).
keynmerge(KeyPos, FileNanes, CQutput) is equivaent to keynerge(KeyPos, Fil eNanes,
Qutput, []).

check(FileName) -> Reply
check(FileNames, Options) -> Reply
Types:
FileNames = fil e_nanes()
Options = options()
Reply = {ok, [Resultl]} | {error, reason()}
Result = {FileName, TermPosition, term()}
FileName = file_nane()
TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

check(Fi | eNane) isequivalenttocheck([Fil eName], []).
keycheck(KeyPos, FileName) -> Reply

keycheck(KeyPos, FileNames, Options) -> Reply
Types.

166 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

KeyPos = key pos()

FileNames = fil e_nanes()

Options = options()

Reply = {ok, [Result]} | {error, reason()}
Result = {FileName, TermPosition, term()}
FileName = file_nane()

TermPosition = integer() >=1

Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

keycheck(KeyPos, Fil eNane) isequivaenttokeycheck(KeyPos, [FileNanme], []).

Ericsson AB. All Rights Reserved.: STDLIB | 167

filelib

filelib

Erlang module

This module contains utilities on a higher level than thef i | e module.

This module does not support "raw" file names (i.e. files whose names do not comply with the expected encoding).
Such files will be ignored by the functions in this module.

For more information about raw file names, see the file module.

Data Types

filename() = file: nanme()
dirname() = fil enane()

dirname all() = filename_all ()
filename all() = file:nanme_all ()

Exports

ensure dir(Name) -> ok | {error, Reason}
Types:
Name = filenane_all () | dirnane_all ()
Reason = file: posi x()

The ensur e_di r/ 1 function ensures that al parent directories for the given file or directory name Nane exist,
trying to create them if necessary.

Returnsok if al parent directories already exist or could be created, or { error, Reason} if some parent directory
does not exist and could not be created for some reason.

file size(Filename) -> integer() >= 0
Types:

Filename = filenane_all ()
Thefi | e_si ze function returns the size of the given file.

fold files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
Types:
Dir = dirnane()
RegExp = string()
Recursive = boolean()
Fun = fun((F :: file:filenanme(), AccIn) -> AccOut)
AccIn = AccOut = term()

Thefol d_fil es/5 function folds the function Fun over al (regular) files F in the directory Di r that match the
regular expression RegExp (see the re module for a description of the allowed regular expressions). If Recur si ve
istrue al sub-directoriesto Di r are processed. The regular expression matching is done on just the filename without
the directory part.

168 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

If Unicode file name trandlation is in effect and the file system is completely transparent, file names that cannot be
interpreted as Unicode may be encountered, in which casethef un() must be prepared to handle raw file names (i.e.
binaries). If the regular expression contains codepoints beyond 255, it will not match file names that do not conform
to the expected character encoding (i.e. are not encoded in valid UTF-8).

For more information about raw file names, see the file module.

is dir(Name) -> boolean()
Types.
Name = filenane_all () | dirnane_all ()
Thei s_di r/ 1 functionreturnst r ue if Nane refersto adirectory, and f al se otherwise.

is file(Name) -> boolean()
Types:
Name = filenane_all () | dirnane_all ()
Theis_fil e/ 1functionreturnst r ue if Name refersto afile or adirectory, and f al se otherwise.

is regular(Name) -> boolean()
Types:
Name = filenanme_all ()
Thei s_regul ar/ 1 functionreturnst r ue if Narre refersto afile (regular file), and f al se otherwise.

last modified(Name) -> file:date_time() | O
Types:
Name = filenane_all () | dirnane_all ()

Thel ast _nodi fi ed/ 1 function returns the date and time the given file or directory was last modified, or O if the
file does not exist.

wildcard(Wildcard) -> [file:filenane()]
Types:
Wildcard = filenane() | dirnane()
Thewi | dcar d/ 1 function returns alist of all files that match Unix-style wildcard-string W | dcar d.

The wildcard string looks like an ordinary filename, except that certain "wildcard characters' are interpreted in a
special way. The following characters are special:

?

Matches one character.
Matches any number of characters up to the end of the filename, the next dot, or the next slash.
Two adjacent * 's used as a single pattern will match all files and zero or more directories and subdirectories.

[Characterl,Character?,...]

Matches any of the characters listed. Two characters separated by a hyphen will match a range of characters.
Example: [A- Z] will match any uppercase letter.

Ericsson AB. All Rights Reserved.: STDLIB | 169

filelib

{Item,...}
Alternation. Matches one of the aternatives.

Other characters represent themselves. Only filenames that have exactly the same character in the same position will
match. (Matching is case-sensitive; i.e. "a" will not match "A").

Note that multiple "*" characters are allowed (as in Unix wildcards, but opposed to Windows/DOS wildcards).
Examples:

The following examples assume that the current directory is the top of an Erlang/OTP installation.

Tofindal . beamfilesin al applications, the following line can be used:

filelib:wildcard("lib/*/ebin/*.beam").

Tofind either. er| or. hrl inall applicationssr c directories, the following

filelib:wildcard("lib/*/src/*.?2rl")

or the following line

filelib:wildcard("lib/*/src/*.{erl, hri}")

can be used.
Tofindal . hrl filesineither src ori ncl ude directories, use:

filelib:wildcard("lib/*/{src,include}/*.hrl").

Tofindal . erl or. hrl filesineither src ori ncl ude directories, use:

filelib:wildcard("lib/*/{src,include}/*.{erl, hrl}")

Tofindal . erl or. hrl filesinany subdirectory, use:

filelib:wildcard("lib/**/*.{erl,hrl}")

wildcard(Wildcard, Cwd) -> [file:filename()]
Types:

Wildcard = filenane() | dirnane()

Cwd = dirnane()

Thewi | dcar d/ 2 function workslikewi | dcar d/ 1, except that instead of the actual working directory, Cad will
be used.

170 | Ericsson AB. All Rights Reserved.: STDLIB

filename

filename

Erlang module

The module f i | enane provides a number of useful functions for analyzing and manipulating file names. These
functions are designed so that the Erlang code can work on many different platforms with different formats for file
names. With file name is meant all strings that can be used to denote a file. They can be short relative names like
f 0o. er |, very long absolute name which include a drive designator and directory names like D: \ usr/ | ocal
\bin\erl/Ilib\tool s\foo. erl,oranyvariationsin between.

In Windows, al functions return file names with forward slashes only, even if the arguments contain back slashes.
Usej oi n/ 1 to normalize afile name by removing redundant directory separators.

The module supports raw file names in the way that if a binary is present, or the file name cannot be interpreted
according to the return value of file:native_name_encoding/0, a raw file name will also be returned. For example
filename:join/1 provided with a path component being a binary (and also not being possible to interpret under the
current native file name encoding) will result in a raw file name being returned (the join operation will have been
performed of course). For more information about raw file names, see the file module.

Exports

absname(Filename) -> file:filenanme_all ()
Types:
Filename = file:nane_all ()

Convertsarelative Fi | ename and returns an absolute name. No attempt is made to create the shortest absol ute name,
because this can give incorrect results on file systems which allow links.

Unix examples:

1> pwd() .

"/usr/local"

2> filename:absname("foo").
"/usr/local/foo"

3> filename:absname("../x").
"/usr/local/../x"

4> filename:absname("/").
II/II

Windows examples:

1> pwd().

"D:/usr/local"

2> filename:absname("foo0").
"D:/usr/local/foo"

3> filename:absname("../x").
"D:/usr/local/../x"

4> filename:absname("/").
up:/n

absname(Filename, Dir) -> file:filenanme_all ()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 171

filename

Filename = Dir = file:nanme_all ()

This function works like absnamne/ 1, except that the directory to which the file name should be made relative is
given explicitly inthe Di r argument.

absname join(Dir, Filename) -> file:filenane_all ()
Types:
Dir = Filename = file:name_all ()

Joins an absolute directory with a relative filename. Similar to j oi n/ 2, but on platforms with tight restrictions
on raw filename length and no support for symbolic links (read: VxWorks), leading parent directory components

in Fi | enane are matched against trailing directory components in Di r so they can be removed from the result -
minimizing its length.

basename(Filename) -> file:filenanme_all ()
Types:
Filename = file:name_all ()

Returnsthe last component of Fi | enane, or Fi | enane itself if it does not contain any directory separators.

5> filename:basename("foo").
"foo"

6> filename:basename("/usr/foo").
"foo"

7> filename:basename("/").

[1

basename(Filename, Ext) -> file:filename_all ()
Types:
Filename = Ext = file:nanme_all ()
Returns the last component of Fi | enamne with the extension Ext stripped. This function should be used to remove

a specific extension which might, or might not, be there. User oot nanme(basenane(Fi | enane)) toremovean
extension that exists, but you are not sure which oneit is.

8> filename:basename("~/src/kalle.erl", ".erl").

"kalle"

9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"

10> filename:basename("~/src/kalle.old.erl", ".erl").
"kalle.old"

11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"

12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"

dirname(Filename) -> file:filename_all ()
Types:

Filename = file:nane_all ()
Returns the directory part of Fi | enane.

172 | Ericsson AB. All Rights Reserved.: STDLIB

filename

13> filename:dirname("/usr/src/kalle.erl").
"Jusr/src"
14> filename:dirname("kalle.erl").

5> filename:dirname("\\usr\\src/kalle.erl"). % Windows
"Jusr/src"

extension(Filename) -> file:filenane_all ()
Types:
Filename = file:nanme_all ()
Returnsthe file extension of Fi | enarme, including the period. Returns an empty string if there is no extension.

15> filename:extension("foo.erl").
".erl"
16> filename:extension("beam.src/kalle").

[1

flatten(Filename) -> file:filenane_all ()
Types:
Filename = file:nane_all ()
Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

join(Components) -> file:filename_all ()
Types:
Components = [file:nanme_all ()]

Joinsalist of file name Conponent s with directory separators. If one of the elements of Conponent s includesan
absolute path, for example" / xxx" , the preceding elements, if any, are removed from the resullt.

Theresult is"normalized":

e Redundant directory separators are removed.
e InWindows, all directory separators are forward slashes and the drive letter isin lower case.

17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"

18> filename:join(["a/b///c/"]).

"a/b/c"

6> filename:join(["B:a\\b///c/"]). % Windows
"b:a/b/c"

join(Namel, Name2) -> file:filename_all ()
Types:
Namel = Name2 = file:nane_all ()

Joins two file name components with directory separators. Equivalenttoj oi n([Namel, Nane2?]).

Ericsson AB. All Rights Reserved.: STDLIB | 173

filename

nativename(Path) -> file:filenanme_all ()
Types:
Path = file:nanme_all ()

ConvertsPat h to aform accepted by the command shell and native applications on the current platform. On Windows,
forward slashes is converted to backward slashes. On all platforms, the nameis normalized asdone by j oi n/ 1.

19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"

7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative
Types:
Path = file:name_all ()
Returns the type of path, one of absol ut e, rel ati ve,orvol unerel ati ve.
absol ute
The path name refers to a specific file on a specific volume.
Unix example: / usr/ | ocal / bi n
Windows example: D: / usr /1 ocal / bi n
relative
The path name is relative to the current working directory on the current volume.
Example: f oo/ bar, ../src
vol unerel ati ve

The path name is relative to the current working directory on a specified volume, or it is a specific file on the
current working volume.

Windows example: D: bar. erl, /bar/foo.erl

rootname(Filename) -> file:filenanme_all ()
rootname(Filename, Ext) -> file:filenane_all ()
Types:

Filename = Ext = file:nane_all ()

Remove a filename extension. r oot nanme/ 2 works asr oot name/ 1, except that the extension is removed only if
itisExt .

20> filename:rootname("/beam.src/kalle").
/beam.src/kalle"

21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"

22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").

"/beam.src/foo.beam"

174 | Ericsson AB. All Rights Reserved.: STDLIB

filename

split(Filename) -> Components
Types:
Filename = file:nane_all ()
Components = [file:name_all ()]

Returns alist whose elements are the path components of Fi | enane.

24> filename:split("/usr/local/bin").
[*/","usr","local","bin"]

25> filename:split("foo/bar").

["foo", "bar"]

26> filename:split("a:\\msdev\\include").
["a:/","msdev", "include"]

find src(Beam) ->

{SourceFile, Options} | {error, {ErrorReason, Module}}

find src(Beam, Rules) ->

{SourceFile, Options} | {error, {ErrorReason, Module}}

Types:
Beam = Module | Filename
Filename = atom() | string()
Rules = [{BinSuffix :: string(), SourceSuffix :: string()}]
Module = module()
SourceFile = string()
Options = [Option]
Option = {i, Path :: string()}
| {outdir, Path :: string()}
| {d, atom()}

ErrorReason = non existing | preloaded | interpreted

Finds the source filename and compiler options for a module. The result can be fed to conpi | e: fi |l e/ 2 in order

to compile thefile again.

Warning:

We don't recommend using this function. If possible, use beam lib(3) to extract the abstract code format from

the BEAM file and compile that instead.

The Beamargument, which can be a string or an atom, specifies either the module name or the path to the source
code, with or without the " . er| " extension. In either case, the module must be known by the code server, i.e.

code: whi ch(Modul e) must succeed.

Rul es describes how the source directory can be found, when the object code directory is known. Itisalist of tuples
{Bi nSuffix, SourceSuffix} andisinterpreted asfollows: If the end of the directory name where the object
is located matches Bi nSuf f i x, then the source code directory has the same name, but with Bi nSuf f i x replaced

by Sour ceSuf f i x. Rul es defaultsto:

Ericsson AB. All Rights Reserved.: STDLIB | 175

filename

r{", """}, {"ebin", "src"}, {"ebin", "esrc"}]

If the source file is found in the resulting directory, then the function returns that location together with Opt i ons.
Otherwise, the next rule istried, and so on.

The function returns { Sour ceFi | e, Opti ons} if it succeeds. Sour ceFi | e is the absolute path to the source
file without the " . er| " extension. Opt i ons include the options which are necessary to recompile the file with
conpi l e: fil el 2, but excludes options such as r eport or ver bose which do not change the way code is
generated. The pathsinthe{out di r, Path} and{i, Path} optionsare guaranteed to be absolute.

176 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

gb sets

Erlang module

An implementation of ordered sets using Prof. Arne Andersson's General Balanced Trees. This can be much more
efficient than using ordered lists, for larger sets, but depends on the application.

This module considers two elements as different if and only if they do not compare equal (==).

Complexity note

The complexity on set operations is bounded by either O(|S]) or O(|T| * log(]S])), where S is the largest given
set, depending on which is fastest for any particular function call. For operating on sets of aimost equal size, this
implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however,
this solution can be arbitrarily much faster; in practical cases, often between 10 and 100 times. This implementation
isparticularly suited for accumulating elements afew at atime, building up alarge set (more than 100-200 elements),
and repeatedly testing for membership in the current set.

Aswith normal tree structures, lookup (membership testing), insertion and deletion have logarithmic complexity.

Compatibility

All of the following functions in this module also exist and do the same thing in the set s and or dset s modules.
That is, by only changing the module name for each call, you can try out different set representations.
e add_elenent/2

« del _elenent/2

« filter/2

- fold/3

e fromlist/1

e intersection/1

e intersection/2

e is_elenent/2

e is_set/l

e is_subset/2

* newo

e sizell

e subtract/2

e to list/1

e union/1l

e union/2

Data Types

set (Element)

A GB st

set()

set () isequivalenttoset (term()).

Ericsson AB. All Rights Reserved.: STDLIB | 177

gb_sets

iter(Element)

A GB set iterator.

iter()

iter() isequivaenttoiter(termn()).

Exports

add(Element, Setl) -> Set2
add element(Element, Setl) -> Set2
Types:

Setl = Set2 = set (Element)

Returns anew set formed from Set 1 with El enent inserted. If El ement isalready an element in Set 1, nothing
is changed.

balance(Setl) -> Set2
Types:
Setl = Set2 = set (Element)
Rebalances the tree representation of Set 1. Note that this is rarely necessary, but may be motivated when a large

number of elements have been deleted from the tree without further insertions. Rebalancing could then be forced in
order to minimise lookup times, since deletion only does not rebalance the tree.

delete(Element, Setl) -> Set2
Types.
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El ement removed. Assumesthat El enent ispresentin Set 1.

delete any(Element, Setl) -> Set2
del element(Element, Setl) -> Set2
Types.

Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El errent removed. If El enent isnot an element in Set 1, nothing is
changed.

difference(Setl, Set2) -> Set3
subtract(Setl, Set2) -> Set3
Types.

Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 which are not also elements of Set 2.
empty() -> Set

new() -> Set
Types.

178 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

Set = gb_sets:set()
Returns a new empty set.

filter(Pred, Setl) -> Set2

Types.
Pred = fun((Element) -> boolean())
Setl = Set2 = set (Element)

Filters elementsin Set 1 using predicate function Pr ed.

fold(Function, AccO, Set) -> Accl
Types.
Function = fun((Element, AccIn) -> AccOut)

AccO = Accl = AccIn = AccOut = Acc
Set = set (Element)

Folds Funct i on over every element in Set returning the final value of the accumulator.

from list(List) -> Set
Types:
List = [Element]
Set = set (Element)

Returns a set of the elementsinLi st , whereLi st may be unordered and contain duplicates.

from ordset(List) -> Set
Types.

List = [Element]

Set = set (Element)

Turnsan ordered-set list Li st into aset. Thelist must not contain duplicates.

insert(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El enent inserted. Assumesthat El erment isnot presentin Set 1.

intersection(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns the intersection of Set 1 and Set 2.

intersection(SetList) -> Set
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 179

gb_sets

SetList = [set (Element), ...]
Set = set (Element)

Returns the intersection of the non-empty list of sets.

is disjoint(Setl, Set2) -> boolean()
Types.
Setl = Set2 = set (Element)

Returnst r ue if Set 1 and Set 2 are digjoint (have no elementsin common), and f al se otherwise.

is empty(Set) -> boolean()
Types:
Set = gb_sets:set()
Returnst r ue if Set isan empty set, and f al se otherwise.

is member(Element, Set) -> boolean()
is element(Element, Set) -> boolean()
Types:
Set = set (Element)
Returnst r ue if El enent isan element of Set , otherwisef al se.

is set(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mappearsto be a set, otherwisef al se.

is subset(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set (Element)

Returnst r ue when every element of Set 1 isalso amember of Set 2, otherwisef al se.

iterator(Set) -> Iter
Types:
Set = set (Element)
Iter = iter (Element)
Returns an iterator that can be used for traversing the entries of Set ; see next / 1. The implementation of thisis
very efficient; traversing the whole set using next / 1 isonly slightly slower than getting the list of al elementsusing

to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

largest(Set) -> Element
Types.
Set = set (Element)
Returnsthe largest element in Set . Assumesthat Set is nonempty.

180 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

next(Iterl) -> {Element, Iter2} | none
Types:
Iterl = Iter2 = iter (Element)

Returns { El enent, |ter2} where El enent isthe smallest element referred to by the iterator I t er 1, and
| t er 2 isthe new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.

singleton(Element) -> set (Element)

Returns a set containing only the element El enent .

size(Set) -> integer() >= 0
Types:

Set = gb_sets:set()
Returns the number of elementsin Set .

smallest(Set) -> Element
Types:
Set = set (Element)
Returns the smallest element in Set . Assumesthat Set is nonempty.

take largest(Setl) -> {Element, Set2}
Types:
Setl = Set2 = set (Element)

Returns{ El enent, Set 2},whereEl enent isthelargest elementin Set 1, and Set 2 isthis set with El enent
deleted. Assumesthat Set 1 is nonempty.

take smallest(Setl) -> {Element, Set2}
Types:
Setl = Set2 = set (Element)

Returns{ El emrent, Set 2},whereEl enent isthesmallest elementin Set 1, and Set 2 isthisset with El enent
deleted. Assumesthat Set 1 is nonempty.

to list(Set) -> List
Types.
Set = set (Element)
List = [Element]

Returns the elements of Set asalist.

union(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns the merged (union) set of Set 1 and Set 2.

Ericsson AB. All Rights Reserved.: STDLIB | 181

gb_sets

union(SetList) -> Set

Types:
SetlList = [set (Element), ...]
Set = set (Element)

Returns the merged (union) set of the list of sets.

SEE ALSO
gb_trees(3), ordsets(3), sets(3)

182 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

gb trees

Erlang module

An efficient implementation of Prof. Arne Andersson's General Balanced Trees. These have no storage overhead
compared to unbalanced binary trees, and their performance isin general better than AVL trees.

This module considers two keys as different if and only if they do not compare equal (==).

Data structure

Data structure:

- {Size, Tree}, where "Tree' is composed of nodes of the form:
- {Key, Value, Smaller, Bigger}, and the "empty tree" node:
- nil.

There is no attempt to balance trees after deletions. Since deletions do not increase the height of a tree, this should
be OK.

Original balance condition h(T) <= ceil(c * log(|T|)) has been changed to the similar (but not quite equivalent)
condition 2~ h(T) <= |T| ~ c. This should also be OK.

Performance is comparable to the AVL trees in the Erlang book (and faster in general due to less overhead); the
differenceisthat deletion worksfor these trees, but not for the book's trees. Behaviour islogarithmic (asit should be).

Data Types
tree(Key, Value)
A GB tree.

tree()

tree() isequivdenttotree(term(), term()).
iter(Key, Value)

A GB treeiterator.

iter()

iter() isequivalenttoiter(term(), term()).

Exports

balance(Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Rebalances Tr eel. Notethat thisisrarely necessary, but may be motivated when alarge number of nodes have been
deleted from the tree without further insertions. Rebalancing could then be forced in order to minimise lookup times,
since deletion only does not rebal ance the tree.

Ericsson AB. All Rights Reserved.: STDLIB | 183

gb_trees

delete(Key, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)
Removes the node with key Key from Tr eel; returns new tree. Assumes that the key is present in the tree, crashes
otherwise.

delete any(Key, Treel) -> Tree2
Types.
Treel = Tree2 = tree(Key, Value)

Removesthe nodewith key Key from Tr eel if thekey ispresent in the tree, otherwise does nothing; returns new tree.

empty() -> tree()
Returns a new empty tree

enter(Key, Value, Treel) -> Tree2
Types.
Treel = Tree2 = tree(Key, Value)

InsertsKey withvalue Val ue into Tr eel if thekey isnot present in thetree, otherwise updates Key tovalueVal ue
inTr eel. Returnsthe new tree.

from orddict(List) -> Tree

Types:
List = [{Key, Value}]
Tree = tree(Key, Value)

Turnsan ordered list Li st of key-value tuplesinto atree. The list must not contain duplicate keys.

get(Key, Tree) -> Value
Types:
Tree = tree(Key, Value)
Retrieves the value stored with Key in Tr ee. Assumesthat the key is present in the tree, crashes otherwise.

insert(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Inserts Key with value Val ue into Tr eel; returns the new tree. Assumes that the key is not present in the tree,
crashes otherwise.

is defined(Key, Tree) -> boolean()
Types:

Tree = tree(Key, Value :: term())
Returnst r ue if Key ispresentin Tr ee, otherwisef al se.

184 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

is empty(Tree) -> boolean()
Types:
Tree = tree()
Returnst r ue if Tr ee isan empty tree, and f al se otherwise.

iterator(Tree) -> Iter

Types:
Tree = tree(Key, Value)
Iter = iter (Key, Value)

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The implementation of thisis
very efficient; traversing thewholetree using next / 1 isonly slightly slower than getting thelist of all elementsusing
to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

keys(Tree) -> [Key]
Types:

Tree = tree(Key, Value :: term())
Returnsthe keysin Tr ee as an ordered list.

largest(Tree) -> {Key, Value}
Types:
Tree = tree(Key, Value)

Returns { Key, Val ue}, where Key isthelargest key in Tr ee, and Val ue isthe value associated with this key.
Assumes that the tree is nonempty.

lookup(Key, Tree) -> none | {value, Value}
Types:
Tree = tree(Key, Value)
Looksup Key inTr ee; returns{ val ue, Val ue}, or none if Key isnot present.

map(Function, Treel) -> Tree2

Types:
Function = fun((K :: Key, V1 :: Valuel) -> V2 :: Value2)
Treel = tree(Key, Valuel)
Tree2 = tree(Key, Value2)

Maps the function F(K, V1) -> V2 to all key-value pairs of the tree Tr eel1 and returns a new tree Tr ee2 with the
same set of keysas Tr eel and the new set of values V2.

next(Iterl) -> none | {Key, Value, Iter2}
Types:
Iterl = Iter2 = iter (Key, Value)

Returns{ Key, Val ue, It er2} whereKey isthe smallest key referred to by theiterator | ter 1,and I ter 2 is
the new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.

Ericsson AB. All Rights Reserved.: STDLIB | 185

gb_trees

size(Tree) -> integer() >= 0
Types:

Tree = tree()
Returns the number of nodesin Tr ee.

smallest(Tree) -> {Key, Value}
Types:
Tree = tree(Key, Value)

Returns{ Key, Val ue}, whereKey isthesmallest key in Tr ee, and Val ue isthe value associated with this key.
Assumes that the tree is nonempty.

take largest(Treel) -> {Key, Value, Tree2}
Types:
Treel = Tree2 = tree(Key, Value)

Returns{ Key, Val ue, Tree2},whereKey isthelargestkeyinTreel, Val ue isthevalue associated with this
key, and Tr ee?2 isthistree with the corresponding node deleted. Assumes that the tree is nonempty.

take smallest(Treel) -> {Key, Value, Tree2}
Types:
Treel = Tree2 = tree(Key, Value)

Returns{ Key, Val ue, Tree?2}, whereKey isthe smallest key in Tr eel, Val ue isthe value associated with
thiskey, and Tr ee2 isthistree with the corresponding node deleted. Assumes that the tree is nonempty.

to list(Tree) -> [{Key, Value}]
Types:
Tree = tree(Key, Value)
Converts atree into an ordered list of key-value tuples.

update(Key, Value, Treel) -> Tree2
Types.
Treel = Tree2 = tree(Key, Value)

Updates Key to value Val ue in Tr eel; returns the new tree. Assumes that the key is present in the tree.
values(Tree) -> [Value]
Types:
Tree = tree(Key :: term(), Value)
Returnsthe valuesin Tr ee as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

SEE ALSO
gb_sets(3), dict(3)

186 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

gen_event

Erlang module

A behaviour module for implementing event handling functionality. The OTP event handling model consists of a
generic event manager process with an arbitrary number of event handlers which are added and deleted dynamically.

An event manager implemented using this module will have a standard set of interface functions and include
functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to OTP Design
Principles for moreinformation.

Each event handler is implemented as a callback module exporting a pre-defined set of functions. The relationship
between the behaviour functions and the callback functions can be illustrated as follows:

gen_event module Callback module

gen_event:start_link ----- > -

gen_event:add handler
gen_event:add sup handler ----- > Module:init/1

gen_event:notify
gen_event:sync notify = ----- > Module:handle event/2

gen event:call ----- > Module:handle call/2
----- > Module:handle info/2
gen_event:delete handler ----- > Module:terminate/2

gen_event:swap handler
gen_event:swap_ sup handler ----- > Modulel:terminate/2
Module2:init/1

gen_event:which handlers ----- > -
gen event:stop = ----- > Module:terminate/2

----- > Module:code change/3

Since each event handler is one calback module, an event manager will have several callback modules which are
added and deleted dynamically. Therefore gen_event is more tolerant of callback module errors than the other
behaviours. If a callback function for an installed event handler fails with Reason, or returns abad value Ter m the
event manager will not fail. It will delete the event handler by calling the callback function Modul e: t er mi nat e/ 2
(seebelow), givingasargument{ error, {' EXI T' , Reason}} or{error, Ter n}, respectively. No other event
handler will be affected.

A gen_event process handles system messages as documented in sys(3). The sys module can be used for debugging
an event manager.

Note that an event manager does trap exit signals automatically.

The gen_event process can go into hibernation (see erlang(3)) if a callback function in a handler module specifies
" hi ber nat e' initsreturn value. This might be useful if the server is expected to be idle for along time. However
this feature should be used with care as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you'd want to do between each event handled by a busy event manager.

Ericsson AB. All Rights Reserved.: STDLIB | 187

gen_event

It's also worth noting that when multiple event handlers areinvoked, it's sufficient that one single event handler returns
a' hi ber nat e' request for the whole event manager to go into hibernation.

Unless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad
arguments are given.

Data Types

handler() = atom() | {atom(), term()}

handler args() = term()

add handler ret() = ok | term() | {'EXIT', term()}
del handler ret() = ok | term() | {'EXIT', term()}

Exports

start link() -> Result
start link(EventMgrName) -> Result
Types:
Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {vi a, Mbdul e, Vi aNane}
Name = atom()
A obal Nanme = ViaName = term()
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()
Creates an event manager process as part of a supervision tree. The function should be called, directly or indirectly,
by the supervisor. It will, among other things, ensure that the event manager is linked to the supervisor.

If Event Mgr Nanme={1 ocal , Nane}, the event manager is registered locally as Nanme using r egi st er/ 2.
If Event Mgr Nane={ gl obal , A obal Nane}, the event manager is registered globally as A obal Nane
using gl obal : regi ster_nane/ 2. If no name is provided, the event manager is not registered. If
Event Myr Name={ vi a, Modul e, Vi aNane}, the event manager will register with the registry represented by
Modul e. The Modul e callback should export the functions r egi st er _nane/ 2, unr egi ster _nane/ 1,
wher ei s_nane/ 1 and send/ 2, which should behave like the corresponding functions in gl obal . Thus,
{vi a, gl obal , G obal Nane} isavalid reference.

If the event manager is successfully created the function returns { ok, Pi d} , where Pi d is the pid of the event
manager. If there already exists a process with the specified Event Mgr Nane the function returns { err or,
{already_started, Pid}}, wherePi disthepid of that process.

start() -> Result
start(EventMgrName) -> Result
Types:
Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {via, Mbdul e, Vi aNane}
Name = atom()
A obal Nane = ViaName = term()
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()
Creates a stand-alone event manager process, i.e. an event manager which is not part of a supervision tree and thus
has no supervisor.

Seestart _|ink/O0, 1 foradescription of arguments and return values.

188 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

add handler(EventMgrRef, Handler, Args) -> Result
Types:

Event Mgr = Nane | {Nane, Node} | {global, @ obal Name} | {via, Modul e, Vi aNane}

| pid()

Name = Node = aton()

G obal Nanme = ViaNane = term()

Handl er = Modul e | {Mdul e, | d}

Modul e = atom()

Id = term()

Args = term))

Result = ok | {'EXIT ,Reason} | term)

Reason = term()

Adds a new event handler to the event manager Event Myr Ref . The event manager will call Modul e:init/ 1to
initiate the event handler and itsinternal state.

Event Myr Ref can be:

e thepid,

« Nane, if the event manager islocaly registered,

* {Nane, Node}, if the event manager islocally registered at another node, or

« {gl obal , d obal Nang}, if the event manager is globally registered.

« {via, Modul e, Vi aNane}, if the event manager is registered through an alternative process registry.

Handl er is the name of the callback module Mbdul e or a tuple { Modul e, | d}, where | d is any term. The

{Modul e, I d} representation makes it possible to identify a specific event handler when there are several event
handlers using the same callback module.

Ar gs isan arbitrary term which is passed as the argument to Modul e: i ni t/ 1.

If Modul e: i nit/1 returns a correct value indicating successful completion, the event manager adds the event
handler and this function returns ok. If Modul e: i ni t/ 1 failswith Reason or returns{ er r or, Reason}, the
event handler isignored and thisfunctionreturns{' EXI T' , Reason} or{error, Reason}, respectively.

add sup handler(EventMgrRef, Handler, Args) -> Result
Types.

Event Mgr = Nane | {Nane, Node} | {global, d obal Nanme} | {via, Modul e, Vi aNane}

| pid()

Name = Node = atom()

A obal Nane = ViaName = term()

Handl er = Modul e | {Modul e, | d}

Modul e = atom()

Id = tern()

Args = term)

Result = ok | {'EXIT' ,Reason} | term()

Reason = term()

Adds anew event handler in the sasmeway asadd_handl er/ 3 but will also supervise the connection between the
event handler and the calling process.

Ericsson AB. All Rights Reserved.: STDLIB | 189

gen_event

e |f thecaling process later terminates with Reason, the event manager will delete the event handler by calling
Modul e: t er m nat e/ 2 with{ st op, Reason} asargument.

o |If the event handler later is deleted, the event manager sends a
message{ gen_event _EXI T, Handl er, Reason} tothe calling process. Reason isone of the following:
« nor mal , if the event handler has been removed dueto acall todel et e_handl er/ 3, or
renove_handl er hasbeen returned by a callback function (see below).
* shut down, if the event handler has been removed because the event manager is terminating.

e {swapped, NewHandl er, Pi d}, if the process Pi d has replaced the event handler with another event
handler NewHand! er using acal toswap_handl er/ 3 or swap_sup_handl er/ 3.

« aterm, if the event handler is removed due to an error. Which term depends on the error.
Seeadd_handl er/ 3 for adescription of the arguments and return values.

notify(EventMgrRef, Event) -> ok
sync_notify(EventMgrRef, Event) -> ok
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Nane = Node = aton()
A obal Nane = ViaName = term()
Event = term)

Sends an event notification to the event manager Event Mgr Ref. The event manager will cal
Modul e: handl e_event / 2 for each installed event handler to handle the event.

not i fy isasynchronous and will return immediately after the event notification has been sent. sync_notify is
synchronousin the sense that it will return ok after the event has been handled by all event handlers.

Seeadd_handl er/ 3 for adescription of Event Myr Ref .
Event isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_event/ 2.

not i fy will not fail even if the specified event manager does not exist, unlessit is specified as Nane.

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result
Types.
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
G obal Name = ViaNane = term()
Handl er = Modul e | {Modul e, | d}
Modul e = atom()

Id = tern()

Request = term)

Tinmeout = int()>0 | infinity

Result = Reply | {error,Error}

Reply = term()

Error = bad _nodule | {'EXIT',Reason} | tern()

Reason = term()

190 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Makes a synchronous call to the event handler Handl er installed in the event manager Event Myr Ref by sending a
reguest and waiting until areply arrivesor atimeout occurs. The event manager will call Modul e: handl e_cal | /2
to handle the request.

Seeadd_handl er/ 3 for adescription of Event Mgr Ref and Handl er .
Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cal | / 2.

Ti meout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Default value is 5000. If no reply is received within the specified time, the function
call fails.

Thereturnvalue Repl y isdefined inthereturn valueof Modul e: handl e_cal | / 2. 1f thespecified event handler is
not installed, the function returns{ er r or , bad_nodul e} . If the callback function failswith Reason or returnsan
unexpected value Ter m thisfunctionreturns{ error, {' EXI T' , Reason}} or{error, Ter n}, respectively.

delete handler(EventMgrRef, Handler, Args) -> Result
Types:
Event Myr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Mbdul e, Vi aNane} | pid()
Name = Node = atom()
d obal Nane = ViaNane = term()
Handl er = Modul e | {Modul e, | d}
Modul e = atom()
Id = tern()
Args = term)
Result = term() | {error,nodule _not found} | {'EXIT , Reason}
Reason = term()

Deletes an event handler from the event manager Event MgrRef. The event manager will call
Modul e: t er mi nat e/ 2 to terminate the event handler.

Seeadd_handl er/ 3 for adescription of Event Mgr Ref and Handl er .
Ar gs isan arbitrary term which is passed as one of the argumentsto Modul e: t er mi nat e/ 2.

The return value is the return value of Mbdul e: t er mi nat e/ 2. If the specified event handler is not installed, the
functionreturns{ er r or, nodul e_not _f ound} . If the callback function failswith Reason, the function returns
{"'EXIT , Reason}.

swap handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:

Event Myr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

d obal Nane = ViaNane = term()

Handl er1 = Handl er2 = Modul e | {Modul e, I d}

Modul e = atom()

Id = tern()

Argsl = Args2 = term()

Resul t ok | {error,Error}

Error = {" EXIT', Reason} | tern()

Ericsson AB. All Rights Reserved.: STDLIB | 191

gen_event

Reason = term()
Replaces an old event handler with anew event handler in the event manager Event Myr Ref .
Seeadd_handl er/ 3 for adescription of the arguments.

First theold event handler Handl er 1 isdeleted. The event manager callsMbdul el: t er mi nat e(Argsl, ...),
where Modul el isthe callback module of Handl er 1, and collects the return value.

Then the new event handler Handl er 2 is added and initiated by calling Modul e2: i nit ({Args2, Tern}),
where Modul e? is the callback module of Handl er 2 and Ter mthe return value of Modul el: t er m nat e/ 2.
This makesit possible to transfer information from Handl er 1 to Handl er 2.

The new handler will be added even if the the specified old event handler isnot installed in which case Ter meer r or
or if Modul el: t er m nat e/ 2 fails with Reason in which case Ter m={' EXI T' , Reason}. The old handler
will be deleted even if Modul e2:i ni t/ 1 fails.

If there was a supervised connection between Handl er 1 and a process Pi d, there will be a supervised connection
between Handl er 2 and Pi d instead.

If Modul e2: i ni t/ 1 returnsacorrect value, thisfunction returnsok. If Modul e2: i ni t/ 1 failswith Reason or
returns an unexpected value Ter m thisthisfunctionreturns{error, {' EXI T' , Reason}} or{error, Ternt,
respectively.

swap_sup_handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types.

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

A obal Nanme = ViaName = term()

Handl er1 = Handler 2 = Moddule | {Mdul e, Id}

Modul e = atom()

Id = tern()

Argsl = Args2 = tern()

Result = ok | {error,Error}

Error = {"EXIT',Reason} | tern()

Reason = term()

Replaces an event handler in the event manager Event Myr Ref in the same way as swap_handl er / 3 but will
al so supervise the connection between Handl er 2 and the calling process.

Seeswap_handl er/ 3 for adescription of the arguments and return values.

which handlers(EventMgrRef) -> [Handler]

Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()
d obal Nane = ViaNane = term()
Handl er = Modul e | {Modul e, | d}
Modul e = atom()
Id = ternm()
Returnsalist of all event handlersinstalled in the event manager Event Myr Ref .

192 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Seeadd_handl er/ 3 for adescription of Event Myr Ref and Handl er.

stop(EventMgrRef) -> ok
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node atom()
G obal Name = ViaNane = term()

Terminates the event manager Event Mgr Ref. Before terminating, the event manager will call
Modul e: term nat e(stop, ...) for eachinstalled event handler.

Seeadd_handl er/ 3 for adescription of the argument.

CALLBACK FUNCTIONS

The following functions should be exported from agen_event callback module.

Exports

Module:init(InitArgs) -> {ok,State} | {ok,State,hibernate} | {error,Reason}
Types:

InitArgs = Args | {Args, Tern}

Args = Term = term)

State = term)

Reason = term()

Whenever anew event handler is added to an event manager, this function is called to initialize the event handler.

If the event handler is added due to a <cal to gen_event:add handler/3 or
gen_event: add_sup_handl er/ 3,1 ni t Ar gs isthe Ar gs argument of these functions.

If the event handler is replacing another event handler due to a call to gen_event : swap_handl er/ 3 or
gen_event : swap_sup_handl er/ 3, or due to a swap return tuple from one of the other callback functions,
I nitArgs isatuple { Args, Ter m} where Ar gs is the argument provided in the function call/return tuple and
Ter misthe result of terminating the old event handler, seegen_event : swap_handl er/ 3.

If successful, the function should return { ok, St at e} or { ok, St at e, hi ber nat e} where St at e istheinitial
internal state of the event handler.

If {ok, State, hi bernate} is returned, the event manager will go into hibernation (by calling
proc_lib:hibernate/3), waiting for the next event to occur.

Module:handle event(Event, State) -> Result
Types.
Event = term)
State = term))
Result = {ok, NewSt ate} | {ok, NewSt at e, hi ber nat e}
| {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term)
Argsl = Args2 = tern()
Handl er2 = Modul e2 | {Mddul e2, | d}

Ericsson AB. All Rights Reserved.: STDLIB | 193

gen_event

Modul e2 = atom()
Id = term))

Whenever an event manager recelves an event sent using gen_event:notify/2 or
gen_event: sync_noti fy/ 2, thisfunction is called for each installed event handler to handle the event.

Event istheEvent argument of noti fy/sync_notify.
St at e istheinternal state of the event handler.

If the function returns { ok, NewSt at e} or { ok, NewSt at e, hi ber nat e} the event handler will remain in the
event manager with the possible updated internal state NewSt at e.

If {ok, NewSt at e, hi ber nat e} is returned, the event manager will also go into hibernation (by calling
proc_lib: hibernate/3), waiting for the next event to occur. It is sufficient that one of the event handlers return
{ ok, NewSt at e, hi ber nat e} for the whole event manager process to hibernate.

If the function returns {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} the event handler
will be replaced by Handl er2 by first calling Modul e:term nate(Argsl, NewSt ate) and then
Modul e2:init({Args2, Tern}) where Term is the return value of Mbdul e:term nate/ 2. See
gen_event : swap_handl er/ 3 for moreinformation.

If the function returns renove_handler the event handler will be deleted by calling
Modul e: t erm nat e(renove_handl er, St ate).

Module:handle call(Request, State) -> Result
Types.

Request = term))

State = term))

Result = {ok, Reply, NewState} | {ok, Reply, NewSt at e, hi ber nat e}
| {swap_handl er, Reply, Argsl, NewSt at e, Handl er 2, Ar gs2}
| {renove_handl er, Reply}

Reply = tern()

NewState = term)

Argsl = Args2 = tern()

Handl er2 = Modul e2 | {Mddul e2, | d}
Modul e2 = atom()

Id = tern()

Whenever an event manager receives arequest sent using gen_event : cal | / 3, 4, thisfunction is caled for the
specified event handler to handle the request.

Request isthe Request argument of cal | .
St at e istheinternal state of the event handler.

Thereturn values are the same asfor handl e_event / 2 except they also contain aterm Repl y whichisthe reply
given back to the client asthe return value of cal | .

Module:handle info(Info, State) -> Result
Types.
Info = term()
State = term))
Result = {ok, NewState} | {ok, NewSt at e, hi ber nat e}

194 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

| {swap_handl er, Argsl1, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term)
Argsl = Args2 = ternm()
Handl er2 = Modul e2 | {Mdul e2, | d}
Modul e2 = atom()
Id = term)
This function is called for each installed event handler when an event manager receives any other message than an
event or a synchronous reguest (or a system message).
I nf 0 isthe received message.

See Mbdul e: handl e_event / 2 for adescription of State and possible return values.

Module:terminate(Arg, State) -> term()
Types:
Arg = Args | {stop, Reason} | stop | renpbve_handl er
| {error,{'EXIT ,Reason}} | {error, Ternt
Args = Reason = Term= term)
Whenever an event handler is deleted from an event manager, this function is called. It should be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up.

If theevent handler isdeleted duetoacall togen_event : del et e_handl er,gen_event : swap_handl er/ 3
orgen_event : swap_sup_handl er/ 3, Ar g isthe Ar gs argument of this function call.

Ar g={ st op, Reason} if the event handler has a supervised connection to a process which has terminated with
reason Reason.

Ar g=st op if the event handler is deleted because the event manager is terminating.

The event manager will terminateif it is part of asupervision tree and it is ordered by its supervisor to terminate. Even
if itisnot part of asupervision tree, it will terminate if it receivesan' EXI T' message from its parent.

Arg=renove_handl er if the event handler is deleted because another callback function has returned
renove_handl er or{renove_handl er, Repl y}.

Arg={error, Tern} if theevent handler isdeleted because acallback function returned an unexpected value Ter m
orArg={error,{' EXIT , Reason}} if acalback function failed.

St at e istheinternal state of the event handler.

The function may return any term. If the event handler is deleted dueto acall togen_event : del et e_handl er,
the return value of that function will be the return value of this function. If the event handler is to be replaced with
another event handler due to a swap, the return value will be passed to thei ni t function of the new event handler.
Otherwise the return value is ignored.

Module:code change(0ldVsn, State, Extra) -> {ok, NewState}

Types.
A dvsn = Vsn | {down, Vsn}
Vsn = tern()
State = NewState = term))
Extra = term()

Ericsson AB. All Rights Reserved.: STDLIB | 195

gen_event

This function is called for an installed event handler which should update its internal state during a rel ease upgrade/
downgrade, i.e. whentheinstruction{ updat e, Modul e, Change, . . . } whereChange={ advanced, Extr a}
isgiveninthe. appup file. See OTP Design Principles for moreinformation.

Inthe case of an upgrade, d dVsn isVsn, and inthe case of adowngrade, O dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
is the checksum of the BEAM file.

St at e istheinternal state of the event handler.
Ext r a ispassed as-isfromthe{ advanced, Ext r a} part of the update instruction.
The function should return the updated internal state.

Module:format status(Opt, [PDict, State]) -> Status

Types:
Opt = normal | termnate
PDict = [{Key, Value}]

State = term)
Status = tern()

Note:

This callback is optional, so event handler modules need not export it. If a handler does not export this function,
the gen_event module uses the handler state directly for the purposes described bel ow.

Thisfunction is called by agen_event process when:

e Oneof sys.get_status/1,2 isinvoked to get the gen_event status. Opt is set to the atom nor mal for this case.

* Theevent handler terminates abnormally and gen_event logs an error. Opt isset totheatomt er i nat e for
this case.

This function is useful for customising the form and appearance of the event handler state for these cases. An event
handler callback module wishing to customise the sys: get _st at us/ 1, 2 return value as well as how its state
appearsintermination error logsexportsaninstanceof f or mat _st at us/ 2 that returnsaterm describing the current
state of the event handler.

PDi ct isthe current value of the gen_event's process dictionary.
St at e istheinternal state of the event handler.

The function should return St at us, aterm that customises the details of the current state of the event handler. Any
termisalowed for St at us. The gen_event module uses St at us asfollows:

* Whensys: get _status/1, 2iscaled, gen_event ensures that its return value contains St at us in place of
the event handler's actual state term.

e When an event handler terminates abnormally, gen_event logs St at us in place of the event handler's actual
state term.

One use for thisfunction isto return compact alternative state representationsto avoid having large state terms printed
inlogfiles.

SEE ALSO
supervisor (3), sys(3)

196 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

gen_fsm

Erlang module

A behaviour module for implementing a finite state machine. A generic finite state machine process (gen_fsm)
implemented using this module will have a standard set of interface functions and include functionality for tracing and
error reporting. It will also fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen_fsm assumes all specific partsto be located in a callback module exporting a pre-defined set of functions. The
relationship between the behaviour functions and the callback functions can be illustrated as follows:

gen_fsm module Callback module

gen_fsm:start link _<--2> Module:init/1

gen_fsm:send event ~ ----- > Module:StateName/2

gen fsm:send all state event = ----- > Module:handle event/3

gen fsm:sync send event ~ ----- > Module:StateName/3

gen fsm:sync _send all state event ----- > Module:handle sync event/4

----- > Module:handle info/3
————— > Module:terminate/3

----- > Module:code change/4

If acallback function fails or returns a bad value, the gen_fsm will terminate.

A gen_fsm handles system messages as documented in sys(3). The sys module can be used for debugging agen fsm.
Note that agen fsm does not trap exit signals automatically, this must be explicitly initiated in the callback module.
Unless otherwise stated, al functions in this module fail if the specified gen_fsm does not exist or if bad arguments
are given.

The gen_fsm process can go into hibernation (see erlang(3)) if a callback function specifies' hi ber nat e' instead
of atimeout value. Thismight be useful if the server isexpected to beidlefor along time. However thisfeature should
be used with care as hibernation implies at least two garbage collections (when hibernating and shortly after waking
up) and is not something you'd want to do between each call to a busy state machine.

Exports

start_link(Module, Args, Options) -> Result
start_link(FsmName, Module, Args, Options) -> Result
Types:
FsmNane = {local, Nane} | {gl obal, d obal Name} | {via, Mbdul e, Vi aNane}
Name = atom()
A obal Nanme = ViaNanme = term()
Modul e = atom()
Args = term)
Options = [Option]

Ericsson AB. All Rights Reserved.: STDLIB | 197

gen_fsm

Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpt s}

Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log to file,FileNane} | {install,{Func, FuncState}}
SOpts = [SOpt]
SOpt - see erlang:spawn_opt/2,3,4,5
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term))

Creates a gen_fsm process as part of a supervision tree. The function should be called, directly or indirectly, by the
supervisor. It will, among other things, ensure that the gen_fsm is linked to the supervisor.

The gen fsm process calls Modul e:init/1 to initialize. To ensure a synchronized start-up procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

If FsmNane={l ocal , Nane}, the gen fsm is registered locally as Nanme using register/?2.
If FsmNane={gl obal , d obal Nane}, the gen fsm is registered globaly as d obal Nane using
gl obal : regi st er _nane/ 2. If FsmNane={vi a, Modul e, Vi aNane}, the gen fsm will register with the
registry represented by Modul e. The Modul e calback should export the functions r egi st er _nane/ 2,
unr egi st er _nane/ 1, wher ei s_nane/ 1 and send/ 2, which should behave like the corresponding functions
ingl obal . Thus, { vi a, gl obal , A obal Nane} isavalid reference.

If no nameis provided, the gen_fsm is not registered.
Modul e isthe name of the callback module.
Ar gs isan arbitrary term which is passed as the argument to Modul e: i nit/ 1.

If theoption{t i meout , Ti ne} ispresent, thegen_fsmisallowed to spend Ti e millisecondsinitializing or it will
be terminated and the start function will return{ err or, ti meout }.

If the option { debug, Dbgs} is present, the corresponding sys function will be called for each item in Dbgs. See
sys(3).

If the option { spawn_opt , SOpt s} ispresent, SOpt s will be passed as option list to the spawn_opt BIF which
is used to spawn the gen_fsm process. See erlang(3).

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

If the gen fsm is successfully created and initialized the function returns { ok, Pi d}, where Pi d is the pid
of the gen fsm. If there already exists a process with the specified FsniName, the function returns { err or,
{al ready_started, Pi d} } wherePi d isthe pid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or, Reason}. If Modul e: i ni t/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnor e,
respectively.

start(Module, Args, Options) -> Result

start(FsmName, Module, Args, Options) -> Result
Types:

198 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

FsmNane = {l ocal , Nane} | {gl obal, d obal Name} | {via, Mbdul e, Vi aNane}
Name = atom()
A obal Nane = ViaName = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpts}

Dbgs = [Dbg]

Dbg = trace | log | statistics

| {log_to_file,FileName} | {install, {Func, FuncState}}

SOpts = [term)]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()
Error = {already_started,Pid} | term))

Createsastand-alonegen_fsm process, i.e. agen_fsmwhichisnot part of asupervision tree and thus has no supervisor.

See start_link/3,4 for a description of arguments and return values.

send event(FsmRef, Event) -> ok
Types:
FsmRef = Nanme | {Nane, Node} | {global, d obal Nane} | {via, Modul e, Vi aNane} |
pi d()
Name = Node = atom()
G obal Name = ViaNane = term()
Event = tern()

Sends an event asynchronously to the gen fsm FsnmRef and returns ok immediately. The gen fsm will call
Modul e: St at eNane/ 2 to handle the event, where St at eNan® isthe name of the current state of the gen_fsm.

FsnRef can be:

e thepid,

* Nane, if thegen fsmislocally registered,

« {Nane, Node}, if thegen fsmislocaly registered at another node, or

« {gl obal, d obal Nane}, if thegen fsmisglobally registered.

« {via, Modul e, Vi aNane}, if thegen fsmisregistered through an alternative process registry.
Event isan arbitrary term which is passed as one of the argumentsto Modul e: St at eNane/ 2.

send all state event(FsmRef, Event) -> ok
Types:
FsmRef = Nanme | {Nane, Node} | {gl obal, d obal Nane} | {via, Modul e, Vi aNane} |
pi d()
Name = Node = atom()
A obal Nane = ViaName = term()
Event = term)

Sends an event asynchronously to the gen fsm FsnRef and returns ok immediately. The gen fsm will call
Modul e: handl e_event/ 3 to handle the event.

Ericsson AB. All Rights Reserved.: STDLIB | 199

gen_fsm

See send_event/2 for a description of the arguments.

Thedifferencebetweensend_event andsend_al | _st at e_event iswhich calback functionisused to handle
the event. This function is useful when sending events that are handled the same way in every state, as only one
handl e_event clauseis needed to handle the event instead of one clause in each state name function.

sync_send event(FsmRef, Event) -> Reply
sync_send event(FsmRef, Event, Timeout) -> Reply
Types.
FsmRef = Nanme | {Nanme, Node} | {global, d obal Nane} | {via, Modul e, Vi aNane} |
pi d()
Name = Node = atom()
G obal Name = ViaNane = term()
Event = tern()
Timeout = int()>0 | infinity
Reply = term)
Sends an event to the gen_fsm FsnRef and waits until a reply arrives or atimeout occurs. The gen_fsm will call
Modul e: St at eNane/ 3 to handle the event, where St at eNan® isthe name of the current state of the gen_fsm.
See send_event/2 for adescription of FsnmRef and Event .

Ti meout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Default value is 5000. If no reply is received within the specified time, the function
cal fails.

Thereturn value Repl y isdefined in the return value of Modul e: St at eNane/ 3.

The ancient behaviour of sometimes consuming the server exit message if the server died during the call while linked
to the client has been removed in OTP R12B/Erlang 5.6.

sync_send_all state event(FsmRef, Event) -> Reply
sync_send all state event(FsmRef, Event, Timeout) -> Reply
Types.
FsmRef = Nanme | {Nanme, Node} | {gl obal, d obal Nane} | {via, Modul e, Vi aNane} |
pi d()
Name = Node = atom()
G obal Name = ViaNane = term()
Event = tern()
Tinmeout = int()>0 | infinity
Reply = tern()
Sends an event to the gen_fsm FsnRef and waits until a reply arrives or atimeout occurs. The gen_fsm will call
Modul e: handl e_sync_event/ 4 to handle the event.
See send_event/2 for a description of FsnRef and Event . See sync_send event/3 for a description of Ti meout
and Repl vy.

See send all_state event/2 for a discussion about the difference between sync_send_event and
sync_send_al |l _state_event.

reply(Caller, Reply) -> true
Types:

200 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Caller - see bel ow
Reply = term)
This function can be used by a gen_fsm to explicitly send areply to a client process that called sync_send_event/2,3

or sync_send_all_state event/2,3, when the reply cannot be defined in the return value of Modul e: St at e/ 3 or
Modul e: handl e_sync_event/ 4.

Caller must be the From argument provided to the callback function. Reply is an arbitrary
term, which will be given back to the client as the return value of sync_send event/2,3 or
sync_send_al |l _state event/2, 3.

send event after(Time, Event) -> Ref
Types.

Time = integer()

Event = tern()

Ref = reference()

Sendsadelayed event internally inthe gen_fsmthat callsthisfunction after Ti me ms. Returnsimmediately areference
that can be used to cancel the delayed send using cancel _timer/1.

Thegen fsmwill call Modul e: St at eNane/ 2 to handle the event, where St at eNane is the name of the current
state of the gen_fsm at the time the delayed event is delivered.

Event isan arbitrary term which is passed as one of the argumentsto Modul e: St at eNane/ 2.

start timer(Time, Msg) -> Ref

Types:
Time = integer()
Meg = term)
Ref = reference()

Sendsatimeout event internally inthegen_fsmthat callsthisfunction after Ti me ms. Returnsimmediately areference
that can be used to cancel the timer using cancel_timer/1.

The gen_fsm will call Modul e: St at eNane/ 2 to handle the event, where St at eNane isthe name of the current
state of the gen_fsm at the time the timeout message is delivered.

Msg isan arbitrary term which is passed in the timeout message, { t i meout , Ref, Msg}, asoneof the arguments
to Modul e: St at eNane/ 2.

cancel timer(Ref) -> RemainingTime | false

Types:
Ref = reference()
Remai ni ngTi me = integer()

Cancels an internal timer referred by Ref inthe gen_fsm that calls this function.
Ref isareference returned from send_event_after/2 or start_timer/2.

If the timer has aready timed out, but the event not yet been delivered, it is cancelled as if it had not timed out, so
there will be no false timer event after returning from this function.

Returns the remaining time in ms until the timer would have expired if Ref referred to an active timer, f al se
otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 201

gen_fsm

enter loop(Module, Options, StateName, StateData)
enter_loop(Module, Options, StateName, StateData, FsmName)

enter loop(Module, Options, StateName, StateData, Timeout)

enter loop(Module, Options, StateName, StateData, FsmName, Timeout)

Types:
Modul e = atom()
Options = [Option]
Option = {debug, Dbgs}
Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log_to file,FileNane} | {install,{Func, FuncState}}
Stat eNane = aton()
StateData = tern()
FsmNane = {l ocal, Nane} | {gl obal, d obal Nanme} | {via, Modul e, Vi aNane}
Name = atom()
G obal Name = ViaNane = term()
Timeout =int() | infinity
Makes an existing processinto agen_fsm. Does not return, instead the calling process will enter the gen_fsm receive

loop and becomeagen_fsm process. The process must have been started using one of the start functionsinpr oc_1 i b,
see proc_lib(3). The user isresponsible for any initialization of the process, including registering a name for it.

This function is useful when amore complex initialization procedure is needed than the gen_fsm behaviour provides.

Modul e, Opt i ons and FsmName have the same meanings as when calling start[_link]/3,4. However, if FsmNane
is specified, the process must have been registered accordingly before this function is called.

St at eNane, St at eDat a and Ti meout have the same meanings as in the return value of Module:init/1. Also, the
callback module Modul e does not need to export ani ni t / 1 function.

Failure: If the calling process was not started by apr oc_| i b start function, or if it is not registered according to
FsnmNane.

CALLBACK FUNCTIONS

The following functions should be exported from agen_f smcallback module.

In the description, the expression state name is used to denote a state of the state machine. state data is used to denote
theinternal state of the Erlang process which implements the state machine.

Exports

Module:init(Args) -> Result
Types.
Args = term)
Result = {ok, St ateNane, St ateData} | {ok, StateNane, St at eDat a, Ti meout }
| {ok, StateNane, St at eDat a, hi ber nat e}
| {stop, Reason} | ignore
St at eNane = at on()
StateData = tern()

202 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Timeout = int()>0 | infinity
Reason = term()

Whenever agen fsmis started using gen fsm:start/3,4 or gen_fsm:start_link/3,4, this function is called by the new
processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If initialization is successful, the function should return {ok, Stat eNane, St at eDat a},
{ok, St at eNan®e, St at eDat a, Ti neout} or {ok, StateNane, St at eDat a, hi bernate}, where
St at eNane istheinitial state name and St at eDat a theinitial state data of the gen_fsm.

If an integer timeout valueis provided, atimeout will occur unless an event or amessageisreceived within Ti meout
milliseconds. A timeout isrepresented by theatomt i meout and should be handled by theMbdul e: St at eNane/ 2
callback functions. Theatom i nf i ni t y can be used to wait indefinitely, thisis the default value.

If hi ber nat e is specified instead of atimeout value, the process will go into hibernation when waiting for the next
message to arrive (by calling proc_lib: hibernate/3).

If something goes wrong during the initialization the function should return { st op, Reason}, where Reason is
any term, or i gnor e.

Module:StateName(Event, StateData) -> Result
Types:
Event = tinmeout | term()
StateData = tern()
Result = {next _state, Next St at eNane, NewSt at eDat a}
| {next_state, Next St at eNane, NewSt at eDat a, Ti meout }
| {next _state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, NewSt at eDat a}
Next St at eNane = at on()
NewSt at eData = term)
Timeout = int()>0 | infinity
Reason = term()
There should be one instance of this function for each possible state name. Whenever agen_fsm receives an event sent

using gen_fsm:send_event/2, the instance of this function with the same name as the current state name St at eNane
is called to handle the event. It isalso called if atimeout occurs.

Event iseithertheatomt i meout , if atimeout hasoccurred, or theEvent argument providedtosend_event / 2.
St at eDat a isthe state data of the gen_fsm.

If the function returns {next st at e, Next St at eNane, NewSt at eDat a},
{next st at e, Next St at eNane, NewSt at eDat a, Ti neout } or
{next st at e, Next St at eNane, NewSt at eDat a, hi ber nat e}, the gen_fsm will continue executing with
the current state name set to Next St at eNane and with the possibly updated state data NewSt at eDat a. See
Modul e: i ni t/ 1 for adescription of Ti meout and hi ber nat e.

If the function retuns {st op, Reason, NewSt at eDat a}, the gen fsm will call
Modul e: t er m nat e(Reason, NewSt at eDat a) and terminate.

Module:handle event(Event, StateName, StateData) -> Result

Types:
Event = ternm()

Ericsson AB. All Rights Reserved.: STDLIB | 203

gen_fsm

St at eNane = at on()
StateData = tern()
Result = {next_state, Next St at eNanme, NewSt at eDat a}
| {next _state, Next St at eNane, NewSt at eDat a, Ti neout }
| {next_state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, NewSt at eDat a}
Next St at eNane = at on()
NewSt at eData = term)
Tinmeout = int()>0 | infinity
Reason = term()

Whenever a gen_fsm receives an event sent using gen_fsm:send all_state event/2, this function is called to handle
the event.

St at eNane isthe current state name of the gen_fsm.

See Mbdul e: St at eNane/ 2 for adescription of the other arguments and possible return values.

Module:StateName(Event, From, StateData) -> Result
Types.
Event = tern()
From = {pid(), Tag}
StateData = tern()
Result = {reply, Reply, Next St at eNane, NewSt at eDat a}
| {reply, Reply, Next St at eNane, NewSt at eDat a, Ti meout }
| {reply, Reply, Next St at eNanme, NewSt at eDat a, hi ber nat e}
| {next_state, Next St at eName, NewSt at eDat a}
| {next _state, Next St at eNane, NewSt at eDat a, Ti neout }
| {next_state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, Reply, NewSt at eData} | {stop, Reason, NewSt at eDat a}
Reply = tern()
Next St at eNane = at on()
NewSt at eData = term)
Timeout = int()>0 | infinity
Reason = normal | tern()
There should be one instance of this function for each possible state name. Whenever a gen_fsm receives an event

sent using gen_fsm:sync_send_event/2,3, the instance of this function with the same name as the current state name
St at eNane is called to handle the event.

Event isthe Event argument providedtosync_send_event.

Fr omisatuple{ Pi d, Tag} wherePi d isthe pid of the processwhich calledsync_send_event/ 2, 3 and Tag
isauniquetag.

St at eDat a isthe state data of the gen_fsm.

If the function returns {reply, Repl y, Next St at eNane, NewSt at eDat a},
{reply, Repl y, Next St at eNane, NewSt at eDat a, Ti meout } or

{reply, Reply, Next St at eNanme, NewSt at eDat a, hi ber nat e}, Repl y will be given back to Fr omas
the return value of sync_send_event/ 2, 3. The gen_fsm then continues executing with the current state name

204 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

set to Next St at eNane and with the possibly updated state data NewSt at eDat a. See Modul e:init/ 1 fora
description of Ti meout and hi ber nat e.

If the function returns {next st at e, Next St at eNane, NewSt at eDat a},
{next st at e, Next St at eNane, NewSt at eDat a, Ti neout } or
{next st at e, Next St at eNane, NewSt at eDat a, hi ber nat e}, the gen fsm will continue executing in
Next St at eNanme with NewSt at eDat a. Any reply to Fr ommust be given explicitly using gen_fsm:reply/2.

If the function returns { st op, Reason, Repl y, NewSt at eDat a}, Repl y will be given back to From If
the function returns { st op, Reason, NewSt at eDat a}, any reply to Fr om must be given explicitly using
gen_fsmreply/ 2. The gen fsm will then call Modul e: t er mi nat e(Reason, NewSt at eDat a) and
terminate.

Module:handle sync event(Event, From, StateName, StateData) -> Result
Types:
Event = term()
From = {pid(), Tag}
St at eNane = at on()
StateData = tern()
Result = {reply, Reply, Next St at eNane, NewSt at eDat a}
| {reply, Reply, Next St at eNane, NewSt at eDat a, Ti meout }
| {reply, Reply, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {next_state, Next St at eNane, NewSt at eDat a}
| {next _state, Next St at eNane, NewSt at eDat a, Ti neout }
| {next_state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, Reply, NewSt at eDat a} | {stop, Reason, NewSt at eDat a}
Reply = term()
Next St at eNane = at on()
NewSt at eData = term)
Timeout = int()>0 | infinity
Reason = term)

Whenever a gen_fsm receives an event sent using gen_fsm:sync_send_all_state event/2,3, this function is called to
handle the event.

St at eNane isthe current state name of the gen_fsm.
See Modul e: St at eNane/ 3 for adescription of the other arguments and possible return values.

Module:handle info(Info, StateName, StateData) -> Result
Types:
Info = term()
StateNane = aton()
StateData = tern()
Result = {next _state, Next St at eNane, NewSt at eDat a}
| {next_state, Next St at eNane, NewSt at eDat a, Ti neout }
| {next _state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, NewSt at eDat a}
Next St at eNane = at on()

Ericsson AB. All Rights Reserved.: STDLIB | 205

gen_fsm

NewSt at eData = term)
Tinmeout = int()>0 | infinity
Reason = normal | tern()
This function is called by agen fsm when it receives any other message than a synchronous or asynchronous event
(or a system message).
I nf o isthe received message.
See Mbdul e: St at eNane/ 2 for adescription of the other arguments and possible return values.

Module:terminate(Reason, StateName, StateData)

Types:
Reason = nornmal | shutdown | {shutdown,term()} | term()
St at eNane = aton()
StateData = tern()

Thisfunctioniscalled by agen fsmwhenit isabout to terminate. It should be the opposite of Modul e: i nit/ 1 and
do any necessary cleaning up. When it returns, the gen_fsm terminates with Reason. Thereturn value isignored.

Reason is aterm denoting the stop reason, St at eNane is the current state name, and St at eDat a is the state
data of the gen fsm.

Reason dependsonwhy thegen fsmisterminating. If it isbecause another callback function hasreturned astop tuple
{stop, ..}, Reason will havethe value specified in that tuple. If itisdueto afailure, Reason isthe error reason.

If the gen_fsmis part of a supervision tree and is ordered by its supervisor to terminate, this function will be called
with Reason=shut down if the following conditions apply:
» thegen fsm has been set to trap exit signals, and
« the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not
brutal _kill.

Even if the gen_fsm is not part of a supervision tree, this function will be called if it receivesan' EXI T' message
from its parent. Reason will bethesameasinthe' EXI T' message.

Otherwise, the gen_fsm will be immediately terminated.

Note that for any other reason than nor mal , shut down, or { shut down, Ter n} the gen fsm is assumed to
terminate due to an error and an error report isissued using error_logger: format/2.

Module:code change(OldVsn, StateName, StateData, Extra) -> {ok,
NextStateName, NewStateData}

Types:
A dvsn = Vsn | {down, Vsn}
Vsn = term))
St at eNane = Next St at eNane = atom()
StateData = NewStateData = tern()
Extra = tern()
Thisfunctionis called by agen_fsm when it should update itsinternal state data during arelease upgrade/downgrade,

i.e. when the instruction { updat e, Mbdul e, Change, . . .} where Change={ advanced, Extr a} isgivenin
the appup file. See OTP Design Principles.

206 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Inthe case of an upgrade, d dVsn isVsn, and inthe case of adowngrade, A dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
isthe checksum of the BEAM file.

St at eNane isthe current state name and St at eDat a the internal state data of the gen_fsm.
Ext r a ispassed as-isfromthe{ advanced, Ext r a} part of the update instruction.
The function should return the new current state name and updated internal data.

Module:format status(Opt, [PDict, StateData]) -> Status
Types:

Opt = nornal | term nate

PDict = [{Key, Value}]

StateData = tern()

Status = tern()

Note:

This callback is optional, so calback modules need not export it. The gen_fsm module provides a default
implementation of this function that returns the callback module state data.

Thisfunction is called by agen_fsm process when:

e Oneof sys.get_status/1,2 isinvoked to get the gen fsm status. Opt is set to the atom nor mal for this case.
* Thegen_fsm terminates abnormally and logs an error. Opt isset totheatomt er i nat e for this case.

This function is useful for customising the form and appearance of the gen_fsm status for these cases. A callback
module wishing to customise the sys: get _status/ 1, 2 return value as well as how its status appears in
termination error logs exports an instance of f or mat _st at us/ 2 that returns a term describing the current status
of the gen_fsm.

PDi ct isthe current value of the gen_fsm's process dictionary.
St at eDat a istheinternal state data of the gen_fsm.

The function should return St at us, aterm that customises the details of the current state and status of the gen_fsm.
There are no restrictions on the form St at us can take, but for the sys: get st at us/ 1, 2 case (when Opt is
nor mal), the recommended form for the St at us valueis[{data, [{"StateData", Tern}]}] where
Ter mprovides relevant details of the gen_fsm state data. Following this recommendation isn't required, but doing so
will make the callback module status consistent with the rest of thesys: get st at us/ 1, 2 return value.

One use for this function is to return compact alternative state data representations to avoid having large state terms
printed in logfiles.

SEE ALSO
gen_event(3), gen_server(3), supervisor(3), proc_lib(3), sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 207

gen_server

gen_server

Erlang module

A behaviour module for implementing the server of a client-server relation. A generic server process (gen_server)
implemented using this module will have a standard set of interface functions and include functionality for tracing and
error reporting. It will also fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen_server assumes al specific parts to be located in a callback module exporting a pre-defined set of functions.
The relationship between the behaviour functions and the callback functions can beillustrated as follows:

gen_server module Callback module

gen _server:start link ----- > Module:init/1

gen _server:call
gen_server:multi call ----- > Module:handle call/3

gen_server:cast
gen _server:abcast = ----- > Module:handle cast/2

----- > Module:handle info/2
————— > Module:terminate/2

----- > Module:code change/3

If acallback function fails or returns a bad value, the gen_server will terminate.

A gen_server handles system messages as documented in sys(3). The sys module can be used for debugging a
gen_server.

Notethat agen server does not trap exit signals automatically, this must be explicitly initiated in the callback module.
Unless otherwise stated, all functionsin this modulefail if the specified gen_server does not exist or if bad arguments
aregiven.

Thegen_server process can gointo hibernation (see erlang(3)) if acallback function specifies' hi ber nat e' instead
of atimeout value. Thismight be useful if the server isexpected to beidlefor along time. However thisfeature should
be used with care as hibernation implies at least two garbage collections (when hibernating and shortly after waking
up) and is not something you'd want to do between each call to abusy server.

Exports

start_link(Module, Args, Options) -> Result
start _link(ServerName, Module, Args, Options) -> Result
Types:
ServerNane = {l ocal, Nane} | {global, @ obal Name} | {via, Modul e, Vi aNane}
Name = atom()
A obal Nanme = ViaNanme = term()
Modul e = atom()
Args = term)
Options = [Option]

208 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log_ to file,FileNane} | {install,
{Func, FuncSt at e} }

SOpts = [tern()]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term))

Createsagen_server process as part of asupervision tree. The function should be called, directly or indirectly, by the
supervisor. It will, among other things, ensure that the gen_server islinked to the supervisor.

The gen_server process calls Modul e:init/ 1 to initialize. To ensure a synchronized start-up procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

If Server Nanme={l ocal , Nane} the gen server is registered localy as Nane using register/?2.
If ServerNane={gl obal , d obal Nane} the gen server is registered globally as d obal Nane
using gl obal : regi ster_nane/2. If no name is provided, the gen server is not registered. If
Server Nane={vi a, Modul e, Vi aNane}, the gen server will register with the registry represented by
Modul e. The Modul e calback should export the functions r egi st er _nane/ 2, unregi ster_name/ 1,
wherei s_nane/ 1 and send/ 2, which should behave like the corresponding functions in gl obal . Thus,
{vi a, gl obal , d obal Nane} isavalid reference.

Modul e isthe name of the callback module.
Ar gs isan arbitrary term which is passed as the argument to Modul e: init/ 1.

If theoption {ti meout, Ti e} is present, the gen_server is allowed to spend Ti ne milliseconds initializing or it
will be terminated and the start function will return{ error, ti meout }.

If the option { debug, Dbgs} is present, the corresponding sys function will be called for each item in Dbgs. See
yS(3).

If the option { spawn_opt , SOpt s} ispresent, SOpt s will be passed as option list to the spawn_opt BIF which
is used to spawn the gen_server. See erlang(3).

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

If the gen_server is successfully created and initialized the function returns { ok, Pi d}, where Pi d is the pid of
the gen_server. If there already exists a process with the specified Ser ver Nane the function returns { er r or,
{already_started, Pid}}, wherePi disthepid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or , Reason} . If Modul e: i nit/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnore,
respectively.

start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result
Types:
Server Nane = {l ocal, Nane} | {global, @ obal Name} | {via, Modul e, Vi aNane}

Ericsson AB. All Rights Reserved.: STDLIB | 209

gen_server

Name = atom()
G obal Name = ViaNane = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log_to file,FileNane} | {install,
{Func, FuncSt at e} }

SOpts = [tern()]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term))

Creates a stand-alone gen_server process, i.e. a gen_server which is not part of a supervision tree and thus has no
supervisor.

See start_link/3,4 for a description of arguments and return values.

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply
Types:
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()
Node = atom()
A obal Nane = ViaName = term()
Request = term()
Timeout = int()>0 | infinity
Reply = tern()
Makes a synchronous call to the gen_server Ser ver Ref by sending a request and waiting until areply arrives or a
timeout occurs. The gen_server will call Mbdul e: handl e_cal | / 3 to handle the request.
Ser ver Ref can be:
o thepid,
e Nane, if thegen server islocally registered,
 {Nane, Node}, if thegen_server islocaly registered at another node, or
« {gl obal, d obal Nane}, if thegen server isglobally registered.
« {via, Modul e, Vi aNane}, if the gen_server is registered through an alternative process registry.

Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Default value is 5000. If no reply is received within the specified time, the function
call fails. If the caller catches the failure and continues running, and the server isjust late with the reply, it may arrive
at any time later into the caller's message queue. The caller must in this case be prepared for this and discard any such
garbage messages that are two element tuples with areference as the first element.

Thereturn value Repl y isdefined in the return value of Modul e: handl e_cal | / 3.
The call may fail for several reasons, including timeout and the called gen_server dying before or during the call.

210 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

The ancient behaviour of sometimes consuming the server exit message if the server died during the call while linked
to the client has been removed in OTP R12B/Erlang 5.6.

multi call(Name, Request) -> Result
multi call(Nodes, Name, Request) -> Result
multi call(Nodes, Name, Request, Timeout) -> Result
Types:

Nodes = [Node]

Node = atom()

Name = atom()

Request = term))

Timeout = int()>=0 | infinity

Result = {Repli es, BadNodes}

Replies = [{Node, Repl y}]

Reply = term()

BadNodes = [Node]

Makesasynchronouscall to al gen_serverslocally registered as Name at the specified nodes by first sending arequest

to every node and then waiting for the replies. The gen_serverswill call Modul e: handl e_cal | / 3 to handle the
request.

Thefunctionreturnsatuple{ Repl i es, BadNodes} whereRepl i es isalistof { Node, Repl y} andBadNodes
isalist of node that either did not exist, or where the gen_server Nane did not exist or did not reply.

Nodes is a list of node names to which the request should be sent. Default value is the list of al known nodes
[node() | nodes()].

Nane isthe locally registered name of each gen_server.
Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout isan integer greater than zero which specifies how many milliseconds to wait for each reply, or the atom
i nfinity towaitindefinitely. Default valueisi nf i ni ty. If noreply isreceived from anode within the specified
time, the node is added to BadNodes.

When a reply Repl vy is received from the gen_server at a node Node, { Node, Repl y} is added to Repl i es.
Repl y isdefined in the return value of Mbdul e: handl e_cal 1 / 3.

Warning:

If one of the nodes is not capable of process monitors, for example C or Java nodes, and the gen_server is not
started when the requests are sent, but starts within 2 seconds, this function waits the whole Ti meout , which
may beinfinity.

This problem does not exist if all nodes are Erlang nodes.

To avoid that late answers (after the timeout) pollutes the caller's message queue, a middleman process is used to do
the actual calls. Late answerswill then be discarded when they arrive to aterminated process.

cast(ServerRef, Request) -> ok
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 211

gen_server

Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()

Node = atom()
A obal Nane = ViaName = term()
Request = term))

Sends an asynchronous request to thegen_server Ser ver Ref and returnsok immediately, ignoring if the destination
node or gen_server does not exist. The gen_server will call Modul e: handl e_cast / 2 to handle the request.

See call/2,3 for adescription of Ser ver Ref .

Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cast/ 2.

abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) -> abcast
Types.

Nodes = [Node]

Node = atom()

Name = atom()

Request = term)
Sends an asynchronous request to the gen_servers locally registered as Namne at the specified nodes. The function

returnsimmediately and ignores nodesthat do not exist, or wherethegen_server Nare doesnot exist. Thegen_servers
will call Modul e: handl e_cast/ 2 to handle the request.

See multi_call/2,3,4 for a description of the arguments.

reply(Client, Reply) -> Result
Types:

Cient - see bel ow

Reply = term)

Result = term)

This function can be used by a gen server to explicitly send a reply to a client that called cal | /2,3 or
mul ti _call/2, 3, 4, when the reply cannot be defined in the return value of Modul e: handl e_cal I / 3.

d i ent must be the Fr omargument provided to the callback function. Repl y is an arbitrary term, which will be
given back to the client asthereturnvalueof cal | / 2, 3ornul ti _call/2, 3, 4.

Thereturn value Resul t isnot further defined, and should always be ignored.

enter loop(Module, Options, State)
enter loop(Module, Options, State, ServerName)
enter loop(Module, Options, State, Timeout)
enter loop(Module, Options, State, ServerName, Timeout)
Types:
Modul e = atom()
Options = [Option]
Option = {debug, Dbgs}
Dbgs = [Dbg]
Dbg trace | log | statistics

212 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

| {log_to file,FileNane} | {install,{Func, FuncState}}
State = term)
Server Nane = {l ocal, Nane} | {global, @ obal Name} | {via, Modul e, Vi aNane}
Name = atom()
d obal Nane = ViaNane = term()
Timeout = int() | infinity
Makes an existing process into a gen_server. Does not return, instead the calling process will enter the gen_server
receive loop and become a gen_server process. The process must have been started using one of the start functions
inproc_lib, seeproc_lib(3). The user is responsible for any initialization of the process, including registering a
name for it.

Thisfunctionisuseful when amorecomplex initialization procedureis needed thanthegen_server behaviour provides.

Modul e, Opti ons and Server Nane have the same meanings as when calling gen_server:start[_link]/3,4.
However, if Ser ver Name is specified, the process must have been registered accordingly before this function is
caled.

St at e and Ti meout have the same meanings as in the return value of Module:init/1. Also, the callback module
Modul e does not need to export ani ni t / 1 function.

Failure: If the calling process was not started by apr oc_| i b start function, or if it is not registered according to
Ser ver Nane.

CALLBACK FUNCTIONS

The following functions should be exported from agen_ser ver callback module.

Exports

Module:init(Args) -> Result
Types:
Args = term()
Result = {ok, State} | {ok, State, Tineout} | {ok, State, hibernate}

| {stop, Reason} | ignore
State = term))
Timeout = int()>=0] infinity

Reason = term()

Whenever a gen_server is started using gen_server:start/3,4 or gen_server:start_link/3,4, this function is called by
the new processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If the initidlization is successful, the function should return {ok, State}, {ok, State, Ti meout} or
{ ok, St at e, hi ber nat e}, where St at e istheinternal state of the gen_server.

If an integer timeout valueis provided, atimeout will occur unless arequest or amessageisreceived within Ti meout
milliseconds. A timeout is represented by the atom t i meout which should be handled by the handl e_i nf o/ 2
callback function. Theatomi nf i ni t y can be used to wait indefinitely, thisis the default value.

If hi ber nat e is specified instead of atimeout value, the process will go into hibernation when waiting for the next
message to arrive (by calling proc_lib: hibernate/3).

If something goes wrong during the initialization the function should return { st op, Reason} where Reason is
any term, or i gnor e.

Ericsson AB. All Rights Reserved.: STDLIB | 213

gen_server

Module:handle call(Request, From, State) -> Result
Types:
Request = term)
From = {pid(), Tag}
State = term)
Result = {reply, Reply, NewState} | {reply, Reply, NewSt at e, Ti neout }
| {reply, Reply, NewSt at e, hi ber nat e}
| {noreply, NewState} | {noreply, NewSt at e, Ti meout }
| {noreply, NewsSt at e, hi ber nat e}
| {stop, Reason, Reply, NewSt ate} | {stop, Reason, NewSt at e}
Reply = term)
NewState = term()
Timeout = int()>=0] infinity
Reason = term()

Whenever agen_server receives arequest sent using gen_server:call/2,3 or gen_server:multi_call/2,3,4, thisfunction
is called to handle the request.

Request isthe Request argument providedtocal | ornulti _call.
Fromisatuple{ Pi d, Tag} wherePi d isthe pid of the client and Tag is a unique tag.
St at e istheinternal state of the gen_server.

If the function returns {reply, Reply, NewState}, {reply, Reply, NewState, Ti neout} or
{reply, Reply, NewSt at e, hi ber nat e}, Repl y will begiven back to Fr omasthereturnvalueof cal 1 / 2, 3
orincludedinthereturn valueof nul ti _cal 1/ 2, 3, 4. The gen_server then continues executing with the possibly
updated internal state NewSt at e. See Modul e: i ni t/ 1 for adescription of Ti meout and hi ber nat e.

If the functions returns {noreply, NewSt at e}, {noreply, NewSt at e, Ti meout } or
{noreply, NewSt at e, hi ber nat e}, the gen_server will continue executing with NewSt at e. Any reply to
Fr ommust be given explicitly using gen_server:reply/2.

If the function returns {st op, Reason, Reply, NewSt at e}, Reply will be given back to From If
the function returns {st op, Reason, NewSt at e}, any reply to From must be given explicitly using
gen_server:reply/ 2. The gen server will then call Modul e: t er mi nat e(Reason, NewSt at e) and
terminate.

Module:handle cast(Request, State) -> Result
Types.
Request = term))
State = term))
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewSt at e, hi ber nat e}
| {stop, Reason, NewSt at e}
NewState = term()
Tinmeout = int()>=0] infinity
Reason = term()

Whenever agen_server receivesarequest sent using gen_server:cast/2 or gen_server:abcast/2,3, thisfunctioniscalled
to handle the request.

214 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

See Modul e: handl e_cal | / 3 for adescription of the arguments and possible return values.

Module:handle info(Info, State) -> Result
Types.
Info = tinmeout | term)
State = term)
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewsSt at e, hi ber nat e}
| {stop, Reason, NewSt at e}
NewState = term)
Timeout = int()>=0 | infinity
Reason = normal | tern()

Thisfunctioniscalled by agen server when atimeout occursor whenit receivesany other message than asynchronous
or asynchronous request (or a system message).

I nf o iseither theatomt i meout , if atimeout has occurred, or the received message.
See Modul e: handl e_cal | / 3 for adescription of the other arguments and possible return values.

Module:terminate(Reason, State)

Types:
Reason = nornmal | shutdown | {shutdown,tern()} | term()
State = term)

Thisfunctioniscalled by agen_server whenitisabout to terminate. It should bethe oppositeof Modul e: i ni t/ 1 and
do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value isignored.

Reason isaterm denoting the stop reason and St at e isthe internal state of the gen_server.

Reason depends on why the gen_server isterminating. If it is because another callback function has returned a stop
tuple{ st op, ..}, Reason will have the value specified in that tuple. If it is due to a failure, Reason isthe error
reason.

If the gen_server is part of a supervision tree and is ordered by its supervisor to terminate, this function will be called
with Reason=shut down if the following conditions apply:
* thegen_server has been set to trap exit signals, and
e the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not
brutal _kill.

Even if the gen_server is not part of a supervision tree, this function will be called if it receivesan' EXI T' message
from its parent. Reason will bethesameasinthe' EXI T' message.

Otherwise, the gen_server will be immediately terminated.

Note that for any other reason than nor mal , shut down, or { shut down, Ter n} the gen server is assumed to
terminate due to an error and an error report isissued using error_logger:format/2.

Module:code change(OldVsn, State, Extra) -> {ok, NewState} | {error, Reason}
Types:
A dvsn = Vsn | {down, Vsn}
Vsn = term))
State = NewState = term)

Ericsson AB. All Rights Reserved.: STDLIB | 215

gen_server

Extra = tern()
Reason = term()

This function is called by a gen_server when it should update its internal state during a rel ease upgrade/downgrade,
i.e. when the instruction { updat e, Mbdul e, Change, . . .} where Change={ advanced, Extr a} isgivenin
theappup file. See OTP Design Principles for more information.

Inthe case of an upgrade, d dVsn isVsn, and inthe case of adowngrade, A dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
isthe checksum of the BEAM file.

St at e istheinternal state of the gen_server.
Ext r a ispassed as-isfromthe{ advanced, Ext r a} part of the update instruction.
If successful, the function shall return the updated internal state.

If the function returns{ er r or , Reason}, the ongoing upgrade will fail and roll back to the old release.

Module:format status(Opt, [PDict, State]) -> Status

Types:
Opt = normal | termnate
PDict = [{Key, Value}]
State = term)

Status = tern()

Note:

This callback is optional, so callback modules need not export it. The gen_server module provides a default
implementation of this function that returns the callback module state.

Thisfunction iscalled by agen_server process when:

« Oneof sys.get_status/1,2 isinvoked to get the gen_server status. Opt is set to the atom nor mal for this case.
* Thegen_server terminates abnormally and logs an error. Opt isset totheatomt er mi nat e for this case.

This function is useful for customising the form and appearance of the gen_server status for these cases. A callback
module wishing to customise the sys: get _status/ 1, 2 return value as well as how its status appears in
termination error logs exports an instance of f or mat _st at us/ 2 that returns a term describing the current status
of the gen_server.

PDi ct isthe current value of the gen_server's process dictionary.
St at e istheinternal state of the gen_server.

Thefunction should return St at us, aterm that customisesthe details of the current state and status of the gen_server.
There are no restrictions on the form St at us can take, but for the sys: get st atus/ 1, 2 case (when Opt is
nor mal), the recommended form for the St at us valueis[{data, [{"State", Tern}]}] where Term
providesrelevant details of the gen_server state. Following this recommendation isn't required, but doing so will make
the callback module status consistent with therest of thesys: get _st at us/ 1, 2 return value.

One usefor thisfunction isto return compact alternative state representationsto avoid having large state terms printed
inlogfiles.

216 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

SEE ALSO
gen_event(3), gen_fsm(3), supervisor(3), proc_lib(3), sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 217

o)

Erlang module

This module provides an interface to standard Erlang I/O servers. The output functions all return ok if they are
successful, or exit if they are not.

In the following description, al functions have an optional parameter | oDevi ce. If included, it must be the pid of a
process which handles the 10 protocols. Normally, it isthe | oDevi ce returned by file:open/2.

For a description of the |O protocols refer to the STDLIB User's Guide.

Warning:

As of R13A, data supplied to the put_chars function should be in the uni code: char dat a() format. This
means that programs supplying binaries to this function need to convert them to UTF-8 before trying to output
the dataon an |O device.

If an 10 device is set in binary mode, the functions get_chars and get_line may return binaries instead of lists.
The binarieswill, as of R13A, be encoded in UTF-8.

To work with binaries in 1SO-latin-1 encoding, use the file module instead.

For conversion functions between character encodings, see the unicode module.

Data Types
device() = atom() | pid()

An 10 device. Either st andar d_i o, standard_error, a registered name, or a pid handling 10 protocols
(returned from file:open/2).

= {binary, boolean()}
| {echo, boolean()}
| {expand fun, expand_fun()}
| {encoding, encoding() }
expand fun() =
fun((term()) -> {yes | no, string(), [string(), ...1})
encoding() = latinl
| unicode
| utf8
|
|

opt pair()

utfle

utf32

{utfle, big | little}
| {utf32, big | little}

setopt() = binary | list | opt_pair()

format() = atom() | string() | binary()

location() = erl _scan:location()

prompt() = atom() | uni code: chardat a()

server_no_data() = {error, ErrorDescription :: term()} | eof

What the I/O-server sends when there is no data.

218 | Ericsson AB. All Rights Reserved.: STDLIB

Exports

columns() -> {ok, integer() >= 1} | {error, enotsup}
columns(IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types.

IoDevice = device()

Retrieves the number of columns of the | oDevi ce (i.e. the width of a terminal). The function only succeeds for
terminal devices, for all other 1O devicesthe function returns{ er r or, enot sup}

put chars(CharData) -> ok
put chars(IoDevice, CharData) -> ok

Types:
IoDevice = device()
CharData = uni code: chardat a()

Writes the characters of Char Dat a to the I/O server (I oDevi ce).

nl() -> ok
nl(IoDevice) -> ok
Types:
IoDevice = device()
Writes new line to the standard output (I oDevi ce).

get chars(Prompt, Count) -> Data | server_no_data()
get chars(IoDevice, Prompt, Count) -> Data | server_no_data()
Types.

IoDevice = device()

Prompt = pronpt ()

Count = integer() >= 0

Data = string() | unicode: uni code_binary()

server_no_data() = {error, ErrorDescription :: term()} | eof
Reads Count characters from standard input (I oDevi ce), prompting it with Pr onpt . It returns:
Dat a

The input characters. If the 10 device supports Unicode, the data may represent codepoints larger than 255 (the
latinl range). If the I/O server is set to deliver binaries, they will be encoded in UTF-8 (regardless of if the 10
device actually supports Unicode or not).

eof
End of file was encountered.
{error, ErrorDescription}
Other (rare) error condition, for instance{ error, estal e} if reading from an NFSfile system.

Ericsson AB. All Rights Reserved.: STDLIB | 219

get line(Prompt) -> Data | server_no_data()
get line(IoDevice, Prompt) -> Data | server_no_data()
Types:

IoDevice = device()

Prompt = pronpt ()

Data = string() | unicode: uni code_binary()

server_no _data() = {error, ErrorDescription :: term()} | eof
Reads a line from the standard input (I oDevi ce), prompting it with Pr onpt . It returns:
Dat a

The characters in the line terminated by a LF (or end of file). If the 1O device supports Unicode, the data may
represent codepoints larger than 255 (the latinl range). If the 1/O server is set to deliver binaries, they will be
encoded in UTF-8 (regardless of if the |O device actually supports Unicode or not).

eof
End of file was encountered.
{error, ErrorDescription}
Other (rare) error condition, for instance{ err or, estal e} if reading from an NFSfile system.

getopts() -> [opt_pair()] | {error, Reason}
getopts(IoDevice) -> [opt_pair()] | {error, Reason}
Types:

IoDevice = device()

Reason = term()

This function requests all available options and their current values for a specific 10 device. Example:

1> {ok,F} = file:open("/dev/null", [read]).
{ok,<0.42.0>}

2> io:getopts(F)

[{binary, false}, {encoding,latinl}]

Herethefile |/O-server returns all available options for afile, which are the expected ones, encodi ng and bi nary.
The standard shell however has some more options:

3> io:getopts().

[{expand fun,#Fun<group.0.120017273>},
{echo, true},

{binary, false},

{encoding,unicode}]

This exampleis, as can be seen, run in an environment where the terminal supports Unicode input and output.

printable range() -> unicode | latinl
Return the user requested range of printable Unicode characters.

The user can request arange of characters that are to be considered printable in heuristic detection of strings by the
shell and by the formatting functions. Thisis done by supplying +pc <r ange> when starting Erlang.

220 | Ericsson AB. All Rights Reserved.: STDLIB

Currently theonly valid valuesfor <r ange> arel at i n1 anduni code.| at i n1 meansthat only code pointsbelow
256 (with the exception of control characters etc) will be considered printable. uni code means that al printable
charactersin all unicode character ranges are considered printable by the io functions.

By default, Erlang is started so that only thel at i n1 range of characterswill indicate that alist of integersisastring.

The simplest way to utilize the setting isto call io_lib:printable_list/1, which will use the return value of this function
to decideif alist isastring of printable characters or not.

Note:

In the future, thisfunction may return more values and ranges. It isrecommended to usetheio_lib:printable list/1
function to avoid compatibility problems.

setopts(Opts) -> ok | {error, Reason}
setopts(IoDevice, Opts) -> ok | {error, Reason}
Types:

IoDevice = device()

Opts = [setopt()]

Reason = term()
Set options for the standard 10 device (I oDevi ce).

Possible options and values vary depending on the actual 10 device. For alist of supported options and their current
values on a specific 10 device, use the getopts/1 function.

The options and values supported by the current OTP IO devices are:
bi nary, list or {binary, boolean()}

If setin binary mode (bi nary or { bi nary, true}),thel/O server sends binary data (encoded in UTF-8) as
answerstotheget | i ne,get chars and,if possible,get _unti | requests(seethel/O protocol description
in STDLIB User's Guide for details). The immediate effect is that get _chars/ 2,3 andget _line/ 1,2
return UTF-8 binaries instead of lists of chars for the affected 10 device.

By default, all 10 devicesin OTP are set in list mode, but the I/O functions can handle any of these modes and
so should other, user written, modules behaving as clientsto I/O-servers.

This option is supported by the standard shell (gr oup. er |), the'oldshell' (user . er |) and thefilel/O servers.
{echo, bool ean()}

Denotes if the terminal should echo input. Only supported for the standard shell 1/0-server (gr oup. erl)
{expand_fun, expand_fun()}

Provide a function for tab-completion (expansion) like the Erlang shell. This function is called when the user
presses the TAB key. The expansion is active when calling line-reading functionssuch asget | i ne/ 1, 2.

The function is called with the current line, upto the cursor, as a reversed string. It should return a three-tuple:
{yes|no, string(), [string(), ...]}.Thefirstelementgivesabeepif no, otherwisetheexpansion
is silent, the second is a string that will be entered at the cursor position, and the third is a list of possible
expansions. If thislist is non-empty, the list will be printed and the current input line will be written once again.

Trivial example (beep on anything except empty line, whichisexpandedto " qui t *):

fun("") -> {yes, "quit", [1};

Ericsson AB. All Rights Reserved.: STDLIB | 221

() ->{no, "", ["quit"]} end

This option is supported by the standard shell only (gr oup. er).
{encoding, latinl | unicode}

Specifies how characters are input or output from or to the actual 10 device, implying that i.e. aterminal is set to
handle Unicode input and output or afileis set to handle UTF-8 data encoding.

The option does not affect how datais returned from the 1/0O functions or how it is sent in the I/O-protocal, it only
affects how the IO device is to handle Unicode characters towards the "physical” device.

Thestandard shell will be set for either Unicode or | atinl encoding when the system is started. The actual encoding
is set with the help of the LANG or LC_CTYPE environment variables on Unix-like system or by other means
on other systems. The bottom line is that the user can input Unicode characters and the 10 device will be in
{encodi ng, uni code} modeif the IO device supports it. The mode can be changed, if the assumption of
the runtime system iswrong, by setting this option.

The 10 device used when Erlang is started with the "-oldshell" or "-noshell" flags is by default set to latinl
encoding, meaning that any characters beyond codepoint 255 will be escaped and that input is expected to be
plain 8-bit 1SO-latin-1. If the encoding is changed to Unicode, input and output from the standard file descriptors
will bein UTF-8 (regardless of operating system).

Files can also be set in { encodi ng, uni code}, meaning that data is written and read as UTF-8. More
encodings are possible for files, see below.

{encodi ng, uni code | | atinl} issupported by both the standard shell (gr oup. er | includingwer |
on Windows®), the 'oldshell' (user . er |) and thefile I/O servers.

{encoding, utf8 | utf16 | utf32 | {utf16,big} | {utf16,little} | {utf32, big}
| {utf32,little}}

For disk files, the encoding can be set to various UTF variants. Thiswill have the effect that datais expected to be
read as the specified encoding from the file and the data will be written in the specified encoding to the disk file.

{encodi ng, utf 8} will havethe sameeffect as{ encodi ng, uni code} onfiles.
The extended encodings are only supported on disk files (opened by the file: open/2 function)

write(Term) -> ok
write(IoDevice, Term) -> ok
Types.

IoDevice = device()

Term = term()

Writes the term Ter mto the standard output (I oDevi ce).

read(Prompt) -> Result
read(IoDevice, Prompt) -> Result

Types:
IoDevice = device()
Prompt = pronpt ()

Result = {ok, Term :: term()}
| server_no_dat a()

222 | Ericsson AB. All Rights Reserved.: STDLIB

| {error, ErrorInfo}
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()

server no data() = {error, ErrorDescription :: term()} | eof
Reads aterm Ter mfrom the standard input (1 oDevi ce), prompting it with Pr onpt . It returns:
{ok, Tern}

The parsing was successful.

eof
End of file was encountered.
{error, Errorlnfo}
The parsing failed.
{error, ErrorDescription}
Other (rare) error condition, for instance{ error, estal e} if reading from an NFSfile system.

read(IoDevice, Prompt, StartLocation) -> Result
read(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

IoDevice = device()

Prompt = pronpt ()

StartLocation = location()
Options = erl _scan: options()
Result = {ok, Term :: term(), EndLocation :: location()}

| {eof, EndLocation :: location()}

| server_no_data()

| {error, ErrorInfo, ErrorLocation :: location()}
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
server_no data() = {error, ErrorDescription :: term()} | eof

Readsaterm Ter mfrom | oDevi ce, prompting it with Pr onpt . Reading starts at location St ar t Locat i on. The
argument Opt i ons is passed on asthe Opt i ons argument of theer | _scan: t okens/ 4 function. It returns:

{ok, Term EndLocati on}
The parsing was successful.
{eof , EndLocati on}
End of file was encountered.
{error, Errorinfo, ErrorLocation}
The parsing failed.
{error, ErrorDescription}
Other (rare) error condition, for instance{ error, estal e} if reading from an NFSfile system.

Ericsson AB. All Rights Reserved.: STDLIB | 223

fwrite(Format) -> ok

fwrite(Format, Data) -> ok
fwrite(IoDevice, Format, Data) -> ok
format(Format) -> ok

format(Format, Data) -> ok
format(IoDevice, Format, Data) -> ok
Types:

IoDevice = device()
Format = format ()
Data = [term()]

Writestheitemsin Dat a ([]) on the standard output (I oDevi ce) in accordance with For mat . For nat contains
plain characters which are copied to the output device, and control sequences for formatting, see below. If For mat
isan atom or abinary, itisfirst converted to alist withtheaidof atom to_list/1orbinary_to_Ilist/1.

1> io:fwrite("Hello world!~n", []).
Hello world!
ok

Thegeneral format of acontrol sequenceis~F. P. PadMbdC. The character Cdeterminesthetype of control sequence
to be used, F and P are optional numeric arguments. If F, P, or Pad is*, the next argument in Dat a is used as the
numeric value of F or P.

Fisthefi el d wi dt h of the printed argument. A negative value meansthat the argument will beleft justified within
thefield, otherwise it will be right justified. If no field width is specified, the required print width will be used. If the
field width specified is too small, then the whole field will be filled with * characters.

Pisthepr eci si on of the printed argument. A default valueisused if no precision is specified. The interpretation of
precision depends on the control sequences. Unless otherwise specified, the argument wi t hi n is used to determine
print width.

Pad is the padding character. This is the character used to pad the printed representation of the argument so that
it conforms to the specified field width and precision. Only one padding character can be specified and, whenever
applicable, it isused for both the field width and precision. The default padding character is' ' (space).

Mbd is the control sequence modifier. It is either a single character (currently only t , for Unicode trandlation, and | ,
for stopping p and P from detecting printable characters, are supported) that changes the interpretation of Data.

The following control sequences are available:

The character ~ iswritten.

The argument is a number that will be interpreted as an ASCII code. The precision is the number of times the
character isprinted and it defaultsto the field width, which in turn defaultsto 1. Thefollowing exampleillustrates:

1> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $cl).
[aaaaa|bbbbb | ccecec|
ok

224 | Ericsson AB. All Rights Reserved.: STDLIB

If the Unicode trandation modifier (t) isin effect, the integer argument can be any number representing a valid
Unicode codepoint, otherwiseit should be an integer lessthan or equal to 255, otherwiseit is masked with 16#FF:

2> io:fwrite("~tc~n",[1024]).
\x{400}

ok

3> io:fwrite("~c~n",[1024]).
@

ok

The argument is afloat which iswritten as[-] ddd. ddd, where the precision is the number of digits after the
decimal point. The default precision is 6 and it cannot be less than 1.

The argument is a float which is written as[-] d. ddde+- ddd, where the precision is the number of digits
written. The default precision is 6 and it cannot be less than 2.

Theargument isafloat whichiswritten asf , if itis>= 0.1 and < 10000.0. Otherwise, it iswritten in the e format.
The precision is the number of significant digits. It defaults to 6 and should not be less than 2. If the absolute
value of the float does not allow it to be written in the f format with the desired number of significant digits,
it isaso written in the e format.

Prints the argument with the string syntax. The argument is, if no Unicode transation modifier is present, an
iolist(),abinary(),oranaton(). If the Unicode transation modifier (t) isin effect, the argument is
uni code: char dat a() , meaning that binaries are in UTF-8. The characters are printed without quotes. The
string isfirst truncated by the given precision and then padded and justified to the given field width. The default
precision isthe field width.

Thisformat can be used for printing any object and truncating the output so it fits a specified field:

1> io:fwrite("|~10w|~n", [{hey, hey, hey}]).

|********** |

ok

2> io:fwrite("|~10s|~n", [io lib:write({hey, hey, hey})]).

| {hey, hey,h|

3> io:fwrite("|~-10.8s|~n", [io lib:write({hey, hey, hey})]).
|{hey,hey |

ok

A list with integers larger than 255 is considered an error if the Unicode translation modifier is not given:

4> io:fwrite("~ts~n",[[1024]]).

\x{400}

ok

5> io:fwrite("~s~n",[[1024]]).

** exception exit: {badarg, [{io,format,[<0.26.0>,"~s~n",[[1024]]1},

Ericsson AB. All Rights Reserved.: STDLIB | 225

w
Writes data with the standard syntax. Thisis used to output Erlang terms. Atoms are printed within quotesif they
contain embedded non-printable characters, and floats are printed accurately as the shortest, correctly rounded
string.

p

Writes the data with standard syntax in the same way as ~w, but breaks terms whose printed representation
is longer than one line into many lines and indents each line sensibly. It also tries to detect lists of printable
characters and to output these as strings. The Unicode tranglation modifier is used for determining what characters
are printable. For example:

1> T = [{attributes,[[{id,age,1.50000}, {mode,explicit},
{typename, "INTEGER"}1, [{id,cho}, {mode,explicit}, {typename, 'Cho'}11},
{typename, 'Person'},{tag, {'PRIVATE',3}}, {mode,implicit}].

2> io:fwrite("~w~n", [T]).
[{attributes, [[{id,age, 1.5}, {mode,explicit}, {typename,
[73,78,84,69,71,69,82]1}1, [{id,cho}, {mode,explicit}, {typena
me, 'Cho'}11}, {typename, 'Person'},{tag, {'PRIVATE',3}}, {mode
,implicit}]
ok
3> io:fwrite("~62p~n", [T]).
[{attributes, [[{id,age, 1.5},
{mode, explicit},
{typename, "INTEGER"}1,
[{id, cho}, {mode,explicit}, {typename, 'Cho'}11},
{typename, 'Person'},
{tag, {'PRIVATE',f3}},
{mode, implicit}]
ok

Thefield width specifiesthe maximum linelength. It defaultsto 80. The precision specifiestheinitial indentation
of the term. It defaults to the number of characters printed on this line in the sanme cal toio: fwite or
i o: fornmat. For example, using T above:

4> io:fwrite("Here T = ~62p~n", [T]).
Here T = [{attributes,[[{id,age,1.5},
{mode,explicit},
{typename, "INTEGER"}1],
[{id, cho},
{mode,explicit},
{typename, 'Cho'}11},
{typename, 'Person'},
{tag, {'PRIVATE',3}},
{mode, implicit}]
ok

When the modifier | isgiven no detection of printable character lists will take place. For example:

5> S = [{a,"a"}, {b, "b"}].
6> io:fwrite("~15p~n", [S]).
[{a,"a"},

{b,"b"}1]
ok
7> io:fwrite("~151p~n", [S]).

226 | Ericsson AB. All Rights Reserved.: STDLIB

[{a, [97]},
{b, [98]}]
ok

Binaries that look like UTF-8 encoded strings will be output with the string syntax if the Unicode translation
modifier is given:

9> io:fwrite("~p~n",[[1024]]).

[1624]

10> io:fwrite("~tp~n",[[1024]]).
"\x{400}"

11> io:fwrite("~tp~n", [<<128,128>>]).
<<128,128>>

12> io:fwrite("~tp~n", [<<208,128>>]).
<<"\x{400}"/utf8>>

ok

Writes data in the same way as ~w, but takes an extra argument which is the maximum depth to which terms are
printed. Anything below this depth is replaced with For example, using T above:

8> io:fwrite("~W~n", [T,9]).

[{attributes, [[{id,age,1.5}, {mode,explicit}, {typename,...}],
[{id,cho},{mode,...},{...}]11},{typename, 'Person'},

{tag, {'PRIVATE',3}},{mode,implicit}]

ok

If the maximum depth has been reached, then it isimpossible to read in the resultant output. Also, the, . . . form
in atuple denotes that there are more elements in the tuple but these are below the print depth.

Writes datain the same way as ~p, but takes an extra argument which is the maximum depth to which terms are
printed. Anything below this depth isreplaced with For example:

9> io:fwrite("~62P~n", [T,9]).
[{attributes, [[{id,age,1.5}, {mode,explicit}, {typename,...}],
[{id,cho},{mode,...},{...}11},
{typename, 'Person'},
{tag, {'PRIVATE',3}},
{mode, implicit}]
ok

Writes an integer in base 2..36, the default base is 10. A leading dash is printed for negative integers.
The precision field selects base. For example:

1> io:fwrite("~.16B~n", [31]).
1F

ok

2> io:fwrite("~.2B~n", [-19]).
-10011

Ericsson AB. All Rights Reserved.: STDLIB | 227

ok
3> io:fwrite("~.36B~n", [5*36+35]).
5Z
ok

Like B, but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.
The prefix can be a possibly deep list of characters or an atom.

1> io:fwrite("~X~n", [31,"10#"]).
10#31

ok

2> io:fwrite("~.16X~n", [-31,"0x"]).
-0Ox1F

ok

Like B, but prints the number with an Erlang style #-separated base prefix.

1> io:fwrite("~.10#~n", [31]).
10#31

ok

2> io:fwrite("~.16#~n", [-31]).
-16#1F

ok

Like B, but prints lowercase letters.

Like X, but prints lowercase |etters.

Like #, but prints lowercase |etters.

Writesanew line.

Ignores the next term.
Returns:
ok
The formatting succeeded.
If an error occurs, thereis no output. For example:

1> jo:fwrite("~s ~w ~i ~w ~c ~n",['abc def', 'abc def', {foo, 1},{foo, 1}, 65]).
abc def 'abc def' {foo,1} A

ok

2> io:fwrite("~s", [65]).

228 | Ericsson AB. All Rights Reserved.: STDLIB

** exception exit: {badarg, [{io,format,[<0.22.0>,"~s",6 "A"]},
{erl eval,do apply,5},
{shell,exprs,6},
{shell,eval exprs,6},
{shell,eval loop,3}1}
in function io:o request/2

In this example, an attempt was made to output the single character 65 with the aid of the string formatting directive
"~g",

fread(Prompt, Format) -> Result
fread(IoDevice, Prompt, Format) -> Result

Types:

IoDevice = device()

Prompt = pronpt ()

Format = format ()

Result = {ok, Terms :: [term()]1}
| {error, {fread, FreadError :: io_lib:fread_error()}}
| server_no_dat a()

server_no_data() = {error, ErrorDescription :: term()} | eof

Reads characters from the standard input (I oDevi ce), prompting it with Pr onpt . Interprets the characters in
accordance with For mat . For mat contains control sequences which directs the interpretation of the input.

For mat may contain:

* White space characters (SPACE, TAB and NEWLINE) which cause input to be read to the next non-white space
character.

e Ordinary characters which must match the next input character.

e Control sequences, which have the general format ~* FMC. The character * is an optiona return suppression
character. It provides amethod to specify afield whichisto be omitted. Fisthef i el d wi dt h of theinput field,
Mis an optional trandlation modifier (of whicht isthe only currently supported, meaning Unicode trand ation)
and C determines the type of control sequence.

Unless otherwise specified, leading white-space is ignored for all control sequences. An input field cannot be
more than one line wide. The following control sequences are available:

A single ~ is expected in the input.

d
A decimal integer is expected.

u
An unsigned integer in base 2..36 is expected. The field width parameter is used to specify base. Leading
white-space characters are not skipped.
An optional sign character is expected. A sign character - gives the return value - 1. Sign character + or
none gives 1. The field width parameter isignored. Leading white-space characters are not skipped.

#

An integer in base 2..36 with Erlang-style base prefix (for example" 16#f f f f ") is expected.

Ericsson AB. All Rights Reserved.: STDLIB | 229

f
A floating point number is expected. It must follow the Erlang floating point number syntax.
S
A string of non-white-space charactersisread. If afield width has been specified, this number of characters
areread and all trailing white-space characters are stripped. An Erlang string (list of characters) is returned.
If Unicode trangdlation is in effect (~t s), characters larger than 255 are accepted, otherwise not. With the
tranglation modifier, the list returned may as a consequence also contain integers larger than 255:
1> io:fread("Prompt> ","~s").
Prompt> <Characters beyond latinl range not printable in this medium>
{error,{fread,string}}
2> io:fread("Prompt> ","~ts").
Prompt> <Characters beyond latinl range not printable in this medium>
{ok, [[1091,1085,1080,1094,1086,1076,1077]1}
a
Similar to s, but the resulting string is converted into an atom.
The Unicode trandation modifier is not allowed (atoms can not contain characters beyond the latinl range).
c
The number of characters equal to the field width are read (default is 1) and returned as an Erlang string.
However, leading and trailing white-space characters are not omitted as they are with s. All characters are
returned.
The Unicode trandlation modifier works aswith s:
1> io:fread("Prompt> ","~c").
Prompt> <Character beyond latinl range not printable in this medium>
{error,{fread,string}}
2> io:fread("Prompt> ", "~tc").
Prompt> <Character beyond latinl range not printable in this medium>
{ok, [[1691]1}
I
Returnsthe number of characterswhich have been scanned up to that point, including white-space characters.
It returns:

{ok, Terns}
The read was successful and Ter ns isthelist of successfully matched and read items.
eof
End of file was encountered.
{error, FreadError}
Thereading failed and Fr eadEr r or givesahint about the error.
{error, ErrorDescription}
The read operation failed and the parameter Er r or Descr i pt i on givesahint about the error.

Examples:

230 | Ericsson AB. All Rights Reserved.: STDLIB

20> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok,[1.9,3.55e4,15.0]}

21> io:fread('enter>', "~10f~d").
enter> 5.67899

{ok,[5.678,99]}

22> io:fread('enter>', ":~10s:~10c:").
enter>: alan : joe :

{ok, ["alan", " joe "1}

rows() -> {ok, integer() >= 1} | {error, enotsup}
rows (IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types:

IoDevice = device()

Retrievesthe number of rowsof thel oDevi ce (i.e. the height of aterminal). The function only succeedsfor terminal
devices, for al other 10 devicesthe functionreturns{ err or, enot sup}

scan_erl _exprs
scan _erl _exprs
scan_erl _exprs
scan_erl _exprs

Prompt) -> Result

Device, Prompt) -> Result

Device, Prompt, StartLocation) -> Result

Device, Prompt, StartLocation, Options) -> Result

—~ o~ o~ o~

Types:
Device = device()
Prompt = pronpt ()
StartLocation = |l ocation()

Options = erl _scan: options()
Result = erl _scan:tokens_result() | server_no_data()
server_no data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Reading starts at location
StartLocation (1). The argument Options is passed on as the Options argument of the
erl _scan: t okens/ 4 function. The data is tokenized as if it were a sequence of Erlang expressions until a final
dot (.) isreached. Thistoken is also returned. It returns:

{ok, Tokens, EndLocati on}
The tokenization succeeded.
{eof , EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/O-server.
{error, Errorinfo, ErrorLocation}
An error occurred while tokenizing.
{error, ErrorDescription}
Other (rare) error condition, for instance{ err or, est al e} if reading from an NFSfile system.

Example:

Ericsson AB. All Rights Reserved.: STDLIB | 231

23> io:scan_erl exprs('enter>').

enter>abc(), "hey".

{ok, [{atom,1,abc},{'(',1},{")",1},{",",1},{string,1,"hey"},{dot,1}],2}
24> io:scan_erl exprs('enter>').

enter>1.0er.

{error,{1,erl scan,{illegal, float}},2}

scan _erl form(Prompt) -> Result

scan_erl form(IoDevice, Prompt) -> Result

scan_erl form(IoDevice, Prompt, StartLocation) -> Result
(

scan_erl form(IoDevice, Prompt, StartLocation, Options) -> Result

Types:
IoDevice = device()
Prompt = pronpt ()
StartLocation = location()
Options = erl _scan: options()
Result = erl _scan:tokens_result() | server_no_data()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Starts reading at location
StartLocation (1). The argument Options is passed on as the Options argument of the
erl _scan: t okens/ 4 function. The data is tokenized as if it were an Erlang form - one of the valid Erlang
expressionsin an Erlang sourcefile - until afinal dot (.) isreached. Thislast token isaso returned. The return values

arethesameasforscan_er| _exprs/ 1, 2, 3 above.

parse _erl exprs(Prompt) -> Result

parse erl exprs(IoDevice, Prompt) -> Result

parse _erl exprs(IoDevice, Prompt, StartLocation) -> Result
(

parse erl exprs(IoDevice, Prompt, StartLocation, Options) ->
Result

Types.
IoDevice = device()
Prompt = pronpt ()
StartLocation = |l ocation()
Options = erl _scan: options()
Result = parse_ret()
parse ret() = {ok,

ExprList :: erl _parse:abstract _expr(),
EndLocation :: location()}
| {eof, EndLocation :: location()}
| {error,
ErrorInfo :: erl _scan:error_info()
| erl _parse:error_info(),
ErrorLocation :: location()}

232 | Ericsson AB. All Rights Reserved.: STDLIB

| server_no_data()
server_no _data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Starts reading at location
StartLocation (1). The argument Options is passed on as the Options argument of the
erl _scan: t okens/ 4 function. The data is tokenized and parsed as if it were a sequence of Erlang expressions

until afinal dot (.) isreached. It returns:
{ok, ExprlList, EndLocation}
The parsing was successful.
{eof, EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/O-server.
{error, Errorlinfo, ErrorLocation}
An error occurred while tokenizing or parsing.
{error, ErrorDescription}

Other (rare) error condition, for instance{ err or, est al e} if reading from an NFSfile system.

Example:

25> io:parse erl exprs('enter>').

enter>abc(), "hey".

{ok, [{call,1,{atom,1,abc},[1},{string,1,"hey"}1,2}

26> io:parse erl exprs ('enter>').

enter>abc("hey".

{error,{1,erl parse,["syntax error before: ",["'.'"]1},2}

parse erl form(Prompt) -> Result
parse erl form(IoDevice, Prompt) -> Result
parse erl form(IoDevice, Prompt, StartLocation) -> Result
parse erl form(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

IoDevice = device()

Prompt = pronpt ()

StartLocation = location()

Options = erl _scan: options()

Result = parse formret()

parse form ret() = {ok,

AbsForm :: erl _parse:abstract_form),
EndLocation :: location()}
| {eof, EndLocation :: location()}
| {error,
ErrorInfo :: erl _scan:error_info()
| erl _parse:error_info(),
ErrorLocation :: location()}

Ericsson AB. All Rights Reserved

. STDLIB | 233

| server_no_data()
server_no _data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Starts reading at location
StartLocation (1). The argument Options is passed on as the Options argument of the
erl _scan: t okens/ 4 function. The data is tokenized and parsed as if it were an Erlang form - one of the valid
Erlang expressionsin an Erlang source file - until afinal dot (.) isreached. It returns:

{ok, AbsForm EndLocati on}
The parsing was successful.
{eof, EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/O-server.
{error, Errorlinfo, ErrorLocation}
An error occurred while tokenizing or parsing.
{error, ErrorDescription}
Other (rare) error condition, for instance{ err or, est al e} if reading from an NFSfile system.

Standard Input/Output

All Erlang processes have adefault standard 10 device. Thisdeviceisused whenno | oDevi ce argument is specified
in the above function calls. However, it is sometimes desirable to use an explicit | oDevi ce argument which refers
to the default 10 device. Thisisthe case with functions that can access either afile or the default 1O device. The atom
st andar d_i o hasthis specia meaning. The following exampleillustrates this:

27> io:read('enter>"').

enter>foo.

{ok, foo}

28> io:read(standard io, 'enter>'").
enter>bar.

{ok,bar}

There is aways a process registered under the name of user . This can be used for sending output to the user.

Standard Error

In certain situations, especially when the standard output is redirected, access to an 1/0O-server specific for error
messages might be convenient. ThelO devicest andar d_er r or canbeused to direct output to whatever the current
operating system considers a suitable 10 device for error output. Example on a Unix-like operating system:

$ erl -noshell -noinput -eval 'io:format(standard error,"Error: ~s~n",["error 11"]),'\
'init:stop().' > /dev/null
Error: error 11

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the format:

234 | Ericsson AB. All Rights Reserved.: STDLIB

{ErrorLocation, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Module: format error(ErrorDescriptor)

Ericsson AB. All Rights Reserved.: STDLIB | 235

io_lib

io_lib

Erlang module

Thismodule contains functionsfor converting to and from strings (lists of characters). They are used for implementing
thefunctionsin thei o module. There is no guarantee that the character lists returned from some of the functions are
flat, they canbedeeplists. | i st s: fl att en/ 1 can be used for flattening deep lists.

Data Types

chars() = [char() | chars()]
continuation()

A continuation as returned by f r ead/ 3.
depth() = -1 | integer() >= 0
fread error() = atom

| based

| character
| float

| format

| input

| integer

| string

| unsigned

fread item() = string() | atom() | integer() | float()
latinl string() = [unicode:latinl_char()]

Exports

nl() -> string()
Returns a character list which represents anew line character.

write(Term) -> chars()
write(Term, Depth) -> chars()
Types:
Term = term()
Depth = dept h()
Returns a character list which represents Ter m The Dept h (-1) argument controlsthe depth of the structureswritten.
When the specified depth is reached, everything below thislevel isreplaced by "...". For example:

1> lists:flatten(io lib:write({1,[2],[3],[4,51,6,7,8,9})).
“{1,[2]1,31,[4,5],6,7,8,9}"

2> lists:flatten(io lib:write({1,[2],[3],[4,5],6,7,8,9}, 5)).
“{1,[21,[31,[...1,...}"

236 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

print(Term) -> chars()
print(Term, Column, LinelLength, Depth) -> chars()
Types:
Term = term()
Column = LinelLength = integer() >= 0
Depth = depth()
Also returns a list of characters which represents Ter m but breaks representations which are longer than one line
into many lines and indents each line sensibly. It aso tries to detect and output lists of printable characters as strings.

Col umm is the starting column (1), Li neLengt h the maximum line length (80), and Dept h (-1) the maximum
print depth.

fwrite(Format, Data) -> chars()
format(Format, Data) -> chars()
Types.
Format = io:format ()
Data = [term()]
Returnsacharacter list which representsDat a formatted in accordancewith For mat . Seeio:fwrite/1,2,3for adetailed

description of the available formatting options. A fault is generated if thereisan error in the format string or argument
list.

If (and only if) the Unicode trandation modifier is used in the format string (i.e. ~ts or ~tc), the resulting list may
contain characters beyond the 1SO-latin-1 character range (in other words, numbers larger than 255). If so, the result
isnot an ordinary Erlang string(), but can well be used in any context where Unicode data is allowed.

fread(Format, String) -> Result

Types:
Format = String = string()
Result = {ok,

InputList :: [fread_item()],
LeftOverChars :: string()}

| {more,
RestFormat :: string(),
Nchars :: integer() >= 0,

InputStack :: chars()}
| {error, {fread, What :: fread_error()}}

Triestoread St r i ng in accordance with the control sequencesin For mat . Seeio:fread/3 for a detailed description
of the available formatting options. It is assumed that St r i ng contains whole lines. It returns:

{ok, InputlList, LeftOverChars}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s are
the input characters not used.

{nore, RestFormat, Nchars, |nputStack}

The string was read, but more input is needed in order to complete the original format string. Rest For mat is
the remaining format string, Nchar s the number of characters scanned, and | nput St ack isthe reversed list
of inputs matched up to that point.

{error, What}
The read operation failed and the parameter What gives ahint about the error.

Ericsson AB. All Rights Reserved.: STDLIB | 237

io_lib

Example:

3> io lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok,[15.6,1.73e-5,24.51,[1}

fread(Continuation, CharSpec, Format) -> Return

Types.
Continuation = continuation() | []
CharSpec = string() | eof
Format = string()

string()}

Return {more, Continuationl :: continuation()}
{done, Result, LeftOverChars
Result {ok, InputList :: [fread item)]}

eof

{error, {fread, What :: fread error()}}

This is the re-entrant formatted reader. The continuation of the first call to the functions must be [] . Refer to
Armstrong, Virding, Williams, 'Concurrent Programming in Erlang', Chapter 13 for a complete description of how

the re-entrant input scheme works.

The function returns:

{done, Result, LeftOverChars}
Theinput is complete. The result is one of the following:
{ok, InputList}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s

are the remaining characters.
eof

End of file has been encountered. Lef t Over Char s are the input characters not used.

{error, What}

An error occurred and the parameter What gives a hint about the error.

{nmore, Continuation}

More dataisrequired to build aterm. Cont i nuat i on must be passedto f r ead/ 3, when more data becomes

available.

write atom(Atom) -> chars()
Types:
Atom = atom()
Returns the list of characters needed to print the atom At om

write string(String) -> chars()
Types.
String = string()

Returnsthelist of characters needed to print St r i ng asastring.

238 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

write string as latinl(String) -> latinl_string()
Types:
String = string()
Returnsthelist of characters needed to print St r i ng asastring. Non-Latin-1 characters are escaped.

write latinl string(LatinlString) -> latinl_string()
Types:

LatinlString = latinl_string()
Returnsthelist of characters needed to print Lat i n1Stri ng asastring.

write char(Char) -> chars()
Types.
Char = char()
Returnsthe list of characters needed to print a character constant in the Unicode character set.

write char _as latinl(Char) -> latinl_string()
Types.
Char = char()

Returnsthe list of characters needed to print a character constant in the Unicode character set. Non-Latin-1 characters
are escaped.

write latinl char(LatinlChar) -> latinl_string()
Types:
LatinlChar = unicode:latinl_char()
Returnsthelist of characters needed to print a character constant in the |SO-latin-1 character set.

indentation(String, StartIndent) -> integer()
Types:
String = string()
StartIndent = integer()
Returnsthe indentation if St r i ng has been printed, starting at St ar t | ndent .

char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of charactersin the Unicode range, otherwise it returnsf al se.

latinl char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of charactersin the ISO-latin-1 range, otherwiseit returnsf al se.

Ericsson AB. All Rights Reserved.: STDLIB | 239

io_lib

deep char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misa, possibly deep, list of charactersin the Unicode range, otherwiseit returnsf al se.

deep latinl char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misa, possibly deep, list of charactersin the ISO-latin-1 range, otherwiseit returnsf al se.

printable list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable characters, otherwise it returnsf al se.

What is a printable character in this case is determined by the +pc start up flag to the Erlang VM. See
io:printable_range/0 and erl(1).

printable latinl list(Term) -> boolean()
Types.
Term = term()
Returnst r ue if Ter misaflat list of printable |SO-latin-1 characters, otherwise it returnsf al se.

printable unicode list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable Unicode characters, otherwiseit returnsf al se.

240 | Ericsson AB. All Rights Reserved.: STDLIB

lib

lib

Erlang module

Warning:

This module is retained for compatibility. It may disappear without warning in afuture release.

Exports

flush receive() -> ok
Flushes the message buffer of the current process.

error_message(Format, Args) -> ok
Types:
Format = io:format ()
Args = [term()]
Prints error message Ar gs in accordance with For mat . Similar toi o: f or mat / 2, seeio(3).

progname() -> atom()
Returns the name of the script that started the current Erlang session.

nonl(Stringl) -> String2
Types.
Stringl = String2 = string()

Removes the last newline character, if any, in St ri ngl.

send(To, Msg) -> Msg

Types:
To = pid() | atom() | {atom(), node()}
Msg = term()

This function to makesit possible to send a message using the appl y/ 3 BIF.

sendw(To, Msg) -> Msg

Types.
To = pid() | atom() | {atom(), node()}
Msg = term()

Assend/ 2, but waits for an answer. It isimplemented as follows:

sendw(To, Msg) ->
To ! {self(),Msg},

Ericsson AB. All Rights Reserved.: STDLIB | 241

lib

receive
Reply -> Reply
end.

The message returned is not necessarily areply to the message sent.

242 | Ericsson AB. All Rights Reserved.: STDLIB

lists

lists

Erlang module

This module contains functions for list processing.

Unless otherwise stated, all functions assume that position numbering starts at 1. That is, the first element of alist
isat position 1.

TwotermsT1 and T2 compareequal if T1 == T2 evaluatestot r ue. They matchif T1 =: = T2 evaluatestot r ue.

Whenever an ordering function F is expected as argument, it is assumed that the following properties hold of F for
al x,yandz

« ifxFyandyF xthenx =y (F isantisymmetric);

« ifxFyandyF zthenx F z (F istransitive);

e XxFyoryFx(Fistota).

An example of atypical ordering function islessthan or equal to, =</ 2.

Exports

all(Pred, List) -> boolean()

Types.
Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returnst r ue if Pred(El en) returnst r ue for al elementsEl eminLi st , otherwisef al se.

any(Pred, List) -> boolean()

Types.
Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returnst r ue if Pred(El en) returnst r ue for at least one element El eminLi st .

append(ListOfLists) -> Listl
Types.
ListOfLists = [List]
List = Listl = [T]
T = term()
Returnsalist in which all the sub-listsof Li st Of Li st s have been appended. For example:

> lists:append([[1, 2, 31, [a, bl, [4, 5, 6]]).
[1,2,3,a,b,4,5,6]

Ericsson AB. All Rights Reserved.: STDLIB | 243

lists

append(Listl, List2) -> List3

Types:
Listl = List2 = List3 = [T]
T = term()

Returns a new list Li st 3 which is made from the elements of Li st 1 followed by the elements of Li st 2. For
example:

> lists:append("abc", "def").
"abcdef"

lists:append(A, B) isequivaenttoA ++ B

concat(Things) -> string()
Types.
Things = [Thing]
Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements of Thi ngs. The elements of Thi ngs can be atoms, integers,
floats or strings.

> lists:concat([doc, '/', file, '.', 31).
"doc/file.3"

delete(Elem, Listl) -> List2

Types:
Elem = T
Listl = List2 = [T]
T = term()

Returns a copy of Li st 1 where the first element matching EI emis deleted, if there is such an element.

droplast(List) -> InitList
Types.
List = [T, ...]
InitlList = [T]
T = term()

Drops the last element of a Li st. The list should be non-empty, otherwise the function will crash with a
function_cl ause

dropwhile(Pred, Listl) -> List2
Types:

244 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()

Drops elements El emfrom Li st 1 while Pr ed(El em) returnst r ue and returns the remaining list.

duplicate(N, Elem) -> List
Types.
N = integer() >= 0
Elem = T
List = [T]
T = term()
Returns alist which contains N copies of the term El em For example:

> lists:duplicate(5, xx).
[XX, XX, XX, XX, XX]

filter(Pred, Listl) -> List2
Types:
Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()
Li st 2 isalist of all elementsEl eminLi st 1 for which Pr ed(El en) returnst r ue.

filtermap(Fun, Listl) -> List2
Types.
Fun = fun((Elem) -> boolean() | {true, Value})
Listl = [Elem]
List2 = [Elem | Value]
Elem = Value = term()

CalsFun(El em) onsuccessiveelementsEl emof Li st 1. Fun/ 2 must return either aboolean or atuple{t r ue,
Val ue} . The function returns the list of elements for which Fun returns a new value, where a value of t r ue is
synonymouswith{true, Elent.

Thatis, filtermap behavesasif it had been defined as follows:

filtermap(Fun, Listl) ->
lists:foldr(fun(Elem, Acc) ->

case Fun(Elem) of
false -> Acc;
true -> [Elem|Acc];
{true,Value} -> [Value|Acc]

end,

end, [], Listl).

Example:

Ericsson AB. All Rights Reserved.: STDLIB | 245

lists

> lists:filtermap(fun(X) -> case X rem 2 of 0 -> {true, X div 2}; -> false end end, [1,2,3,4,5]).
[1,2]

flatlength(DeeplList) -> integer() >= 0
Types:
DeepList = [term() | DeeplList]
Equivalentto | engt h(f 1 att en(DeeplLi st)), but more efficient.

flatmap(Fun, Listl) -> List2

Types:
Fun = fun((A) -> [B])
Listl = [A]
List2 = [B]

A =B = term()
Takes a function from Asto lists of Bs, and alist of As(Li st 1) and produces alist of Bs by applying the function
to every element in Li st 1 and appending the resulting lists.
Thatis, f | at map behaves asif it had been defined as follows:

flatmap(Fun, Listl) ->
append(map(Fun, Listl)).

Example:

> lists:flatmap(fun(X)->[X,X] end, [a,b,c]).
[a,a,b,b,c,c]

flatten(DeeplList) -> List

Types:
DeepList = [term() | DeepList]
List = [term()]

Returns aflattened version of DeepLi st .

flatten(DeeplList, Tail) -> List
Types.
DeepList = [term() | DeepList]
Tail = List = [term()]

Returns aflattened version of DeepLi st withthetail Tai | appended.

foldl(Fun, AccO, List) -> Accl
Types.

246 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Fun = fun((Elem :: T, AccIn) -> AccOut)

AccO = Accl = AccIn = AccOut = term()
List = [T]
T = term()

CdlsFun(El em Accl n) on successive elements A of Li st, starting with Accl n

AccO. Fun/ 2 must

return a new accumulator which is passed to the next call. The function returns the final value of the accumulator.

AccO isreturned if the list is empty. For example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15

> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Fun, AccO, List) -> Accl
Types:
Fun = fun((Elem :: T, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = term()
List = [T]
T = term()
Likef ol dl / 3, but thelist istraversed from right to left. For example:

> P = fun(A, AccIn) -> io:format("~p ", [A]), AccIn end.
#Fun<erl eval.12.2225172>

> lists:foldl(P, void, [1,2,3]).

1 2 3 void

> lists:foldr(P, void, [1,2,3]).

3 2 1 void

f ol dl / 3 istail recursive and would usually be preferred to f ol dr/ 3.

foreach(Fun, List) -> ok

Types.
Fun = fun((Elem :: T) -> term())
List = [T]
T = term()

CdlsFun(El em) for each element El eminLi st . Thisfunction isused for its side effects and the evaluation order

is defined to be the same as the order of the elementsin thelist.

keydelete(Key, N, TupleListl) -> TuplelList2
Types.

Key = term()

N = integer() >=1

1..tuple_size(Tuple)

Ericsson AB. All Rights Reserved.: STDLIB | 247

lists

TupleListl = TupleList2 = [Tuple]

Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of atuple whose Nth element compares equal to Key is
deleted, if thereis such atuple.

keyfind(Key, N, TuplelList) -> Tuple | false
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleList = [Tuple]
Tuple = tuple()
Searchesthelist of tuples Tupl eLi st for atuple whose Nth element compares equal to Key . Returns Tupl e if such
atupleisfound, otherwisef al se.

keymap(Fun, N, TuplelListl) -> TuplelList2
Types:
Fun = fun((Terml :: term()) -> Term2 :: term())
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel]
Tuple = tuple()
Returnsalist of tupleswhere, for each tuplein Tupl eLi st 1, the Nth element Ter miL of the tuple has been replaced
with the result of calling Fun(Ter ni) .

Examples:

> Fun = fun(Atom) -> atom to list(Atom) end.

#Fun<erl eval.6.10732646>

2> lists:keymap(Fun, 2, [{name,jane,22},{name,lizzie,20}, {name,lydia,15}]).
[{name, "jane", 22}, {name, "lizzie",b 20}, {name, "lydia",b 15}]

keymember (Key, N, TupleList) -> boolean()
Types.
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleList = [Tuple]
Tuple = tuple()
Returnst r ue if thereisatuplein Tupl eLi st whose Nth element compares equal to Key, otherwisef al se.

keymerge(N, TuplelListl, TupleList2) -> TupleList3
Types:

248 | Ericsson AB. All Rights Reserved.: STDLIB

lists

N = integer() >=1
1..tuple_size(Tuple)

TuplelListl = [T1]
TuplelList2 = [T2]
TupleList3 = [(T1 | T2)]

Tl = T2 = Tuple
Tuple = tuple()
Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the Nth

element of each tuple. Both Tupl eLi st 1 and Tupl eLi st 2 must be key-sorted prior to evaluating this function.
When two tuples compare equal, the tuple from Tupl eLi st 1 ispicked before the tuple from Tupl eLi st 2.

keyreplace(Key, N, TupleListl, NewTuple) -> TupleList2
Types.
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel
NewTuple = Tuple
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of a T tuple whose Nth element compares equal to Key
isreplaced with NewTupl e, if thereissuch atupleT.

keysearch(Key, N, TupleList) -> {value, Tuple} | false
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TuplelList = [Tuple]
Tuple = tuple()
Searches the list of tuples Tupl eLi st for atuple whose Nth element compares equal to Key. Returns { val ue,
Tupl e} if such atupleisfound, otherwisef al se.

Note:

This function is retained for backward compatibility. The function | i st s: keyf i nd/ 3 (introduced in R13A)
isin most cases more convenient.

keysort(N, TupleListl) -> TuplelList2
Types.

N = integer() >=1

1..tuple size(Tuple)

Ericsson AB. All Rights Reserved.: STDLIB | 249

lists

TupleListl = TupleList2 = [Tuple]

Tuple = tuple()
Returns a list containing the sorted elements of the list Tupl eLi st 1. Sorting is performed on the Nth element of
the tuples. The sort is stable.

keystore(Key, N, TupleListl, NewTuple) -> TuplelList2
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleListl = [Tuplel]
TuplelList2 [Tuple, ...]
NewTuple = Tuple
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of atuple T whose Nth element compares equal to Key

is replaced with NewTupl e, if there is such atuple T. If there is no such tuple T a copy of Tupl eLi st 1 where
[NewTupl e] has been appended to the end is returned.

keytake(Key, N, TupleListl) -> {value, Tuple, TupleList2} | false
Types:

Key = term()

N = integer() >=1

1..tuple size(Tuple)

TuplelListl = TupleList2 = [tuple()]

Tuple = tuple()

Searches the list of tuples Tupl eLi st 1 for atuple whose Nth element compares equal to Key. Returns{ val ue,
Tupl e, Tupl eLi st 2} if such atuple isfound, otherwise f al se. Tupl eLi st 2 isacopy of Tupl eLi st1
where the first occurrence of Tupl e has been removed.

last(List) -> Last

Types.
List = [T, ...]
Last = T
T = term()

Returnsthelast element in Li st .

map(Fun, Listl) -> List2

Types.
Fun = fun((A) -> B)
Listl = [A]
List2 = [B]

A =B = term()

Takes afunction from Asto Bs, and alist of Asand produces alist of Bs by applying the function to every element in
thelist. This function is used to obtain the return values. The evaluation order isimplementation dependent.

250 | Ericsson AB. All Rights Reserved.: STDLIB

lists

mapfoldl(Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun = fun((A, AccIn) -> {B, AccOut})
AccO = Accl = AccIn = AccOut = term()

Listl = [A]
List2 = [B]
A =B = term()

mapf ol dl combinesthe operations of map/ 2 and f ol dl / 3 into one pass. An example, summing the elementsin
alist and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
e, [1,2,3,4,5]).
{[2,4,6,8,10],15}

mapfoldr(Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun = fun((A, AccIn) -> {B, AccOut})
AccO = Accl = AccIn = AccOut = term()

Listl = [A]
List2 = [B]
A =B = term()

mapf ol dr combinesthe operations of map/ 2 and f ol dr/ 3 into one pass.

max(List) -> Max

Types.
List = [T, ...]
Max =T
T = term()

Returns thefirst element of Li st that compares greater than or equal to al other elements of Li st .

member(Elem, List) -> boolean()

Types.
Elem = T
List = [T]
T = term()

Returnst r ue if EIl emmatches some element of Li st , otherwisef al se.

merge(ListOfLists) -> Listl
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 251

lists

ListOfLists = [List]
List = Listl = [T]
T = term()
Returns the sorted list formed by merging all the sub-lists of Li st OF Li st s. All sub-lists must be sorted prior to

evaluating this function. When two elements compare equal, the element from the sub-list with the lowest position in
Li st O Li st s is picked before the other element.

merge(Listl, List2) -> List3

Types.
Listl = [X]
List2 = [Y]
List3 = [(X | Y)]
X =Y = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted prior to
evaluating this function. When two elements compare equal, the element from Li st 1 is picked before the element
fromLi st 2.

merge(Fun, Listl, List2) -> List3

Types.
Fun = fun((A, B) -> boolean())
Listl = [A]
List2 = [B]
List3 = [(A | B)]
A =B = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according
to the ordering function Fun prior to evaluating this function. Fun(A, B) should returnt r ue if A compares less
than or equal to B in the ordering, f al se otherwise. When two elements compare equal, the element from Li st 1
is picked before the element from Li st 2.

merge3(Listl, List2, List3) -> List4

Types:
Listl = [X]
List2 = [Y]
List3 = [Z]
Listd = [(X | Y | 2)]
X=Y=127= term()

Returns the sorted list formed by merging Li st 1, Li st 2 and Li st 3. All of Li st 1, Li st 2 and Li st 3 must be
sorted prior to evaluating this function. When two elements compare equal, the element from Li st 1, if thereis such
an element, is picked before the other element, otherwise the element from Li st 2 is picked before the element from
Li st 3.

min(List) -> Min
Types:

252 | Ericsson AB. All Rights Reserved.: STDLIB

lists

List = [T, ...]
Min = T
T = term()

Returnsthe first element of Li st that compares lessthan or equal to al other elements of Li st .

nth(N, List) -> Elem
Types:
N = integer() >=1
1.length(List)
List = [T, ...]
Elem = T
T = term()

Returns the Nth element of Li st . For example:

> lists:nth(3, [a, b, c, d, e]).
c

nthtail(N, List) -> Tail
Types:
N = integer() >= 0
0..length(List)
List = [T, ...]
Tail = [T]
T = term()

Returns the Nth tail of Li st , that is, the sublist of Li st starting at N+1 and continuing up to the end of the list.

For example:

> lists:nthtail(3, [a, b, c, d, e]).
[d,e]

> tl(tl(tl([a, b, c, d, el))).

[d,e]

> lists:nthtail(0, [a, b, c, d, e]).
[a,b,c,d,e]

> lists:nthtail(5, [a, b, c, d, e]).
[1

partition(Pred, List) -> {Satisfying, NotSatisfying}

Types:
Pred

T = term()

fun((Elem :: T) -> boolean())
List = Satisfying = NotSatisfying = [T]

Partitions Li st into two lists, where the first list contains all elements for which Pr ed(El em) returnst r ue, and

the second list contains all elements for which Pr ed(El en) returnsf al se.

Examples:

Ericsson AB. All Rights Reserved.: STDLIB | 253

lists

> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1,3,5,71,[2,4,6]}

> lists:partition(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]l).
{[a,b,c,d,el],[1,2,3,4]}

Seedsosplitwi th/2foradifferent way to partition alist.

prefix(Listl, List2) -> boolean()

Types:
Listl = List2 = [T]
T = term()

Returnst r ue if Li st 1 isaprefix of Li st 2, otherwisef al se.

reverse(Listl) -> List2

Types:
Listl = List2 = [T]
T = term()

Returns alist with the elementsin Li st 1 in reverse order.

reverse(Listl, Tail) -> List2

Types.
Listl = [T]
Tail = term()
List2 = [T]
T = term()

Returns alist with the elementsin Li st 1 in reverse order, with thetail Tai | appended. For example:

> lists:reverse([1, 2, 3, 41, [a, b, cl).
[4,3,2,1,a,b,c]

seq(From, To) -> Seq
seq(From, To, Incr) -> Seq
Types.
From = To = Incr = integer()
Seq = [integer()]

Returns a sequence of integers which starts with Fr omand contains the successive results of adding | ncr to the
previous element, until To has been reached or passed (in the latter case, To isnot an element of the sequence). | ncr
defaultsto 1.

Failure: If To<From | ncr and | ncr ispositive, or if To>From | ncr and | ncr isnegative, orif | ncr ==0 and
From =To.

The following equalities hold for all sequences:

254 | Ericsson AB. All Rights Reserved.: STDLIB

lists

length(lists:seq(From, To)) == To-From+1l
length(lists:seq(From, To, Incr)) == (To-From+Incr) div Incr

Examples:

> lists:seq(l, 10).
[1,2,3,4,5,6,7,8,9,10]
> lists:seq(l, 20, 3).
[1,4,7,10,13,16,19]

> lists:seq(l, 0, 1).
[]

> lists:seq(10, 6, 4).
[]

> lists:seq(l, 1, 0).
[1]

sort(Listl) -> List2

Types:
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1.

sort(Fun, Listl) -> List2

Types.
Fun = fun((A :: T, B :: T) -> boolean())
Listl = List2 = [T]
T = term()

Returnsalist containing the sorted elements of Li st 1, according to the ordering function Fun. Fun(A, B) should
returnt r ue if A compares lessthan or equal to Bin the ordering, f al se otherwise.

split(N, Listl) -> {List2, List3}
Types:

N = integer() >= 0

0..length(Listl)

Listl = List2 = List3 = [T]

T = term()

SplitsLi st 1 intoLi st 2 and Li st 3. Li st 2 containsthefirst Nelementsand Li st 3 therest of the elements (the
Nth tail).

splitwith(Pred, List) -> {Listl, List2}
Types:

Pred fun((T) -> boolean())

List = Listl = List2 = [T]

T = term()

Partitions Li st intotwo listsaccording to Pr ed. spl i t wi t h/ 2 behavesasif it is defined as follows:

Ericsson AB. All Rights Reserved.: STDLIB | 255

lists

splitwith(Pred, List) ->
{takewhile(Pred, List), dropwhile(Pred, List)}.

Examples:

> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[11,[2,3,4,5,6,71}

> lists:splitwith(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b]l,[1,c,d,2,3,4,el}

Seeasopartition/2foradifferent way to partition alist.

sublist(Listl, Len) -> List2
Types.

Listl = List2 = [T]

Len = integer() >= 0

T = term()

Returnsthe sub-list of Li st 1 starting at position 1 and with (max) Len elements. It is not an error for Len to exceed
the length of thelist, in that case the whole list is returned.

sublist(Listl, Start, Len) -> List2
Types:
Listl List2 = [T]
Start = integer() >=1
1..(length(List1)+1)
Len = integer() >= 0
T = term()

Returns the sub-list of Li st 1 starting at St art and with (max) Len elements. It is not an error for St art +Len
to exceed the length of thelist.

> lists:sublist([1,2,3,4], 2, 2).
[2,3]

> lists:sublist([1,2,3,4], 2, 5).
[2,3,4]

> lists:sublist([1,2,3,4], 5, 2).
[

subtract(Listl, List2) -> List3

Types.
Listl = List2 = List3 = [T]
T = term()

Returnsanew listLi st 3 whichisacopy of Li st 1, subjected to thefollowing procedure: for eachelementinLi st 2,
itsfirst occurrencein Li st 1 isdeleted. For example:

256 | Ericsson AB. All Rights Reserved.: STDLIB

lists

> lists:subtract("123212", "212").
"312".

lists:subtract (A, B) isequivdenttoA -- B

Warning:

The complexity of | i sts: subt ract (A, B) isproportional to| engt h(A) *I engt h(B) , meaning that
it will be very slow if both A and B are long lists. (Using ordered lists and ordsets: subtract/2 is a much better
choiceif both lists are long.)

suffix(Listl, List2) -> boolean()

Types:
Listl = List2 = [T]
T = term()

Returnst r ue if Li st 1 isasuffix of Li st 2, otherwisef al se.

sum(List) -> number()
Types:
List = [number()]
Returns the sum of the elementsinLi st .

takewhile(Pred, Listl) -> List2
Types:
Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()
TakeselementsEl emfrom Li st 1 whilePr ed(El en) returnst r ue, that is, the function returns the longest prefix
of thelist for which all elements satisfy the predicate.

ukeymerge(N, TupleListl, TuplelList2) -> TuplelList3
Types:

N = integer() >=1

1..tuple size(Tuple)

TuplelListl = [T1]

TuplelList2 [T2]

TuplelList3 [(T1 | T2)]

Tl = T2 = Tuple

Tuple = tuple()
Returns the sorted list formed by merging Tupl eLi st1 and Tupl eLi st 2. The merge is performed on the
Nth element of each tuple. Both Tupl eLi st 1 and Tupl eLi st 2 must be key-sorted without duplicates prior to
evaluating this function. When two tuples compare equal, the tuple from Tupl eLi st 1 is picked and the one from
Tupl eLi st 2 deleted.

Ericsson AB. All Rights Reserved.: STDLIB | 257

lists

ukeysort(N, TupleListl) -> TuplelList2
Types:
N = integer() >=1
1..tuple_size(Tuple)
TupleListl = TuplelList2 = [Tuplel
Tuple = tuple()
Returns a list containing the sorted elements of the list Tupl eLi st 1 where all but the first tuple of the tuples
comparing equal have been deleted. Sorting is performed on the Nth element of the tuples.

umerge(ListOfLists) -> Listl
Types:
ListOfLists = [List]
List = Listl = [T]
T = term()
Returnsthe sorted list formed by merging all the sub-listsof Li st Of Li st s. All sub-lists must be sorted and contain

no duplicates prior to evaluating this function. When two elements compare equal, the element from the sub-list with
the lowest positionin Li st Of Li st s ispicked and the other one deleted.

umerge(Listl, List2) -> List3

Types.
Listl = [X]
List2 = [Y]
List3 = [(X | Y)]
X =Y = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted and contain
no duplicates prior to evaluating this function. When two elements compare equal, the element from Li st 1 is picked
and the one from Li st 2 deleted.

umerge(Fun, Listl, List2) -> List3

Types.
Fun = fun((A, B) -> boolean())
Listl = [A]
List2 = [B]
List3 = [(A | B)]
A =B = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according
to the ordering function Fun and contain no duplicates prior to evaluating this function. Fun(A, B) should return
t rue if A compares less than or equal to B in the ordering, f al se otherwise. When two elements compare equal,
the element from Li st 1 is picked and the one from Li st 2 deleted.

umerge3(Listl, List2, List3) -> List4
Types.

258 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Listl = [X]

List2 = [Y]

List3 = [Z]

Listd = [(X | Y | 2)]
X=Y=7=term()

Returns the sorted list formed by merging Li st 1, Li st 2 and Li st 3. All of Li st 1, Li st 2 and Li st 3 must be
sorted and contain no duplicates prior to eval uating this function. When two el ements compare equal, the element from
Li st 1 ispicked if thereis such an element, otherwise the element from Li st 2 is picked, and the other one deleted.

unzip(Listl) -> {List2, List3}

Types.
Listl = [{A, B}]
List2 = [A]
List3 = [B]

A =B = term()

"Unzips' alist of two-tuplesinto two lists, where the first list contains the first element of each tuple, and the second
list contains the second element of each tuple.

unzip3(Listl) -> {List2, List3, List4}

Types:
Listl = [{A, B, C}]
List2 = [A]
List3 = [B]
List4 = [C]
A =B =C= term()

"Unzips' alist of three-tuples into three lists, where the first list contains the first element of each tuple, the second
list contains the second element of each tuple, and the third list contains the third element of each tuple.

usort(Listl) -> List2

Types.
Listl = List2 = [T]
T = term()

Returnsalist containing the sorted elementsof Li st 1 whereall but the first element of the elements comparing equal
have been deleted.

usort(Fun, Listl) -> List2
Types:
Fun = fun((T, T) -> boolean())
Listl = List2 = [T]
T = term()
Returns alist which contains the sorted elements of Li st 1 whereal but the first element of the elements comparing

equal according to the ordering function Fun have been deleted. Fun(A, B) shouldreturnt r ue if Acomparesless
than or equal to B in the ordering, f al se otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 259

lists

zip(Listl, List2) -> List3

Types:
Listl = [A]
List2 = [B]
List3 = [{A, B}]
A =B = term()

"Zips' two lists of equal length into one list of two-tuples, where the first element of each tupleistaken from the first
list and the second element is taken from corresponding element in the second list.

zip3(Listl, List2, List3) -> List4

Types:
Listl = [A]
List2 = [B]
List3 = [C]
List4 = [{A, B, C}]
A=B=C-= term()

"Zips' three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the
first list, the second element is taken from corresponding element in the second list, and the third element is taken
from the corresponding element in the third list.

zipwith(Combine, Listl, List2) -> List3

Types:
Combine = fun((X, Y) -> T)
Listl = [X]
List2 = [Y]
List3 = [T]
X=Y=T= term()

Combine the elements of two lists of equal length into onelist. For each pair X, Y of list elements from the two lists,
the element in the result list will be Conbi ne(X, Y).

zipwith(fun(X, Y) -> {X Y} end, Listl, List2) isequivaenttozi p(Listl, List2).
Example:

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

zipwith3(Combine, Listl, List2, List3) -> List4
Types:

260 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Combine = fun((X, Y, Z) -> T)

Listl = [X]
List2 = [Y]
List3 = [Z]
List4 = [T]

X=Y=27Z=T = term()

Combine the elements of three lists of equal length into one list. For each triple X, Y, Z of list elements from the
three lists, the element in the result list will be Conbi ne(X, Y, Z2).

zipwith3(fun(X, Y, 2) ->{X Y,Z} end, Listl, List2, List3)isequivaenttozi p3(Listl,
List2, List3).

Examples:

> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12,15,18]

> lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,z], [1,2,3]).
[[a,x,1],[b,y,2],[c,z,3]]

Ericsson AB. All Rights Reserved.: STDLIB | 261

log_mf_h

log_ mf_h

Erlang module

Thel og_nf _hisagen_event handler module which can be installed in any gen_event process. It logs onto
disk all events which are sent to an event manager. Each event is written as a binary which makes the logging very
fast. However, atool such asthe Report Browser (rb) must be used in order to read the files. The events are
written to multiplefiles. When all files have been used, thefirst oneisre-used and overwritten. The directory location,
the number of files, and the size of each file are configurable. The directory will include one file called i ndex, and
report files1, 2,

Data Types

args()
Term to be sent to gen_event:add_handler/3.

Exports

init(Dir, MaxBytes, MaxFiles) -> Args
init(Dir, MaxBytes, MaxFiles, Pred) -> Args
Types:

Dir = file:filenanme()

MaxBytes integer() >= 0

MaxFiles 1..255

Pred = fun((Event :: term()) -> boolean())

Args = args()

Initiates the event handler. This function returns Args, which should be used in a cadl to
gen_event : add_handl er (Event Myr, log_nf_h, Args).

Di r specifieswhich directory to usefor thelogfiles. MaxByt es specifiesthesize of eachindividual file. MaxFi | es
specifies how many files are used. Pr ed is a predicate function used to filter the events. If no predicate function is
specified, all events are logged.

See Also
gen_event(3), rb(3)

262 | Ericsson AB. All Rights Reserved.: STDLIB

maps

maps

Erlang module

This module contains functions for maps processing.

Exports

find(Key, Map) -> {ok, Value} | error

Types.
Key = term()
Map = #{}

Value = term()

Returnsatuple{ ok, Val ue} where Val ue isthe value associated with Key, or er r or if no valueis associated
with Key in Map.

Example:
> Map = #{"hi" => 42},
Key = "hi",
maps: find(Key,Map) .
{ok, 42}

fold(Fun, Init, Map) -> Acc
Types:
Fun = fun((K, V, AccIn) -> AccOut)
Init = Acc = AccIn = AccOut = term()
Map = #{}
K=V = term()
CalsF(K, V, Accln) forevery KtovalueV association in Map in arbitrary order. The functionf un F/ 3 must

return a new accumulator which is passed to the next successive cal. maps: f ol d/ 3 returns the final value of the
accumulator. The initial accumulator value | ni t isreturned if the map is empty.

Example:

> Fun fun(K,V,AccIn) when is list(K) -> AccIn + V end,
Map #{"k]." = 1' "k2" = 2, ||k3|| = 3}’
maps:fold(Fun,®,Map) .

6

from list(List) -> Map
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 263

maps

List = [{Key, Value}]
Key = Value = term()
Map = #{}

Thefunction takes alist of key-value tuples elements and builds amap. The associations may bein any order and both
keys and values in the association may be of any term. If the same key appears more than once, the latter (rightmost)
value is used and the previous values are ignored.

Example:

> List = [{"a",ignored}, {1337, "value two"}, {42,value three},{"a",1}],
maps:from list(List).
#{42 => value three,1337 => "value two","a" => 1}

get(Key, Map) -> Value

Types:
Key = term()
Map = #{}

Value = term()

Returnsthe value Val ue associated with Key if Map contains Key. If no value is associated with Key then the call
will fail with an exception.

Example:
> Key = 1337,
Map = #{42 => value two, 1337 => "value one","a" => 1},

maps :get (Key,Map) .
"value one"

get(Key, Map, Default) -> Value | Default

Types.
Key = term()
Map = #{}

Value = Default = term()

Returns the value Val ue associated with Key if Map contains Key. If no value is associated with Key then returns
Def aul t .

Example:

> Map = #{ keyl => vall, key2 => val2 }.
#{keyl => vall, key2 => val2}

> maps:get(keyl, Map, "Default value").
vall

> maps:get(key3, Map, "Default value").
"Default value"

264 | Ericsson AB. All Rights Reserved.: STDLIB

maps

is key(Key, Map) -> boolean()

Types:
Key = term()
Map = #{}

Returnst r ue if map Map contains Key and returnsf al se if it does not contain the Key. The function will fail with
an exception if Map isnot aMap.

Example:

> Map = #{"42" => value}.
#{"42"> => value}

> maps:is_key("42",Map) .
true

> maps:is_key(value,Map) .
false

keys(Map) -> Keys

Types.
Map = #{}
Keys = [Key]
Key = term()

Returns acomplete list of keys, in arbitrary order, which resides within Map.
Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps : keys (Map) .
[42,1337,"a"]

map(Fun, Mapl) -> Map2
Types:
Fun = fun((K, V1) -> V2)
Mapl = Map2 = #{}
K=Vl =V2 term()

The function produces anew map Map2 by caling thefunctionf un F(K, V1) for every Kto value V1 association
in Map1l in arbitrary order. The function f un F/ 2 must return the value V2 to be associated with key K for the
new map Map2.

Example:

> Fun fun(K,V1l) when is list(K) -> V1*2 end,
Map = #{"k1" => 1, "k2" => 2, "k3" => 3},
maps :map (Fun,Map) .

#{Ilklll => 2'llk2ll => 4'Ilk3ll => 6}

Ericsson AB. All Rights Reserved.: STDLIB | 265

maps

merge(Mapl, Map2) -> Map3
Types:
Mapl = Map2 = Map3 = #{}

Merges two maps into a single map Map3. If two keys exists in both maps the value in Map1 will be superseded by
thevaluein Map2.

Example:
> Mapl = #{a => "value one", b => "value two"},
Map2 = #{a => 1, c => 2},

maps :merge(Mapl,Map2) .
#{a => 1,b => "value two",c => 2}

new() -> Map
Types:

Map = #{}
Returns a new empty map.
Example:

> maps:new() .

#{}

put (Key, Value, Mapl) -> Map2

Types:
Key = Value = term()
Mapl = Map2 = #{}

Associates Key with value Val ue and inserts the association into map Map2. If key Key already exists in map
Map1l, the old associated value is replaced by value Val ue. The function returns a new map Map2 containing the
new association and the old associationsin Map1l.

Example:

> Map = #{"a" => 1}.

#{"a" = 1}
> maps:put("a", 42, Map).
#{llall => 42}

> maps:put("b", 1337, Map).
#{uau = 1,"b" = 1337}

remove (Key, Mapl) -> Map2
Types:

266 | Ericsson AB. All Rights Reserved.: STDLIB

maps

Key = term()
Mapl = Map2 = #{}

The function removes the Key, if it exists, and its associated value from Map1 and returns a new map Map2 without
key Key.
Example:

> Map = #{"a" => 1}.
#{Ilall => 1}
> maps:remove("a",Map) .

#{}
> maps:remove("b",Map) .
#{Ilall = 1}

size(Map) -> integer() >= 0
Types:
Map = #{}
The function returns the number of key-value associations in the Map. This operation happens in constant time.

Example:

> Map = #{42 => value two,1337 => "value one","a" => 1},
maps:size(Map) .
3

to list(Map) -> [{Key, Value}]

Types:
Map = #{}
Key = Value = term()

Thefuction returnsalist of pairsrepresenting the key-value associations of Map, wherethepairs, [{ K1, V1}, ...,
{Kn, Vn}], arereturned in arbitrary order.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps:to list(Map).
[{42,value three}, {1337,"value two"},{"a",1}1]

update(Key, Value, Mapl) -> Map2
Types:
Key = Value = term()
Mapl = Map2 = #{}
If Key existsin Mapl the old associated value is replaced by value Val ue. The function returns a new map Map2
containing the new associated value. If Key does not exist in Mapl an exception is generated.

Example:

Ericsson AB. All Rights Reserved.: STDLIB | 267

maps

> Map = #{"a" => 1}.

#{llall => 1}
> maps:update("a", 42, Map).
#{"a" => 42}

values(Map) -> Values
Types:
Map = #{}
Values = [Value]
Value = term()
Returns a complete list of values, in arbitrary order, contained in map M

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps :values (Map) .
[value three, "value two",1]

with(Ks, Mapl) -> Map2

Types.
Ks = [K]
Mapl = Map2 = #{}
K = term()

Returns a new map Map2 with the keys K1 through Kn and their associated values from map Mapl. Any key in Ks
that does not exist in Mapl are ignored.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
Ks = ["a",42,"other key"],
maps:with(Ks,Map) .

#{42 => value three,"a" => 1}

without(Ks, Mapl) -> Map2

Types:
Ks = [K]
Mapl = Map2 = #{}
K = term()

Returns a new map Map2 without the keys K1 through Kn and their associated values from map Mapl. Any key in
Ks that does not exist in Mapl are ignored.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
Ks = ["a",42,"other key"],
maps :without (Ks,Map) .

268 | Ericsson AB. All Rights Reserved.: STDLIB

maps

#{1337 => "value two"}

Ericsson AB. All Rights Reserved.: STDLIB | 269

math

math

Erlang module

This module provides an interface to a number of mathematical functions.

Note:

Not all functions are implemented on all platforms. In particular, the erf/ 1 and er f ¢/ 1 functions are not
implemented on Windows.

Exports

pi() -> float()
A useful number.

sin(X) -> float()
cos(X) -> float()
tan(X) -> float()
asin(X) -> float()
acos(X) -> float()
atan(X) -> float()
atan2(Y, X) -> float()
sinh(X) -> float()
cosh(X) -> float()
tanh(X) -> float()
asinh(X) -> float()
acosh(X) -> float()
atanh(X) -> float()
exp(X) -> float()
log(X) -> float()
logle(X) -> float()

pow(X, Y) -> float()
sqrt(X) -> float()
Types.

Y = X = number()

A collection of math functions which return floats. Arguments are numbers.

erf(X) -> float()
Types:
X = number()
Returns the error function of X, where

270 | Ericsson AB. All Rights Reserved.: STDLIB

math

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

erfc(X) -> float()
Types:
X = number()
erfc(X) returns1l. 0 - erf (X), computed by methods that avoid cancellation for large X.

Bugs

Asthese are the C library, the bugs are the same.

Ericsson AB. All Rights Reserved.: STDLIB | 271

ms_transform

ms_transform

Erlang module

Thismoduleimplementsthe parse_transform that makescallstoet s and dbg:f un2ns/ 1 trandateinto literal match
specifications. It also implements the back end for the same functions when called from the Erlang shell.

The tranglations from fun's to match_specs is accessed through the two "pseudo functions' et s: f un2ns/ 1 and
dbg: f un2ms/ 1.

Actually thisintroduction is more or less an introduction to the whol e concept of match specifications. Since everyone
tryingtouseet s: sel ect or dbg seemsto end up reading this page, it seemsin good place to explain alittle more
than just what this module does.

There are some caveats one should be aware of, please read through the whole manual pageif it'sthe first time you're
using the transformations.

Match specifications are used more or less as filters. They resemble usual Erlang matching in alist comprehension
or in afun used in conjunction with I i st s: f ol dl etc. The syntax of pure match specifications is somewhat
awkward though, as they are made up purely by Erlang terms and thereis no syntax in the language to make the match
specifications more readable.

As the match specifications execution and structure is quite like that of afun, it would for most programmers be more
straight forward to simply write it using the familiar fun syntax and having that translated into a match specification
automatically. Of course a real fun is more powerful than the match specifications allow, but bearing the match
specifications in mind, and what they can do, it's still more convenient to write it all as a fun. This module contains
the code that simply translates the fun syntax into match_spec terms.

Let's start with an etsexample. Using et s: sel ect and a match specification, one can filter out rows of atable and
construct a list of tuples containing relevant parts of the data in these rows. Of course one could use et s: f ol dl
instead, but the select call is far more efficient. Without the trandlation, one has to struggle with writing match
specifications terms to accommodate this, or one has to resort to the less powerful et s: mat ch(_obj ect) calls,
or simply give up and use the more inefficient method of et s: f ol dl . Using the et s: f un2ns transformation, a
ets: sel ect cdlisat least as easy to write as any of the alternatives.

Asan example, consider asimple table of employees:

-record(emp, {empno, %Employee number as a string, the key
surname, %Surname of the employee
givenname, %Given name of employee
dept, %Department one of {dev,sales,prod,adm}

empyear}). %Year the employee was employed

We create the table using:

ets:new(emp_tab, [{keypos,#emp.empno},named table,ordered set]).

Let'saso fill it with some randomly chosen data for the examples:

[{emp,"011103", "Black","Alfred",bsales, 2000},
{emp, "041231", "Doe", "John",prod, 2001},
{emp, "052341","Smith","John",dev, 1997},
{emp,"076324","Smith","Ella",sales, 1995},

272 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

{emp, "122334", "Weston","Anna",prod, 2002},

{emp, "535216", "Chalker", "Samuel",adm, 1998},
{emp, "789789", "Harrysson", "Joe",adm, 1996},
{emp, "963721","Scott","Juliana",dev, 2003},
{emp, "989891", "Brown", "Gabriel",prod, 1999}]

Now, the amount of datain the table is of courseto small to justify complicated ets searches, but on real tables, using
sel ect to get exactly the data you want will increase efficiency remarkably.

Lets say for example that we'd want the employee numbers of everyone in the sales department. One might use
et s: mat ch in such asituation:

1> ets:match(emp_tab, {' ', '$1', ' ', ' ', sales, ' '}).
[["011103"],["076324"]1]

Eventhoughet s: mat ch doesnot requireafull match specification, but asimpler type, it'sstill somewhat unreadable,
and one has little control over the returned result, it's aways a list of lists. OK, one might use et s: f ol dl or
ets: fol dr instead:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Accl;
(_,Acc) -> Acc
end,

[1,
emp_tab).

Running that would resultin["011103", "076324"] ,whichat least getsrid of theextralists. Thefunisalso quite
straightforward, so the only problem isthat all the datafrom the table has to be transferred from the table to the calling
process for filtering. That's inefficient compared to the et s: mat ch call where the filtering can be done "inside" the
emulator and only the result is transferred to the process. Remember that ets tables are all about efficiency, if it wasn't
for efficiency al of ets could be implemented in Erlang, as a process receiving requests and sending answers back.
One uses ets because one wants performance, and therefore one wouldn't want all of the table transferred to the process
for filtering. OK, let'slook at apureet s: sel ect cal that doeswhat theet s: f ol dr does:

ets:select(emp tab, [{#emp{empno = '$1', dept = sales, ="' '},[1,['$1'1}1).

Even though the record syntax isused, it's still somewhat hard to read and even harder to write. Thefirst element of the
tuple, #emp{ enpno = ' $1', dept = sales, _="_'} tellswhatto match, elements not matching thiswill
not bereturned at all, asintheet s: mat ch example. The second element, the empty list isalist of guard expressions,
which we need none, and the third element is the list of expressions constructing the return value (in ets this aimost
always is a list containing one single term). In our case ' $1' is bound to the employee number in the head (first
element of tuple), and hence it is the employee number that is returned. The result is[" 011103", "076324"],
justasintheet s: f ol dr example, but the result is retrieved much more efficiently in terms of execution speed and
memory consumption.

We have one efficient but hardly readable way of doing it and one inefficient but fairly readable (at least to the skilled
Erlang programmer) way of doing it. With the use of et s: f un2mrs, one could have something that is as efficient as
possible but still iswritten as afilter using the fun syntax:

-include lib("stdlib/include/ms transform.hrl").

Ericsson AB. All Rights Reserved.: STDLIB | 273

ms_transform

[
“©

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, dept = sales}) ->
E
end)).

This may not be the shortest of the expressions, but it requires no special knowledge of match specifications to read.
The fun's head should simply match what you want to filter out and the body returns what you want returned. Aslong
as the fun can be kept within the limits of the match specifications, there is no need to transfer all data of the table to
the processfor filteringasintheet s: f ol dr example. Infactit'seven easier toread thentheet s: f ol dr example,
asthe select call in itself discards anything that doesn't match, while the fun of the f ol dr call needs to handle both
the elements matching and the ones not matching.

It'sworth noting in the above et s: f un2ns example that one needsto includens_t r ansf or m hr | inthe source
code, as thisis what triggers the parse transformation of the et s: f un2ms call to a valid match specification. This
alsoimpliesthat the transformation is done at compile time (except when called from the shell of course) and therefore
will take no resourcesat all in runtime. So although you use the more intuitive fun syntax, it getsas efficient in runtime
as writing match specifications by hand.

Let'slook at some more et s examples. Let's say one wants to get all the employee numbers of any employee hired
before the year 2000. Using et s: mat ch isn't an alternative here as relational operators cannot be expressed there.
Onceagain, anet s: f ol dr could do it (Slowly, but correct):

ets: foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,

[T,
emp_tab).

The result will be ["052341","076324", "535216", "789789", "989891"], as expected. Now the
equivalent expression using a handwritten match specification would look something like this:

ets:select(emp tab, [{#emp{empno = '$1', empyear = '$2', =' '},
[{'<', '$2', 2000}],
['$1']}]).

This givesthe sameresult, the[{' <', ' $2', 2000}] isinthe guard part and therefore discards anything that
does not have a empyear (bound to '$2' in the head) less than 2000, just as the guard in the f ol dl example. Lets
jump onto writing itusing et s: f un2ns

-include lib("stdlib/include/ms transform.hrl").

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, empyear = Y}) when Y < 2000 ->

E
end)).

Obviously readability is gained by using the parse transformation.

274 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

I'll show some more examples without the tiresome comparing-to-alternatives stuff. Let's say we'd want the whole
object matching instead of only one element. We could of course assign avariableto every part of the record and build
it up once again in the body of thef un, but it's easier to do like this:

ets:select(emp tab, ets:fun2ms(
fun(0bj = #emp{empno = E, empyear = Y})
when Y < 2000 ->
0bj
end)).

Just asin ordinary Erlang matching, you can bind avariable to the whole matched object using a"match in then match”,
i.e. a=. Unfortunately thisis not general in f un' s trandated to match specifications, only on the "top level", i.e.
matching the whole object arriving to be matched into a separate variable, isit allowed. For the one's used to writing
match specifications by hand, I'll have to mention that the variable A will smply betransdlated into'$. It'snot general,
but it has very common usage, why it is handled as a special, but useful, case. If this bothers you, the pseudo function
obj ect also returns the whole matched object, see the part about caveats and limitations below.

Let'sdo somethinginthef un'sbody too: Let's say that someonerealizesthat thereare afew people having an employee
number beginning with a zero (0), which shouldn't be allowed. All those should have their numbers changed to begin
with aone (1) instead and onewantsthelist[{ <O d enpno>, <New enpno>}] created:

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = [$0 | Rest] }) ->
{[$0|Rest], [$1|Rest]}
end)).

Asamatter of fact, this query hitsthe feature of partially bound keysin thetabletypeor der ed_set , so that not the
whole table need be searched, only the part of the table containing keys beginning with 0 isin fact looked into.

Thefun of course can have several clauses, sothat if one could do thefollowing: For each employee, if heor sheishired
prior to 1997, return the tuple { i nvent ory, <enpl oyee nunber >}, for each hired 1997 or later, but before
2001, return {r ooki e, <enpl oyee nunber >}, for al othersreturn { newbi e, <enpl oyee nunber >}.
All except for the ones named Sii t h asthey would be affronted by anything other than thetag gur u and that isalso
what's returned for their numbers; { gur u, <enpl oyee nunber >}:

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, surname = "Smith" }) ->

{guru, E};

(#emp{empno = E, empyear = Y}) when Y < 1997 ->
{inventory, E};

(#emp{empno = E, empyear = Y}) when Y > 2001 ->
{newbie, E};

(#emp{empno = E, empyear
{rookie, E}

Y}) -> % 1997 -- 2001

end)).

The result will be:

[{rookie, "011103"},
{rookie, "041231"},
{guru, "052341"},
{guru,"076324"},

Ericsson AB. All Rights Reserved.: STDLIB | 275

ms_transform

{newbie, "122334"},
{rookie, "535216"},
{inventory, "789789"},
{newbie, "963721"},
{rookie, "989891"}]

and so the Smith's will be happy...

So, what more can you do? Well, the simple answer would be; 1ook in the documentation of match specifications in
ERTS usersguide. However let'sbriefly go through the most useful "built in functions" that you can usewhen thef un
isto be trandated into a match specification by et s: f un2ns (it's worth mentioning, although it might be obvious
to some, that calling other functions than the one's allowed in match specifications cannot be done. No "usual" Erlang
code can be executed by the f un being tranglated by f un2ms, the f un is after al limited exactly to the power of the
match specifications, which is unfortunate, but the price one has to pay for the execution speed of anet s: sel ect
comparedtoet s: fol dl /f ol dr).

The head of the f un is obviously a head matching (or mismatching) one parameter, one object of the table we
sel ect from. The object is always a single variable (can be _) or atuple, as that's what'sin ets, dets and
mesi a tables (the match specification returned by et s: f un2ns can of course be used with det s: sel ect and
mesi a: sel ect aswell aswithet s: sel ect). Theuse of = in the head is allowed (and encouraged) on the top
level.

The guard section can contain any guard expression of Erlang. Even the "old" type test are allowed on the toplevel

of theguard (i nt eger (X) instead of i s_i nt eger (X)). Asthe new type tests (thei s__ tests) arein practice just

guard bif's they can also be called from within the body of the fun, but so they can in ordinary Erlang code. Also

arithmeticsis allowed, aswell as ordinary guard bif's. Here's alist of bif's and expressions:

* Thetypetests: is atom, is float, is integer, is list, is number, is pid, is _port, is reference, is tuple, is binary,
is function, is_record

* Theboolean operators: not, and, or, andalso, orelse

e Therelational operators. >, >=, <, =<, ==, ==, =/=, /=

e Arithmetics: +, -, *, div, rem

» Bitwise operators: band, bor, bxor, bnot, bsl, bsr

e Theguard hif's: abs, element, hd, length, node, round, size, tl, trunc, self

» The obsolete type test (only in guards): atom, float, integer, list, number, pid, port, reference, tuple, binary,
function, record

Contrary to thefact with "handwritten" match specifications, thei s_r ecor d guard worksasin ordinary Erlang code.

Semicolons (;) in guards are alowed, the result will be (as expected) one "match_spec-clause” for each semicolon-
separated part of the guard. The semantics being identical to the Erlang semantics.

The body of thef un is used to construct the resulting value. When selecting from tables one usually just construct a
suiting term here, using ordinary Erlang term construction, like tuple parentheses, list brackets and variables matched
out in the head, possibly in conjunction with the occasional constant. Whatever expressions are allowed in guards
are also allowed here, but there are no special functions except obj ect and bi ndi ngs (see further down), which
returns the whole matched object and all known variable bindings respectively.

The dbg variants of match specifications have an imperative approach to the match specification body, the ets dial ect
hasn't. The fun body for et s: f un2ns returns the result without side effects, and as matching (=) in the body of the
match specificationsis not alowed (for performance reasons) the only thing left, more or less, isterm construction...

Let'smove on to the dbg dialect, the dightly different match specifications trandlated by dbg: f un2ns.

The same reasons for using the parse transformation applies to dbg, maybe even more so as filtering using Erlang
code is simply not a good idea when tracing (except afterwards, if you trace to file). The concept is similar to that of
ets: fun2ns except that you usually useit directly from the shell (which can also be done with et s: f un2mrs).

276 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

L et's manufacture atoy module to trace on

-module(toy).
-export([start/1l, store/2, retrieve/1]).

start(Args) ->
toy table = ets:new(toy table,Args).

store(Key, Value) ->
ets:insert(toy table, {Key,Value}).

retrieve(Key) ->

[{Key, Value}] = ets:lookup(toy table,Key),
Value.

During model testing, the first test bails out with a{ badmat ch, 16} in{t oy, start, 1}, why?

We suspect the ets call, as we match hard on the return value, but want only the particular newcall witht oy _t abl e
asfirst parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ok,<0.88.0>}

And so we turn on call tracing for al processes, we are going to make a pretty restrictive trace pattern, so there's no
need to call trace only afew processes (it usualy isn't):

2> dbg:p(all,call).
{ok, [{matched, nonode@nohost,25}]1}

It'stime to specify thefilter. We want to view callsthat resemble et s: new(t oy_t abl e, <sonet hi ng>) :

3> dbg:tp(ets,new,dbg: fun2ms (fun([toy table, 1) -> true end)).
{ok, [{matched, nonode@nohost, 1}, {saved, 1}]}

As can be seen, the f un's used with dbg: f un2ns takes asingle list as parameter instead of asingle tuple. Thelist
matches alist of the parameters to the traced function. A single variable may also be used of course. The body of the
fun expresses in a more imperative way actions to be taken if the fun head (and the guards) matches. | returnt r ue
here, but it's only because the body of afun cannot be empty, the return value will be discarded.

When we run the test of our module now, we get the following trace output:

(<0.86.0>) call ets:new(toy table, [ordered set])

Let's play we haven't spotted the problem yet, and want to see what et s: new returns. We do a dlightly different
trace pattern:

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy table, 1) -> return trace() end)).

Ericsson AB. All Rights Reserved.: STDLIB | 277

ms_transform

Resulting in the following trace output when we run the test:

(<0.86.0>) call ets:new(toy table, [ordered set])
(<0.86.0>) returned from ets:new/2 -> 24

Thecall tor et ur n_t r ace, makes a trace message appear when the function returns. It applies only to the specific
function call triggering the match specification (and matching the head/guards of the match specification). Thisisthe
by far the most common call in the body of adbg match specification.

Asthetest now fails with { badmat ch, 24}, it's obvious that the badmatch is because the atomt oy _t abl e does
not match the number returned for an unnamed table. So we spotted the problem, the table should be named and the
arguments supplied by our test program does not include naned_t abl e. We rewrite the start function to:

start(Args) ->
toy table = ets:new(toy table, [named table |Args]).

And with the same tracing turned on, we get the following trace output:

(<0.86.0>) call ets:new(toy table, [named table,ordered set])
(<0.86.0>) returned from ets:new/2 -> toy table

Very well. Let's say the module now passes all testing and goes into the system. After awhile someone realizes that
the tablet oy_t abl e grows while the system is running and that for some reason there are a lot of elements with
atom's as keys. Y ou had expected only integer keys and so does the rest of the system. Well, obviously not al of the
system. You turn on call tracing and try to see calls to your module with an atom as the key:

1> dbg:tracer().

{ok,<0.88.0>}

2> dbg:p(all,call).

{ok, [{matched, nonode@nohost,25}]}

3> dbg:tpl(toy,store,dbg:fun2ms(fun([A, 1) when is atom(A) -> true end)).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

Weusedbg: t pl hereto make sureto catch local calls (let's say the module has grown since the smaller version and
we're not sure thisinserting of atomsis not done locally...). When in doubt always use local call tracing.

Let's say nothing happens when we trace in this way. Our function is never called with these parameters. We make
the conclusion that someone el se (some other module) is doing it and we realize that we must trace on ets:insert and
want to see the calling function. The calling function may be retrieved using the match specification functioncal | er
and to get it into the trace message, one has to use the match spec function message. The filter call looks like this
(looking for callstoet s: i nsert):

4> dbg:tpl(ets,insert,dbg: fun2ms(fun([toy table,{A, }1) when is atom(A) ->
message(caller())
end)).
{ok, [{matched, nonode@nohost, 1}, {saved,2}]}

The caller will now appear in the "additional message" part of the trace output, and so after a while, the following
output comes:

278 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

(<0.86.0>) call ets:insert(toy table, {garbage,can}) ({evil mod,evil fun,2})

Y ou have found out that the function evi | _f un of the module evi | _nod, with arity 2, isthe one causing all this
trouble.

This was just a toy example, but it illustrated the most used calls in match specifications for dbg The other, more
esotheric calls are listed and explained in the Users guide of the ERTS application, they really are beyond the scope
of this document.

To end this chatty introduction with something more precise, here follows some parts about caveats and restrictions
concerning the fun's used in conjunction with et s: f un2ns and dbg: f un2ns:

Warning:

To use the pseudo functions triggering the translation, one has to include the header filens_t r ansf or m hr |
inthe source code. Failureto do sowill possibly result in runtime errorsrather than compiletime, asthe expression
may be valid as a plain Erlang program without translation.

Warning:

Thef un hasto beliterally constructed inside the parameter list to the pseudo functions. Thef un cannot be bound
toavariablefirstandthen passedtoet s: f un2ns ordbg: f un2ms,i.ethiswill work: et s: f un2ns(f un(A)
-> A end) butnotthiss F = fun(A) -> A end, ets:fun2ns(F).Thelater will resultin acompile
time error if the header is included, otherwise a runtime error. Even if the later construction would ever appear
to work, it really doesn't, so don't ever useit.

Several restrictions apply to the fun that isbeing translated into amatch_spec. To put it simple you cannot use anything
in the fun that you cannot use in a match_spec. This means that, among others, the following restrictions apply to
the fun itself:

Functions written in Erlang cannot be called, neither local functions, global functions or real fun's

Everything that is written as a function call will be trandated into a match_spec call to a builtin function, so that
thecalis_list(X) will betrandatedto{"is_list', '$1'} (' $1' isjust an example, the numbering
may vary). If onetriesto call afunction that is not amatch_spec builtin, it will cause an error.

Variables occurring in the head of the f un will be replaced by match_spec variablesin the order of occurrence,
so that the fragment f un({ A, B, C}) will bereplacedby {* $1', ' $2', '$3'} etc. Every occurrence

of such avariable later in the match_spec will be replaced by a match_spec variable in the same way, so

that thefunfun({A, B}) when is_atom(A) -> B end will betrandatedinto[{{' $1',"' $2'},
[{is_atom ' $1'}],[' $2']}].

Variablesthat are not appearing in the head areimported from the environment and made into match_spec const
expressions. Example from the shell:

1> X = 25.

25

2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'$1",'$2"},[{'>","$1",{const,25}}],["'$2"']}]

Ericsson AB. All Rights Reserved.: STDLIB | 279

ms_transform

e Matching with = cannot be used in the body. It can only be used on the top level in the head of the fun. Example
from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{"$1",["$2"|'$3"1},[{'>","'$1","$2"}],['$_"1}]

2> ets:fun2ms(fun({A, [B|C]=D}) when A > B -> D end).

Error: fun with head matching ('=' in head) cannot be translated into
match spec

{error,transform _error}

3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).

Error: fun with body matching ('=' in body) is illegal as match spec
{error,transform _error}

All variables are bound in the head of amatch_spec, so the translator can not allow multiple bindings. The special
case when matching is done on the top level makesthevariablebindto' $_' intheresulting match_spec, itisto
allow amore natural access to the whole matched object. The pseudo function obj ect () could be used instead,
see below. The following expressions are translated equally:

ets: fun2ms(fun({a, } = A) -> A end).
ets: fun2ms(fun({a, }) -> object() end).

 The specid match _spec variables '$_' and ' $*' can be accessed through the pseudo functions
obj ect () (for '$_') and bi ndi ngs() (for ' $*'). as an example, one could trandate the following
ets: match_object/2cdltoaets: sel ect cal:

ets:match object(Table, {'$1',6test,'$2'}).

...isthe same as...

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

(Thiswasjust an example, in thissimple casethe former expression is probably preferablein termsof readability).
Theet s: sel ect/ 2 call will conceptually ook like thisin the resulting code:

ets:select(Table, [{{'$1',test,'$2'},[1,['$ "1}1).

Matching on the top level of the fun head might feel like a more natural way to access' $ ', see above.

e Term constructions/literals are translated as much asis heeded to get them into valid match_specs, so that
tuples are made into match_spec tuple constructions (a one element tuple containing the tuple) and constant
expressions are used when importing variables from the environment. Records are also trandated into plain
tuple constructions, callsto element etc. Theguardtesti s_r ecor d/ 2 istranslated into match_spec code
using the three parameter version that's built into match_specs, sothati s_recor d(A, t) istrandated into
{is_record,"' $1',t, 5} giventhat therecord size of record typet is5.

» Language constructionslikecase, i f, cat ch etc that are not present in match_specs are not allowed.

e |ftheheader filens_t ransf orm hrl isnotincluded, the fun won't be translated, which may result in a
runtime error (depending onif the fun isvalid in a pure Erlang context). Be absolutely sure that the header is
included when using et s and dbg: f un2ns/ 1 in compiled code.

280 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

e |f the pseudo function triggering the trandationiset s: f un2ns/ 1, the fun's head must contain asingle
variable or asingle tuple. If the pseudo functionisdbg: f un2ns/ 1 the fun's head must contain asingle
variable or asinglelist.

The trandation from fun's to match_specs is done at compile time, so runtime performance is not affected by using
these pseudo functions. The compile time might be somewhat longer though.

For more information about match_specs, please read about them in ERTS users guide.

Exports

parse_transform(Forms, Options) -> Forms
Types:
Forms = [erl| _parse:abstract_form)]
Options = term()
Option list, required but not used.
Implements the actual transformation at compile time. This function is called by the compiler to do the source code
transformation if and when thens_t r ansf or m hr | header fileisincluded in your source code. Seetheet s and

dbg:f un2ns/ 1 function manual pagesfor documentation on how to usethisparse_transform, seethemat ch_spec
chapter in ERTS users guide for a description of match specifications.

transform_from shell(Dialect, Clauses, BoundEnvironment) -> term()

Types:
Dialect = ets | dbg
Clauses = [er| _parse: abstract_cl ause()]

BoundEnvironment = erl _eval : bi ndi ng_struct()
List of variable bindingsin the shell environment.

Implements the actual transformation when the f un2ns functions are called from the shell. In this case the abstract
formisfor onesingle fun (parsed by the Erlang shell), and all imported variables should bein the key-valuelist passed
asBoundEnvi r onnment . Theresult isaterm, normalized, i.e. not in abstract format.

format error(Error) -> Chars

Types.
Error = {error, module(), term()}
Chars = io_lib:chars()

Takes an error code returned by one of the other functionsin the module and creates atextual description of the error.
Fairly uninteresting function actually.

Ericsson AB. All Rights Reserved.: STDLIB | 281

orddict

orddict

Erlang module

O ddi ct implements aKey - Val ue dictionary. An or ddi ct is arepresentation of adictionary, where a list of
pairsis used to store the keys and values. Thelist is ordered after the keys.

Thismodule provides exactly the sameinterface asthe moduledi ct but with adefined representation. Onedifference
isthat while di ct considers two keys as different if they do not match (=: =), this module considers two keys as
different if and only if they do not compare equa (==).

Data Types
orddict() = [{Key :: term(), Value :: term()}]
As returned by new/O.

Exports

append(Key, Value, Orddictl) -> Orddict2
Types.

Key = Value = term()

Orddictl = Orddict2 = orddict()

This function appends a new Val ue to the current list of values associated with Key. An exception is generated if
theinitial value associated with Key isnot alist of values.

append list(Key, VallList, Orddictl) -> Orddict2
Types:

Key = term()

ValList = [Value :: term()]

Orddictl = Orddict2 = orddict()

This function appends a list of values Val Li st to the current list of values associated with Key. An exception is
generated if the initial value associated with Key isnot alist of values.

erase(Key, Orddictl) -> Orddict2
Types.

Key = term()

Orddictl = Orddict2 = orddict()

Thisfunction erases al items with a given key from adictionary.

fetch(Key, Orddict) -> Value
Types.
Key = Value = term()
Orddict = orddict()

This function returns the value associated with Key in the dictionary Or ddi ct . f et ch assumes that the Key is
present in the dictionary and an exception is generated if Key isnot in the dictionary.

282 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

fetch keys(Orddict) -> Keys
Types:
Orddict = orddict()
Keys = [term()]
Thisfunction returns alist of al keysin the dictionary.

filter(Pred, Orddictl) -> Orddict2

Types.
Pred = fun((Key :: term(), Value :: term()) -> boolean())
Orddictl = Orddict2 = orddict()

O ddi ct 2 isadictionary of al keysand valuesin Or ddi ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Orddict) -> {ok, Value} | error
Types.

Key = term()

Orddict = orddict()

Value = term()

This function searches for akey in adictionary. Returns{ ok, Val ue} where Val ue isthe value associated with
Key, or er r or if thekey isnot present in the dictionary.

fold(Fun, AccO, Orddict) -> Accl
Types.
Fun =
fun((Key :: term(), Value :: term(), AccIn :: term()) ->
AccOut :: term())
AccO = Accl = term()
Orddict = orddict()

Calls Fun on successive keys and values of Or ddi ct together with an extraargument Acc (short for accumulator).
Fun must return anew accumulator which ispassed to thenext call. AccO isreturned if thelistisempty. Theevaluation
order is undefined.

from list(List) -> Orddict

Types:
List = [{Key :: term(), Value :: term()}]
Orddict = orddict ()

This function convertsthe Key - Val ue list Li st to adictionary.

is key(Key, Orddict) -> boolean()
Types.

Key = term()

Orddict = orddict()

Thisfunction testsif Key is contained in the dictionary Or ddi ct .

Ericsson AB. All Rights Reserved.: STDLIB | 283

orddict

map (Fun, Orddictl) -> Orddict2
Types:
Fun =
fun((Key :: term(), Valuel :: term()) -> Value2 :: term())
Orddictl = Orddict2 = orddict()

map calls Fun on successive keys and values of Or ddi ct 1 to return anew value for each key. The evauation order
isundefined

merge(Fun, Orddictl, Orddict2) -> Orddict3
Types:
Fun =
fun((Key :: term(), Valuel :: term(), Value2 :: term()) ->
Value :: term())

Orddictl = Orddict2 = Orddict3 = orddict()
nmer ge mergestwo dictionaries, Or ddi ct 1 and Or ddi ct 2, to create anew dictionary. All the Key - Val ue pairs

from both dictionaries are included in the new dictionary. If akey occursin both dictionaries then Fun is called with
the key and both values to return anew value. mer ge could be defined as:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

but isfaster.

new() -> orddict()
This function creates a new dictionary.

size(Orddict) -> integer() >= 0
Types.

Orddict = orddict()
Returns the number of elementsin an Or ddi ct .

is empty(Orddict) -> boolean()
Types:
Orddict = orddict()
Returnst r ue if Or ddi ct hasno elements, f al se otherwise.

store(Key, Value, Orddictl) -> Orddict2
Types:

Key = Value = term()

Orddictl = Orddict2 = orddict()

Thisfunction storesaKey - Val ue pair inadictionary. If the Key aready existsin Or ddi ct 1, the associated value
isreplaced by Val ue.

284 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

to list(Orddict) -> List
Types:
Orddict = orddict()
List = [{Key :: term(), Value :: term()}]

This function converts the dictionary to alist representation.

update(Key, Fun, Orddictl) -> Orddict2

Types.
Key = term()
Fun = fun((Valuel :: term()) -> Value2 :: term())

Orddictl = Orddict2 = orddict()

Update a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Orddictl) -> Orddict2

Types:
Key = Initial = term()
Fun = fun((Valuel :: term()) -> Value2 :: term())

Orddictl = Orddict2 = orddict()

Update avalue in adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary
thenl ni ti al will be stored asthefirst value. For example append/ 3 could be defined as:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Vall, D).

update counter(Key, Increment, Orddictl) -> Orddict2
Types:

Key = term()

Increment = number()

Orddictl = Orddict2 = orddict()

Add | ncr enent to the value associated with Key and store this value. If Key is not present in the dictionary then
I ncr enent will be stored as thefirst value.

This could be defined as:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> Old + Incr end, Incr, D).

but is faster.

Notes

The functions append and append_| i st are included so we can store keyed values in a list accumulator. For
example:

Ericsson AB. All Rights Reserved.: STDLIB | 285

orddict

> DO = orddict:new(),
D1 = orddict:store(files, [], DO),
D2 = orddict:append(files, f1l, D1),
D3 = orddict:append(files, f2, D2),
D4 = orddict:append(files, f3, D3),

orddict:fetch(files, D4).
[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Thefunction f et ch should be used if the key is known to bein the dictionary, otherwisef i nd.

See Also
dict(3), gb_trees(3)

286 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

ordsets

Erlang module

Sets are collections of elementswith no duplicate elements. Anor dset isarepresentation of a set, where an ordered
list is used to store the elements of the set. An ordered list is more efficient than an unordered list.

Thismodule provides exactly the sameinterface asthe moduleset s but with adefined representation. Onedifference
isthat whileset s considerstwo elementsasdifferent if they do not match (=: =), thismodul e considers two el ements
asdifferent if and only if they do not compare equal (==).

Data Types
ordset(T) = [T]
Asreturned by new/0.

Exports

new() -> []
Returns a new empty ordered set.

is set(Ordset) -> boolean()
Types:
Ordset = term()
Returnst r ue if Or dset isan ordered set of elements, otherwisef al se.

size(Ordset) -> integer() >= 0
Types:

Ordset = ordset (term())
Returns the number of elementsin Or dset .

to list(Ordset) -> List

Types:
Ordset = ordset (T)
List = [T]

Returnsthe elements of Or dset asalist.

from list(List) -> Ordset

Types:
List = [T]
Ordset = ordset (T)

Returns an ordered set of the elementsin Li st .

is element(Element, Ordset) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 287

ordsets

Element = term()
Ordset = ordset (term())

Returnst r ue if El enent isan element of Or dset , otherwisef al se.

add element(Element, Ordsetl) -> Ordset2

Types.
Element = E
Ordsetl = ordset (T)
Ordset2 = ordset (T | E)

Returns a new ordered set formed from Or dset 1 with El enent inserted.

del element(Element, Ordsetl) -> Ordset2

Types.
Element = term()
Ordsetl = Ordset2 = ordset (T)

Returns Or dset 1, but with El enment removed.

union(Ordsetl, Ordset2) -> Ordset3

Types.
Ordsetl = ordset (T1)
Ordset2 = ordset (T2)
Ordset3 = ordset (T1 | T2)

Returns the merged (union) set of Or dset 1 and Or dset 2.

union(OrdsetList) -> Ordset
Types.
OrdsetList = [ordset (T)]
Ordset = ordset (T)

Returns the merged (union) set of the list of sets.

intersection(Ordsetl, Ordset2) -> Ordset3
Types:
Ordsetl = Ordset2 = Ordset3 = ordset (term())

Returns the intersection of Or dset 1 and Or dset 2.

intersection(OrdsetlList) -> Ordset
Types:
OrdsetList = [ordset (term()), ...]
Ordset = ordset (term())

Returns the intersection of the non-empty list of sets.

288 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

is disjoint(Ordsetl, Ordset2) -> boolean()
Types:
Ordsetl = Ordset2 = ordset (term())

Returnst r ue if Or dset 1 and Or dset 2 are digoint (have no elementsin common), and f al se otherwise.

subtract(Ordsetl, Ordset2) -> Ordset3
Types.
Ordsetl = Ordset2 = Ordset3 = ordset (term())

Returns only the elements of Or dset 1 which are not also elements of Or dset 2.

is subset(Ordsetl, Ordset2) -> boolean()
Types:
Ordsetl = Ordset2 = ordset (term())

Returnst r ue when every element of Or dset 1 isalso amember of Or dset 2, otherwisef al se.

fold(Function, AccO, Ordset) -> Accl
Types.
Function =
fun((Element :: T, AccIn :: term()) -> AccOut :: term())

Ordset = ordset (T)
AccO = Accl = term()

Fold Funct i on over every element in Or dset returning the fina value of the accumulator.

filter(Pred, Ordsetl) -> Ordset2

Types:
Pred = fun((Element :: T) -> boolean())
Ordsetl = Ordset2 = ordset (T)

Filter elementsin Or dset 1 with boolean function Pr ed.

See Also
gb_sets(3), sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 289

P9

P9

Erlang module

Warning:
This module is deprecated and will be removed in Erlang/OTP 18.

This (experimental) module implements process groups. A process group is agroup of processes that can be accessed
by a common name. For example, a group named f oobar can include a set of processes as members of this group
and they can be located on different nodes.

When messages are sent to the named group, all members of the group receive the message. The messages are
serialized. If the process P1 sends the message ML to the group, and process P2 simultaneously sends message M2,
then all members of the group receive the two messages in the same order. If members of a group terminate, they are
automatically removed from the group.

This module is not complete. The module is inspired by the 1SIS system and the causal order protocol of the ISIS
system should also be implemented. At the moment, all messages are serialized by sending them through a group
master process.

Exports

create(PgName) -> ok | {error, Reason}

Types:
PgName = term()
Reason = already created | term()

Creates an empty group named PgNan®e on the current node.

create(PgName, Node) -> ok | {error, Reason}
Types:

PgName = term()

Node = node()

Reason = already created | term()

Creates an empty group named PgNan®e on the node Node.

join(PgName, Pid) -> Members

Types:
PgName = term()
Pid = pid()

Members = [pid()]
Joins the pid Pi d to the process group PgNane. Returns alist of al old members of the group.

send (PgName, Msg) -> ok
Types:

290 | Ericsson AB. All Rights Reserved.: STDLIB

P9

PgName = Msg = term()
Sendsthetuple{ pg_nmessage, From PgNane, Msg} toal members of the process group PgNane.
Fallure: { badar g, {PgNane, Msg}} if PgNane isnot aprocess group (aglobally registered name).

esend (PgName, Msg) -> ok
Types.
PgName = Msg = term()

Sendsthetuple{ pg_nessage, From PgNane, Msg} toal members of the process group PgNane, except
ourselves.

Failure: { badar g, {PgNane, Msg}} if PgNane isnot aprocessgroup (aglobally registered name).

members (PgName) -> Members
Types:

PgName = term()

Members = [pid()]

Returns alist of all members of the process group PgNane.

Ericsson AB. All Rights Reserved.: STDLIB | 291

pool

pool

Erlang module

pool can be used to run a set of Erlang nodes as a pool of computational processors. It is organized as a master and
aset of dave nodes and includes the following features:

e The dave nodes send regular reports to the master about their current load.
e Queries can be sent to the master to determine which node will have the least load.

TheBIFstatistics(run_gueue) isused for estimating future loads. It returns the length of the queue of ready
to run processes in the Erlang runtime system.

The dlave nodes are started with the s| ave module. This effects, tty 1O, file 10, and code loading.
If the master node fails, the entire pool will exit.

Exports

start(Name) -> Nodes
start(Name, Args) -> Nodes

Types.
Name = atom()
Args = string()

Nodes = [node()]

Starts a new pool. Thefile. host s. er | ang isread to find host names where the pool nodes can be started. See
section Files below. The start-up procedure failsif the fileis not found.

The slave nodes are started with sl ave: start/ 2, 3, passing aong Nane and, if provided, Ar gs. Nane is used
asthefirst part of the node names, Ar gs is used to specify command line arguments. See dave(3).

Access rights must be set so that all nodes in the pool have the authority to access each other.
The function is synchronous and all the nodes, aswell as all the system servers, are running when it returns avalue.

attach(Node) -> already attached | attached
Types:
Node = node()
This function ensures that a pool master is running and includes Node in the pool master's pool of nodes.

stop() -> stopped
Stops the pool and kills al the slave nodes.

get nodes() -> [node()]

Returns alist of the current member nodes of the pool.

pspawn(Mod, Fun, Args) -> pid()
Types:

292 | Ericsson AB. All Rights Reserved.: STDLIB

pool

Mod module()
Fun atom()
Args = [term()]

Spawns a process on the pool node which is expected to have the lowest future load.

pspawn_link(Mod, Fun, Args) -> pid()

Types:
Mod = module()
Fun = atom()

Args = [term()]
Spawn links a process on the pool node which is expected to have the lowest future load.

get node() -> node()
Returns the node with the expected lowest future |oad.

Files

. host s. erl ang is used to pick hosts where nodes can be started. See net_adm(3) for information about format
and location of thisfile.

$HOMVE/ . er | ang. sl ave. out . HOST isused for all additional 10 that may come from the slave nodes on standard
|O. If the start-up procedure does not work, this file may indicate the reason.

Ericsson AB. All Rights Reserved.: STDLIB | 293

proc_lib

proc_lib

Erlang module

Thismoduleisused to start processes adhering to the OTP Design Principles. Specifically, thefunctionsinthismodule
are used by the OTP standard behaviors (gen_ser ver, gen_f sm...) when starting new processes. The functions
can also be used to start special processes, user defined processes which comply to the OTP design principles. See
Sysand Proc_Libin OTP Design Principles for an example.

Some useful information is initialized when a process starts. The registered names, or the process identifiers, of the
parent process, and the parent ancestors, are stored together with information about the function initialy called in
the process.

Whilein"plain Erlang" aprocessissaid to terminate normally only for theexit reasonnor mal , aprocess started using
proc_| i bisasosaidtoterminate normally if it exitswith reason shut down or { shut down, Ter n} . shut down
is the reason used when an application (supervision tree) is stopped.

When a process started using pr oc_| i b terminates abnormally -- that is, with another exit reason than nor ral ,
shut down, or { shut down, Ter n} -- acrashreport isgenerated, which iswritten to terminal by the default SASL
event handler. That is, the crash report is normally only visible if the SASL application is started. See sasl(6) and
SASL User's Guide.

The crash report contains the previously stored information such as ancestors and initial function, the termination
reason, and information regarding other processes which terminate as a result of this process terminating.

Data Types
spawn_option() = link
| monitor
| {priority, priority_level()}
| {min heap size, integer() >= 0}
| {min bin vheap size, integer() >= 0}
| {fullsweep after, integer() >= 0}
See erlang:spawn_opt/2,3,4,5
priority level() = high | low | max | normal
dict or pid() = pid()
| (ProcInfo :: [term()])
| {X :: integer(),
Y :: integer(),
Z :: integer()}

Exports

spawn(Fun) -> pid()

spawn(Node, Fun) -> pid()

spawn (Module, Function, Args) -> pid()

spawn (Node, Module, Function, Args) -> pid()
Types.

294 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

Node = node()
Fun = function()
Module = module()
Function = atom()
Args = [term()]
Spawns anew process and initializes it as described above. The processis spawned using the spawn BIFs.

spawn_link(Fun) -> pid()

spawn_link(Node, Fun) -> pid()

spawn_link(Module, Function, Args) -> pid()
spawn_link(Node, Module, Function, Args) -> pid()

Types:
Node = node()
Fun = function()
Module = module()
Function = atom()
Args = [term()]
Spawns a new process and initializes it as described above. The processis spawned using the spawn_link BIFs.

spawn_opt(Fun, SpawnOpts) -> pid()
spawn_opt(Node, Function, SpawnOpts) -> pid()
spawn_opt(Module, Function, Args, SpawnOpts) -> pid()
spawn_opt(Node, Module, Function, Args, SpawnOpts) -> pid()
Types:

Node = node()

Fun = function()

Module = module()

Function = atom()

Args = [term()]

SpawnOpts = [spawn_option()]
Spawns a new process and initializes it as described above. The process is spawned using the spawn_opt BIFs.

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason

badar g.

Ericsson AB. All Rights Reserved.: STDLIB | 295

proc_lib

start(Module, Function, Args) -> Ret
start(Module, Function, Args, Time) -> Ret
start(Module, Function, Args, Time, SpawnOpts) -> Ret
start _link(Module, Function, Args) -> Ret
start link(Module, Function, Args, Time) -> Ret
start_link(Module, Function, Args, Time, SpawnOpts) -> Ret
Types:

Module = module()

Function = atom()

Args = [term()]

Time = timeout()

SpawnOpts = [spawn_option()]

Ret = term() | {error, Reason :: term()}
Starts anew process synchronously. Spawns the process and waits for it to start. When the process has started, it must

call init_ack(Parent,Ret) or init_ack(Ret), where Par ent isthe processthat evaluatesthisfunction. At thistime, Ret
is returned.

If the start _|ink/3, 4,5 function is used and the process crashes before it has called i nit _ack/ 1, 2,
{error, Reason} isreturnedif the calling process traps exits.

If Ti me is specified as an integer, this function waits for Ti me milliseconds for the new processto call i ni t _ack,
or{error, tinmeout} isreturned, and the processiskilled.

The SpawnOpt s argument, if given, will be passed asthe last argument to the spawn_opt / 2, 3, 4, 5 BIF.

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

init ack(Ret) -> ok
init ack(Parent, Ret) -> ok
Types:

Parent = pid()

Ret = term()

This function must be used by a process that has been started by astart[_|ink]/3,4,5 function. It tells Par ent that the
process has initialized itself, has started, or hasfailed to initialize itself.

Thei nit _ack/ 1 function uses the parent value previously stored by the start function used.

If this function is not called, the start function will return an error tuple (if a link and/or a timeout is used) or hang
otherwise.

The following example illustrates how thisfunctionand proc_I i b: start _| i nk/ 3 are used.

-module(my proc).
-export([start link/0]).
-export([init/1]).

296 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

start link() ->
proc_lib:start link(my proc, init, [self()]).

init(Parent) ->
case do initialization() of
ok ->
proc lib:init ack(Parent, {ok, self()});
{error, Reason} ->
exit(Reason)
end,
loop() .

format (CrashReport) -> string()
Types:
CrashReport = [term()]
Equivalenttof or mat (Cr ashReport, latinl).

format (CrashReport, Encoding) -> string()
Types:
CrashReport = [term()]
Encoding = latinl | unicode | utf8
This function can be used by a user defined event handler to format a crash report. The crash report is sent using
error_logger:error_report(crash report, CrashReport). Thatis, the event to be handled is of

theformat{error _report, G, {Pid, crash report, CrashReport}} whereG. isthegroupleader
pid of the process Pi d which sent the crash report.

initial call(Process) -> {Module, Function, Args} | false
Types.
Process = dict_or_pid()
Module = module()
Function = atom()
Args = [atom()]
Extracts the initial call of a process that was started using one of the spawn or start functions described above.

Pr ocess can either be a pid, an integer tuple (from which a pid can be created), or the process information of a
process Pi d fetched through aner | ang: process_i nf o(Pi d) function call.

Ericsson AB. All Rights Reserved.: STDLIB | 297

proc_lib

Note:

Thelist Ar gs nolonger containsthe actual arguments, but the same number of atoms asthe number of arguments;
the first atom is always"' Argunent __ 1', the second ' Argunent __ 2' , and so on. The reason is that the
argument list could waste a significant amount of memory, and if the argument list contained funs, it could be
impossible to upgrade the code for the module.

If the process was spawned using afun, i ni tial _cal | /1 nolonger returns the actual fun, but the module,
function for the local function implementing the fun, and the arity, for instance { sone_nodul e, - wor k/ 3-
fun-0-, 0} (meaning that the fun was created in the function some_nodul e: wor k/ 3). The reason is that
keeping the fun would prevent code upgrade for the module, and that a significant amount of memory could be
wasted.

translate initial call(Process) -> {Module, Function, Arity}
Types.
Process = dict_or_pid()
Module = module()
Function = atom()
Arity = byte()
Thisfunctionisused by thec: i / 0 and c: r egs/ O functionsin order to present process information.
Extracts the initial call of a process that was started using one of the spawn or start functions described above, and
tranglates it to more useful information. Pr ocess can either be a pid, an integer tuple (from which a pid can be

created), or the processinformation of aprocessPi d fetched throughaner | ang: process_i nf o(Pi d) function
cal.

If theinitia call isto one of the system defined behaviors such asgen_ser ver or gen_event , it istransated to
more useful information. If agen_ser ver is spawned, the returned Modul e is the name of the callback module
and Funct i onisi ni t (thefunction that initiates the new server).

A supervi sor and asupervi sor_bridge arealso gen_server processes. In order to return information
that this processis a supervisor and the name of the call-back module, Modul e issuper vi sor and Functi onis
the name of the supervisor callback module. Ari ty is1 sincethei ni t/ 1 functionis called initially in the callback
module.

By default,{ proc_li b,init_p, 5} isreturned if no information about the initial call can be found. It isassumed
that the caller knows that the process has been spawned with the pr oc_| i b module.

hibernate(Module, Function, Args) -> no_return()
Types.
Module = module()
Function = atom()
Args = [term()]
This function does the same as (and does call) the BIF hibernate/3, but ensures that exception handling and logging

continues to work as expected when the process wakes up. Always use this function instead of the BIF for processes
started using pr oc_| i b functions.

SEE ALSO

error_logger(3)

298 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

proplists

Erlang module

Property lists are ordinary lists containing entries in the form of either tuples, whose first elements are keys used for
lookup and insertion, or atoms, which work as shorthand for tuples{ At om t r ue} . (Other termsare alowed inthe
lists, but are ignored by this module.) If there is more than one entry in alist for a certain key, the first occurrence
normally overrides any later (irrespective of the arity of the tuples).

Property lists are useful for representing inherited properties, such as options passed to a function where a user may
specify options overriding the default settings, object properties, annotations, etc.

Two keys are considered equal if they match (=: =). In other words, numbers are compared literally rather than by
value, so that, for instance, 1 and 1. 0 are different keys.

Data Types
property() = atom() | tuple()

Exports

append values(Key, ListIn) -> ListOut
Types.
Key = term()
ListIn = ListOut = [term()]
Similartoget _al | _val ues/ 2, but each valueiswrapped in alist unlessit isalready itself alist, and the resulting

list of lists is concatenated. This is often useful for "incrementa” options; e.g., append_val ues(a, [{a,
[1,2]}, {b, 0}, {a, 3}, {c, -1}, {a, [4]}]) will returnthelist[1, 2, 3, 4] .

compact(ListIn) -> ListOut
Types:
ListIn = ListOut = [property()]
Minimizes the representation of all entriesin thelist. Thisisequivalentto [property(P) || P <- ListlIn].
Seealso: property/1,unfol d/ 1.

delete(Key, List) -> List
Types:

Key = term()

List = [term()]

Deletes al entries associated with Key fromLi st .

expand(Expansions, ListIn) -> ListOut
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 299

proplists

Expansions = [{Property :: property(), Expansion :: [term()]}]
ListIn = ListOut = [term()]

Expands particular properties to corresponding sets of properties (or other terms). For each pair { Property,
Expansi on} in Expansi ons, if E is the first entry in Li st | n with the same key as Pr operty, and E and
Pr operty have equivalent normal forms, then E is replaced with the terms in Expansi on, and any following
entries with the same key are deleted from Li st | n.

For example, the following expressionsall return[fi e, bar, baz, funy:

expand([{foo, [bar, bazl}l,

[fie, foo, fum])

expand([{{foo, true}, [bar, bazl}l,
[fie, foo, fum])

expand([{{foo, false}, [bar, bazl}],
[fie, {foo, false}, fum])

However, no expansion is done in the following call:

expand([{{foo, true}, [bar, baz]}],
[{foo, false}, fie, foo, fum])

because{f oo, fal se} shadowsf oo.

Note that if the original property term is to be preserved in the result when expanded, it must be included in the
expansion list. The inserted terms are not expanded recursively. If Expansi ons contains more than one property
with the same key, only the first occurrence is used.

Seealso: normal i ze/ 2.

get all values(Key, List) -> [term()]
Types:
Key = term()
List = [term()]
Similar to get _val ue/ 2, but returns the list of values for all entries{ Key, Val ue} inLi st. If no such entry
exists, the result is the empty list.

Seealso: get _val ue/ 2.

get bool(Key, List) -> boolean()
Types.

Key = term()

List = [term()]

Returnsthevalue of aboolean key/valueoption. If| ookup(Key, Li st) wouldyield{ Key, true},thisfunction
returnst r ue; otherwisef al se isreturned.

Seealso: get _val ue/ 2,1 ookup/ 2.

get keys(List) -> [term()]
Types:

300 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

List = [term()]
Returns an unordered list of the keysused in Li st , not containing duplicates.

get value(Key, List) -> term()
Types.

Key = term()

List = [term()]

Equivalenttoget _val ue(Key, List, undefined).

get value(Key, List, Default) -> term()
Types:

Key = term()

List = [term()]

Default = term()

Returnsthe value of asimple key/value property inLi st . If | ookup(Key, Li st) wouldyield{Key, Val ue},
this function returns the corresponding Val ue, otherwise Def aul t isreturned.

Seealso: get _al | _val ues/ 2,get _bool / 2,get _val ue/ 2,1 ookup/ 2

is defined(Key, List) -> boolean()
Types:
Key = term()
List = [term()]
Returnst r ue if Li st contains at least one entry associated with Key, otherwisef al se isreturned.

lookup(Key, List) -> none | tuple()
Types.

Key = term()

List = [term()]

Returns the first entry associated with Key in Li st , if one exists, otherwise returnsnone. For an atom Ainthelist,
thetuple{ A, true} istheentry associated with A.

Seealso: get _bool / 2,get _val ue/ 2,1 ookup_al I /2

lookup all(Key, List) -> [tuple()]
Types:
Key = term()
List = [term()]
Returnsthelist of al entries associated with Key in Li st . If no such entry exists, the result is the empty list.

Seedso: | ookup/ 2.

normalize(ListIn, Stages) -> ListOut
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 301

proplists

ListIn = [term()]
Stages = [Operation]
Operation {aliases, Aliases}

| {negations, Negations}
| {expand, Expansions}

Aliases = Negations = [{Key, Key}]

Expansions = [{Property :: property(), Expansion :: [term()]}]

ListOut = [term()]
Passes Listln through a sequence of substitution/expansion stages. For an al i ases operation, the
function substitute_aliases/ 2 is applied using the given list of aliases; for a negat i ons operation,
substitute_negations/ 2 is applied using the given negation list; for an expand operation, the function
expand/ 2 is applied using the given list of expansions. The fina result is automatically compacted (cf.
conpact/ 1).

Typically you want to substitute negations first, then aliases, then perform one or more expansions (sometimes you
want to pre-expand particular entries before doing the main expansion). Y ou might want to substitute negations and/
or aliases repeatedly, to allow such formsin the right-hand side of aliases and expansion lists.

Seedso: conmpact/ 1,expand/ 2,substitute_aliases/2,substitute_negations/?2.

property(PropertyIn) -> PropertyOut
Types:
PropertyIn = PropertyOut = property()

Creates anormal form (minimal) representation of a property. If Propertyl nis{Key, true} whereKey isan
atom, thisreturns Key, otherwise the wholeterm Pr oper t yI n isreturned.

See also: property/ 2.

property(Key, Value) -> Property
Types:
Key = Value = term()
Property = atom() | {term(), term()}

Creates anormal form (minimal) representation of a simple key/value property. Returns Key if Val ue ist r ue and
Key isan atom, otherwise atuple{ Key, Val ue} isreturned.

Seealso: property/ 1.

split(List, Keys) -> {Lists, Rest}
Types:

List = Keys = [term()]

Lists = [[term()]]

Rest = [term()]
Partitions Li st into alist of sublists and a remainder. Li st s contains one sublist for each key in Keys, in the
corresponding order. The relative order of the elements in each sublist is preserved from the original Li st . Rest
contains the elements in Li st that are not associated with any of the given keys, also with their original relative
order preserved.
Example: split([{c, 2}, {e, 1}, a {c, 3,4}, d,{b, 5}, b], [a b,])

returns

302 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

{[[a, [{b, 5}, bl,[{c, 2}, {c, 3, 4}]], [{e, 1}, d]}

substitute aliases(Aliases, ListIn) -> ListOut

Types.
Aliases = [{Key, Key}]
Key = term()

ListIn = ListOut = [term()]

Substitutes keys of properties. For each entry inLi st | n, if it is associated with some key K1 such that { K1, K2}
occursin Al i ases, the key of the entry is changed to K2. If the same K1 occurs more than oncein Al i ases, only
the first occurrenceis used.

Example: substitute_aliases([{color, colour}], L) willreplaceall tuples{color, ...} inL
with{col our, ...},andall aomscol or withcol our.

Seealso: normal i ze/ 2, substitute_negations/ 2.

substitute negations(Negations, ListIn) -> ListOut

Types.
Negations = [{Key, Key}]
Key = term()

ListIn = ListOut = [term()]

Substitutes keys of boolean-valued properties and simultaneously negates their values. For each entry in Li st | n, if
it isassociated with some key K1 such that { K1, K2} occursin Negat i ons, thenif theentry was{ K1, true}
it will bereplaced with{ K2, fal se}, otherwiseit will bereplaced with { K2, t r ue}, thuschanging the name of
the option and simultaneously negating the value given by get _bool (Li st | n) . If the same K1 occurs more than
oncein Negat i ons, only thefirst occurrenceis used.

Example: substitute_negations([{no_foo, foo}], L) will replace any atom no_f oo or tuple
{no_foo, true} inLwith{foo, false},andanyothertuple{no_foo, ...} with{foo, true}.

Seeadso: get _bool /2, normal i ze/ 2,substitute_aliases/ 2.

unfold(ListIn) -> ListOut
Types.
ListIn = ListOut = [term()]

Unfolds all occurrences of atomsin Li st | n totuples{ At om true}.

Ericsson AB. All Rights Reserved.: STDLIB | 303

qlc

qlc

Erlang module

The gl ¢ module provides aquery interface to Mnesia, ETS, Dets and other data structures that implement an iterator
style traversal of objects.

Overview

The gl ¢ module implements a query interface to QLC tables. Typical QLC tablesare ETS, Dets, and Mnesia tables.
Thereisalso support for user defined tables, see the Implementing a QLC table section. A query is stated using Query
List Comprehensions (QLCs). The answersto aquery are determined by datain QL C tablesthat fulfill the constraints
expressed by the QLCs of the query. QLCs are similar to ordinary list comprehensions as described in the Erlang
Reference Manual and Programming Examples except that variables introduced in patterns cannot be used in list
expressions. In fact, in the absence of optimizations and options such ascache and uni que (see below), every QLC
free of QL C tables evaluatesto the same list of answers as the identical ordinary list comprehension.

While ordinary list comprehensions evaluate to lists, calling glc:g/1,2 returns a Query Handle. To obtain al the
answersto aquery, glc:eval/1,2 should be called with the query handle asfirst argument. Query handles are essentially
functional objects ("funs") created in the module calling g/ 1, 2. Asthe funs refer to the modul€'s code, one should
be careful not to keep query handlestoo long if the modul€e's code isto be replaced. Code replacement is described in
the Erlang Reference Manual. The list of answers can aso be traversed in chunks by use of a Query Cursor. Query
cursorsare created by calling glc: cursor/1,2 with aquery handle asfirst argument. Query cursorsare essentially Erlang
processes. One answer at atimeis sent from the query cursor process to the process that created the cursor.

Syntax

Syntactically QL Cs have the same parts as ordinary list comprehensions:
[Expression || Qualifierl, Qualifier2, ...]

Expr essi on (the template) is an arbitrary Erlang expression. Qualifiers are either filters or generators. Filters
are Erlang expressions returning bool (). Generators have the form Pattern <- Li st Expression,
where Li st Expressi on is an expression evaluating to a query handle or a list. Query handles are
returned from gl c: t abl e/ 2, gl c: append/ 1, 2,qlc:sort/ 1, 2,9l c: keysort/2,3,qlc:q/1,2,and
glc:string_to_handle/1, 2, 3.

Evaluation

The evaluation of aquery handle begins by the inspection of options and the collection of information about tables. As
aresult qualifiers are modified during the optimization phase. Next all list expressions are evaluated. If a cursor has
been created evaluation takes place in the cursor process. For those list expressionsthat are QL Cs, the list expressions
of the QLCs generators are evaluated aswell. One hasto be careful if list expressions have side effects since the order
in which list expressions are evaluated is unspecified. Finally the answers are found by evaluating the qualifiers from
left to right, backtracking when some filter returnsf al se, or collecting the template when all filtersreturnt r ue.

Filters that do not return bool () but fail are handled differently depending on their syntax: if the filter isaguard it
returnsf al se, otherwise the query evaluation fails. This behavior makes it possible for the ql ¢ module to do some
optimizations without affecting the meaning of aquery. For example, when testing some position of atable and one or
more constants for equality, only the objects with equal values are candidates for further evaluation. The other objects
are guaranteed to make thefilter return f al se, but never fail. The (small) set of candidate objects can often be found
by looking up some key values of the table or by traversing the table using a match specification. It is necessary to
place the guard filters immediately after the tabl€e's generator, otherwise the candidate objects will not be restricted

304 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

to asmall set. The reason is that objects that could make the query evaluation fail must not be excluded by looking
up akey or running a match specification.

Join
Theqgl ¢ module supportsfast join of two query handles. Fast joinis possibleif some position P1 of one query handler
and some position P2 of another query handler are tested for equality. Two fast join methods have been implemented:

« Lookup join traverses al objects of one query handle and finds objects of the other handle (a QL C table) such
that the values at P1 and P2 match or compare equal. The gl ¢ module does not create any indices but looks up
values using the key position and the indexed positions of the QL C table.

e Mergejoin sorts the objects of each query handle if necessary and filters out objects where the values at P1 and
P2 do not compare equal. If there are many objects with the same value of P2 atemporary file will be used for
the equivalence classes.

The gl ¢ module warns at compile time if a QLC combines query handles in such away that more than onejoin is
possible. In other words, there is no query planner that can choose a good order between possible join operations. It
is up to the user to order the joins by introducing query handles.

The join is to be expressed as a guard filter. The filter must be placed immediately after the two joined generators,
possibly after guard filters that use variables from no other generators but the two joined generators. The gl ¢
moduleinspectstheoperandsof =: =/ 2,==/ 2,i s_r ecord/ 2,el ement / 2, andlogical operators(and/ 2,or/ 2,
andal so/ 2, or el se/ 2, xor / 2) when determining which joins to consider.

Common options

The following options are accepted by cur sor/ 2,eval / 2,fol d/ 4,andi nf o/ 2:

e {cache_all, Cache} whereCacheisequaltoets orli st addsa{cache, Cache} optiontoevery
list expression of the query except tables and lists. Defaultis{ cache_al | , no}.Theoptioncache_al |l is
equivalentto{ cache_al |, ets}.

« {max_list_size, MaxListSize} whereMaxLi st Si ze isthesizein bytes of terms on the external
format. If the accumulated size of collected objects exceeds MaxLi st Si ze the objects are written onto a
temporary file. Thisoption isused by the{ cache, i st} option aswell as by the merge join method.
Default is 512* 1024 bytes.

« {tnpdir_usage, TnpFil eUsage} determinesthe action taken when gl ¢ isabout to create temporary
files on the directory set by thet npdi r option. If thevalueisnot _al | owed an error tupleis returned,
otherwise temporary files are created as needed. Default isal | owed which means that no further action
istaken. Thevaluesi nf o_nsg, war ni ng_nsg, and er r or _nmsg mean that the function with the
corresponding namein the module er r or _| ogger iscalled for printing some information (currently the
stacktrace).

e {tnpdir, TenpDirectory} setsthedirectory used by mergejoin for temporary files and by the
{cache, |i st} option. Theoption also overridesthet npdi r option of keysort/ 3 andsort/ 2. The
default valueis™ " which meansthat the directory returned by f i | e: get _cwd() isused.

e {unique_all, true} addsa{uni que, true} optiontoevery list expression of the query. Default is
{unique_all, false}.Theoptionuni que_al | isequivalentto{uni que_al |, true}.

Getting started

Asaready mentioned queries are stated in the list comprehension syntax as described in the Erlang Reference Manual.
In the following some familiarity with list comprehensionsis assumed. There are examplesin Programming Examples
that can get you started. It should be stressed that list comprehensions do not add any computational power to the
language; anything that can be done with list comprehensions can also be done without them. But they add a syntax
for expressing simple search problems which is compact and clear once you get used to it.

Ericsson AB. All Rights Reserved.: STDLIB | 305

qlc

Many list comprehension expressions can be evaluated by the ql ¢ module. Exceptions are expressions such that
variablesintroduced in patterns (or filters) are used in some generator later in the list comprehension. As an example
consider an implementation of listsappend(L): [X || Y <- L, X <- Y].Y isintroduced in the first generator
and used in the second. The ordinary list comprehension is normally to be preferred when there is a choice as to
which to use. One differenceisthat gl c: eval / 1, 2 collects answers in alist which is finally reversed, while list
comprehensions collect answers on the stack which is finally unwound.

What the gl ¢ module primarily adds to list comprehensions is that data can be read from QLC tables in small
chunks. A QLC tableiscreated by calling gl c: t abl e/ 2. Usualy gl c: t abl e/ 2 isnot caled directly from the
guery but via an interface function of some data structure. There are a few examples of such functions in Erlang/
OTP. mesi a:table/1,2,ets:table/ 1, 2, and dets: tabl e/ 1, 2. For a given data structure there can
be several functions that create QL C tables, but common for all these functions is that they return a query handle
created by gl c: t abl e/ 2. Using the QLC tables provided by OTP is probably sufficient in most cases, but for
the more advanced user the section Implementing a QLC table describes the implementation of a function calling
gl c: tabl e/ 2.

Besidesql c: t abl e/ 2 there are other functionsthat return query handles. They might not be used as often as tables,
but are useful from timeto time. gl ¢: append traverses objects from several tables or lists after each other. If, for
instance, you want to traverse all answersto a query QH and then finish off by aterm { f i ni shed}, you can do that
by calling gl c: append(QH, [{finished}]).append first returnsall objects of QH, then{fi ni shed}.If
thereisonetuple{f i ni shed} among the answersto QH it will be returned twice from append.

As another example, consider concatenating the answers to two queries QH1 and QH2 while removing all duplicates.
The means to accomplish thisis to use the uni que option:

qlc:q([X || X <- gqlc:append(QH1, QH2)], {unique, true})

The cost is substantial: every returned answer will be stored in an ETS table. Before returning an answer it is looked
up in the ETS table to check if it has already been returned. Without the uni que options al answersto QH1 would
be returned followed by all answersto QH2. The uni que options keeps the order between the remaining answers.

If the order of the answersis not important there is the alternative to sort the answers uniquely:

glc:sort(qlc:q([X || X <- gqlc:append(QH1, QH2)], {unique, true})).

This query also removes duplicates but the answers will be sorted. If there are many answers temporary files will
be used. Note that in order to get the first unique answer all answers have to be found and sorted. Both alternatives
find duplicates by comparing answers, that is, if A1 and A2 are answers found in that order, then A2 is a removed
if Al==A2.

Toreturn just afew answers cursors can be used. The following code returns no more than five answersusing an ETS
table for storing the unique answers:

glc:cursor(qlc:q([X || X <- qlc:append(QH1, QH2)],{unique,true})),
glc:next answers(C, 5),
k = gqlc:delete cursor(C),

O xXWO

Query list comprehensions are convenient for stating constraints on data from two or more tables. An example that
does a natural join on two query handles on position 2:

306 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

qlc:q([{X1,X2,X3,Y1} ||
{X1,X2,X3} <- QH1,
{Y1,Y2} <- QH2,
X2 =:=Y2])

The gl ¢ module will evaluate this differently depending on the query handles QH1 and QH2. If, for example, X2 is
matched against the key of a QL C table the lookup join method will traverse the objects of QH2 while looking up key
values in the table. On the other hand, if neither X2 nor Y2 is matched against the key or an indexed position of a
QLC table, the merge join method will make sure that QHL and QH2 are both sorted on position 2 and next do the
join by traversing the objects one by one.

Thej oi n option can be used to force the gl ¢ module to use a certain join method. For the rest of this section it is
assumed that the excessively slow join method called "nested loop" has been chosen:

gqlc:q([{X1,X2,X3,Y1} |
{X1,X2,X3} <- QH1,
{Y1,Y2} <- QH2,
X2 =:= Y2],
{join, nested loop})

In this case the filter will be applied to every possible pair of answersto QH1 and QH2, one at atime. If there are M
answersto QH1 and N answers to QH2 the filter will be run M*N times.

If QH2 is a call to the function for gb_trees as defined in the Implementing a QLC table section,
gb_t abl e: t abl e/ 1, theiterator for the gb-tree will beinitiated for each answer to QH1 after which the objects of
the gb-tree will be returned one by one. Thisis probably the most efficient way of traversing thetablein that case since
it takes minima computational power to get the following object. But if QH2 is not a table but a more complicated
QLC, it can be more efficient use some RAM memory for collecting the answers in a cache, particularly if there are
only afew answers. It must then be assumed that evaluating QH2 has no side effects so that the meaning of the query
does not change if QH2 is evaluated only once. One way of caching the answers is to evaluate QH2 first of all and
substitute the list of answers for QH2 in the query. Another way isto usethe cache option. It is stated like this:

QH2' = qlc:q([X || X <- QH2], {cache, ets})

or just

QH2' = qlc:q([X || X <- QH2], cache)

The effect of the cache option is that when the generator QHZ2' is run the first time every answer is stored in an
ETS table. When next answer of QH1 istried, answersto QH2' are copied from the ETS table which is very fast. As
for the uni que option the cost is a possibly substantial amount of RAM memory. The { cache, |i st} option
offers the possibility to store the answers in a list on the process heap. While this has the potential of being faster
than ETS tables since there is no need to copy answers from the table it can often result in slower evaluation due to
more garbage collections of the process heap as well as increased RAM memory consumption due to larger heaps.
Another drawback with cache listsisthat if the size of the list exceeds alimit atemporary file will be used. Reading
the answers from afile is very much slower than copying them from an ETS table. But if the available RAM memory
is scarce setting the limit to some low value is an aternative.

There is an option cache_al | that can be set to et s or | i st when evauating a query. It adds a cache or
{cache, I|ist} optiontoevery list expression except QLC tables and listson al levels of the query. This can be

Ericsson AB. All Rights Reserved.: STDLIB | 307

qlc

used for testing if caching would improve efficiency at all. If the answer is yes further testing is needed to pinpoint
the generators that should be cached.

Implementing a QLC table

As an example of how to use the glc:table/2 function the implementation of a QLC table for the gb_trees module
isgiven:

-module(gb table).
-export([table/1]).

table(T) ->
TF = fun() -> qlc next(gb trees:next(gb trees:iterator(T))) end,
InfoFun = fun(num of objects) -> gb trees:size(T);
(keypos) -> 1;
(is sorted key) -> true;
(is unique objects) -> true;
() -> undefined
end,
LookupFun =
fun(1l, Ks) ->
lists:flatmap(fun(K) ->
case gb trees:lookup(K, T) of
{value, V} -> [{K,V}];
none -> []
end
end, Ks)
end,
FormatFun =
fun({all, NElements, ElementFun}) ->
ValsS = io lib:format("gb trees:from orddict(~w)",
[gb nodes(T, NElements, ElementFun)]),
io lib:format("gb table:table(~s)", [ValsS]);
({lookup, 1, KeyValues, NElements, ElementFun}) ->
ValsS = io lib:format("gb trees:from orddict(~w)",
[gh nodes(T, infinity, ElementFun)]),
io lib:format("lists:flatmap(fun(K) -> "
"case gb trees:lookup(K, ~s) of "
"{value, V} -> [{K,V}];none -> [] end "
"end, ~w)",
[ValsS, [ElementFun(KV) || KV <- KeyValues]])
end,
glc:table(TF, [{info fun, InfoFun}, {format fun, FormatFun},
{lookup fun, LookupFun},{key equality,'=='}]).

glc next({X, V, S}) ->

[{X,V} | fun() -> qlc_next(gb trees:next(S)) end];
glc _next(none) ->

[1.

gb nodes(T, infinity, ElementFun) ->
gb nodes(T, -1, ElementFun);
gb nodes(T, NElements, ElementFun) ->
gb iter(gb trees:iterator(T), NElements, ElementFun).

gb iter(I, 0, EFun) ->
gb iter(I®, N, EFun) ->
case gb trees:next(I0) of

{XI vl I} ->
[EFun({X,V}) | gb iter(I, N-1, EFun)];

308 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

none ->

[1

end.

TF isthetraversa function. Theql ¢ modulerequiresthat thereisaway of traversing al objects of the data structure;
ingb_trees thereis an iterator function suitable for that purpose. Note that for each object returned a new fun is
created. Aslong asthelist is not terminated by [] it isassumed that the tail of the list is a nullary function and that
calling the function returns further objects (and functions).

The lookup function is optional. It is assumed that the lookup function always finds values much faster than it would
take to traverse the table. The first argument is the position of the key. Since gl c_next returns the objects as
{Key, Value} pairs the position is 1. Note that the lookup function should return {Key, Vaue} pairs, just as the
traversal function does.

The format function is also optional. It is called by gl c: i nf o to give feedback at runtime of how the query will
be evaluated. One should try to give as good feedback as possible without showing too much details. In the example
at most 7 objects of the table are shown. The format function handles two cases: al | means that all objects of the
table will be traversed; { | ookup, 1, KeyVal ues} means that the lookup function will be used for looking up
key values.

Whether the whole table will be traversed or just some keys looked up depends on how the query is stated. If the
query hasthe form

qlc:q([T || P <- LE, FI)

and Pisatuple, the ql ¢ module analyzes P and F in compile time to find positions of the tuple P that are tested for
equality to constants. If such a position at runtime turns out to be the key position, the lookup function can be used,
otherwise all objects of the table have to be traversed. It is the info function | nf oFun that returns the key position.
There can beindexed positionsaswell, also returned by theinfo function. Anindex isan extratable that makeslookup
on some position fast. Mnesia maintains indices upon request, thereby introducing so called secondary keys. Theql ¢
module prefersto look up objects using the key before secondary keysregardless of the number of constantsto ook up.

Key equality

In Erlang there are two operators for testing term equality, namely ==/ 2 and =: =/ 2. The difference between them
is all about the integers that can be represented by floats. For instance, 2 == 2. 0 evaluatestot r ue while2 =: =
2. 0 evaluates to f al se. Normally this is a minor issue, but the gl ¢ module cannot ignore the difference, which
affects the user's choice of operatorsin QLCs.

If the gl ¢ module can find out at compile time that some constant is free of integers, it does not matter which one
of ==/ 2 or =: =/ 2 isused:

1> E1 = ets:new(t, [set]), % uses =:=/2 for key equality
Q1 = qlc:q([K ||
{K} <- ets:table(El),
K == 2.71 orelse K == a]l),
io:format("~s~n", [glc:info(Q1l)]).
ets:match spec run(lists:flatmap(fun(V) ->
ets:lookup (20493, V)
end,
[a,2.71]),
ets:match spec compile([{{'$1'},[]1,['$1"'1}]1))

Ericsson AB. All Rights Reserved.: STDLIB | 309

qlc

In the example the ==/ 2 operator has been handled exactly as =: =/ 2 would have been handled. On the other hand,
if it cannot be determined at compile time that some constant is free of integers and the table uses =: =/ 2 when
comparing keys for equality (see the option key_equality), the gl ¢ module will not try to look up the constant. The
reason is that there isin the general case no upper limit on the number of key values that can compare equal to such
a constant; every combination of integers and floats has to be looked up:

2> E2 = ets:new(t, [set]),
true = ets:insert(E2, [{{2,2},a},{{2,2.0},b},{{2.0,2},c}]),
F2 = fun(I) ->
glc:q([V || {K,V} <- ets:table(E2), K == I])
end,
Q2 = F2({2,2}),
io:format("~s~n", [glc:info(Q2)1]).
ets:table (53264,

[{traverse,

{select, [{{'$1","'$2"},[{'==","'$1",{const,{2,2}}}1,['$2"1}1}}1])

3> lists:sort(qlc:e(Q2)).
[a,b,c]

Looking upjust { 2, 2} would not return b and c.

If the table uses ==/ 2 when comparing keys for equality, the gl ¢ module will ook up the constant regardless of
which operator is used in the QLC. However, ==/ 2 isto be preferred:

4> E3 = ets:new(t, [ordered set]),
true = ets:insert(E3, [{{2,2.0},b}]
F3 = fun(I) ->
gqlc:q([V || {K,V} <- ets:table(E3), K == I])
end,
Q3 = F3({2,2}),
io:format("~s~n", [glc:info(Q3)1]).
ets:match spec run(ets:lookup(86033, {2,2}),

ets:match spec compile([{{'$1','$2"'},[1,['$2'1}1))

% uses ==/2 for key equality
)I

5> glc:e(Q3).
[b]

Lookup join is handled analogously to lookup of constantsin atable: if the join operator is==/ 2 and the table where
constants are to be looked up uses =: =/ 2 when testing keys for equality, the gl ¢ module will not consider lookup
join for that table.

Data Types
abstract expr() = erl_parse: abstract_expr()
Parse trees for Erlang expression, see the abstract format documentation in the ERTS User's Guide.

answer() = term()

answers() = [answer ()]

cache() = ets | list | no

match expression() = ets: match_spec()

Match specification, see the match specification documentation in the ERTS User's Guide and ms_transform(3).
no files() = integer() >=1
Actualy aninteger > 1.

310 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

key pos() = integer() >= 1 | [integer() >= 1]
max_list size() = integer() >= 0

order() = ascending | descending | order_fun()
order fun() = fun((term(), term()) -> boolean())
query cursor()

A query cursor.
query handle()
A gquery handle.

query handle or list() = query_handle() | list()
query list comprehension() = term()

A literal query list comprehension.

spawn_options() = default | [proc_Ilib:spawn_option()]
sort options() = [sort_option()] | sort_option()
sort_option() = {compressed, boolean()}

| {no files, no_files()}

| {order, order()}

| {size, integer() >= 1}

| {tmpdir, tnp_directory()}

| {unique, boolean()}
Seefile_sorter(3).

tmp directory() = []1 | file:nane()

tmp file usage() = allowed
| not allowed
| info msg
| warning msg
| error _msg

Exports

append(QHL) -> QH

Types.
QHL = [query_handl e_or _list()]
QH = query_handl e()

Returns aquery handle. When evaluating the query handle QH all answersto thefirst query handlein QHL are returned

followed by all answersto the rest of the query handlesin QHL.

append(QH1, QH2) -> QH3

Types:
QH1 = QH2 = query_handle_or _list()
QH3 = query_handl e()

Returns a query handle. When evaluating the query handle QH3 all answers to QH1 are returned followed by all

answersto QH2.
append(QHl, QH2) isequivaenttoappend([QHL, QH2]).

Ericsson AB. All Rights Reserved.: STDLIB | 311

qlc

cursor(QH) -> Cursor
cursor(QH, Options) -> Cursor
Types.
QH = query_handl e_or _list()
Options = [Option] | Option

Option = {cache all, cache()}
| cache all
| {max list size, max_list_size()}
| {spawn options, spawn_options()}
| {tmpdir usage, tnp_file_usage()}
| {tmpdir, tnp_directory()}
| {unique all, boolean()}
| unique all

Cursor = query_cursor ()

Creates a query cursor and makes the calling process the owner of the cursor. The cursor is to be used as argument
tonext _answers/ 1, 2 and (eventually) del et e_cur sor/ 1. Calser| ang: spawn_opt to spawn and link
a process which will evaluate the query handle. The value of the option spawn_opt i ons isused as last argument
when calling spawn_opt . Thedefault valueis[| i nk] .

1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
QC = qglc:cursor(QH),

glc:next answers(QC, 1).

[{a,1}]

2> qlc:next _answers(QC, 1).

[{a,2}]

3> qlc:next _answers(QC, all remaining).
[{b,1},{b,2}]

4> qlc:delete_cursor(QC).

ok

cursor (QH) isequivalenttocursor (@, []).

delete cursor(QueryCursor) -> ok
Types:
QueryCursor = query_cursor ()
Deletes a query cursor. Only the owner of the cursor can delete the cursor.

eval(QH) -> Answers | Error
eval(QH, Options) -> Answers | Error
e(QH) -> Answers | Error
e(QH, Options) -> Answers | Error
Types:
QH = query_handl e_or_list()
Options = [Option] | Option
Option = {cache all, cache()}
| cache_all
| {max_ list size, max_list_size()}
| {tmpdir usage, tnp_file_usage()}

312 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

| {tmpdir, tnp_directory()}
| {unique all, boolean()}
| unique all
Answers = answers()
Error = {error, module(), Reason}
Reason = file_sorter:reason()

Evaluates a query handle in the calling process and collects all answersin alist.

1> QH = qlc:q([{X,Y} || X <- [a,b]l, Y <- [1,21]),
glc:eval(QH).
[{a,1},{a,2},{b,1},{b,2}]

eval (QH) isequivalenttoeval (QH, []).

fold(Function, AccO, QH) -> Accl | Error
fold(Function, AccO, QH, Options) -> Accl | Error
Types:
QH = query_handl e_or _list()
Function = fun((answer (), AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = term()
Options = [Option] | Option
Option = {cache all, cache()}
| cache all
| {max list size, max_list_size()}
| {tmpdir usage, tnp_file_usage()}
| {tmpdir, tnp_directory()}
| {unique all, boolean()}
| unique_all
Error = {error, module(), Reason}
Reason = file_sorter:reason()
CadllsFunct i on onsuccessive answersto the query handletogether with an extraargument Accl n. Thequery handle
and the function are evaluated in the calling process. Funct i on must return a new accumulator which is passed to
the next call. AccO isreturned if there are no answers to the query handle.

1> QH = [1,2,3,4,5,6],
glc:fold(fun(X, Sum) -> X + Sum end, 0, QH).
21

fol d(Function, AccO, QH) isequivdenttof ol d(Function, AccO, H, []).

format _error(Error) -> Chars
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 313

qlc

Error
Chars

{error, module(), term()}
io_lib:chars()

Returns a descriptive string in English of an error tuple returned by some of the functions of the gl ¢ module or the
parse transform. This function is mainly used by the compiler invoking the parse transform.

info(QH) -> Info

info(QH, Options) -> Info

Types:
QH = query_handle_or _list()
Options = [Option] | Option
Option = EvalOption | ReturnOption

EvalOption = {cache all, cache()}
| cache all
| {max_list size, max_list_size()}
| {tmpdir usage, tnp_file_usage()}
| {tmpdir, tnmp_directory()}
| {unique all, boolean()}
| unique_all

ReturnOption {depth, Depth}

| {flat, boolean()}
| {format, Format}
| {n_elements, NElements}

Depth = infinity | integer() >= 0
Format = abstract code | string
NElements = infinity | integer() >=1
Info = abstract_expr() | string()

Returns information about a query handle. The information describes the simplifications and optimizations that are
the results of preparing the query for evaluation. This function is probably useful mostly during debugging.

The information has the form of an Erlang expression where QLCs most likely occur. Depending on the format
functions of mentioned QL C tables it may not be absolutely accurate.

The default isto return a sequence of QLCsin ablock, but if theoption{f | at, fal se} isgiven, onesingle QLC
isreturned. The default isto return astring, but if theoption { f or mat , abstract code} isgiven, abstract code
isreturned instead. In the abstract code port identifiers, references, and pids are represented by strings. The default is
toreturn all elementsin lists, but if the{n_el ement's, NEl enent s} optionis given, only alimited number of
elements are returned. The default isto show all of objects and match specifications, but if the { dept h, Dept h}
option is given, parts of terms below a certain depth arereplaced by ' . . ."'

1> QH = qlc:q([{X,Y} || X <- [x,y], Y <- [a,b]]),

io:format("~s~n", [qlc:info(QH, unique all)]).
begin
V1 =
qlc:q([
sSQv ||
SQV <- [x,yl

] ’
[{unique,true}]),
V2 =

qlc:q(l
sQv |

314 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

SQV <- [a,b]
1,
[{unique, true}]),
glc:q([
XY 11
X <- V1,
Y <- V2

1,
[{unique, true}])
end

In this example two simple QL Cs have been inserted just to hold the { uni que, true} option.

1> E1 = ets:new(el, []),

E2 = ets:new(e2, [1),

true = ets:insert(E1l, [{1,a},{2,b}]),
true = ets:insert(E2, [{a,1},{b,2}]),
Q = qlc:q([{X,Z,W} ||

{X, Z} <- ets:table(El),

{W, Y} <- ets:table(E2),

X =:=Y]),
io:format("~s~n", [qlc:info(Q)]).
begin
V1 =
glc:q(l
PO ||
PO = {W,Y} <- ets:table(17)
1),
V2 =
gqlc:q(l
[G1]|G2] ||
G2 <- V1,
Gl <- ets:table(16),
element (2, Gl) =:= element(1l, G2)
]I
[{join, lookup}]),
glc:q([
{X,Z,W} ||
[{X,Z}|{W,Y}] <- V2
1)
end

In this example the query list comprehension V2 has been inserted to show the joined generators and the join method
chosen. A convention is used for lookup join: the first generator (&) is the one traversed, the second one (Gl) isthe
table where constants are looked up.

i nfo(@) isequivalenttoi nfo(H, []).
keysort(KeyPos, QH1l) -> QH2

keysort (KeyPos, QHl1, SortOptions) -> QH2
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 315

qlc

KeyPos = key pos()
SortOptions = sort_options()
QH1 = query_handl e _or list()
QH2 = query_handl e()

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QHL are sorted by
file_sorter:keysort/4 according to the options.

The sorter will use temporary filesonly if QHL does not evaluate to a list and the size of the binary representation of
the answers exceeds Si ze bytes, where Si ze isthe value of the si ze option.

keysort (KeyPos, (H1) isequivaenttokeysort (KeyPos, QHL, []).

next answers(QueryCursor) -> Answers | Error
next answers(QueryCursor, NumberOfAnswers) -> Answers | Error
Types.

QueryCursor = query_cursor()

Answers = answers()

NumberOfAnswers = all remaining | integer() >=1

Error = {error, module(), Reason}

Reason = file_sorter:reason()

Returns some or al of the remaining answers to a query cursor. Only the owner of Quer yCur sor can retrieve
answers.

Theoptional argument Nunber OF Answer sdeterminesthe maximum number of answersreturned. The default value
is10. If less than the requested number of answersis returned, subsequent callsto next _answer s will return|[] .

q(QLC) -> QH
q(QLC, Options) -> QH
Types.

QH = query_handl e()
Options = [Option] | Option
Option = {max_ lookup, MaxLookup}
| {cache, cache()}
| cache
| {join, Join}
| {lookup, Lookup}
| {unique, boolean()}
| unique

MaxLookup = integer() >= 0 | infinity

Join = any | lookup | merge | nested loop

Lookup = boolean() | any

QLC = query_Ilist_conprehension()
Returns a query handle for a query list comprehension. The query list comprehension must be the first argument to
gl c: q/ 1, 2 oritwill be evaluated as an ordinary list comprehension. It is also necessary to add the line

-include lib("stdlib/include/qlc.hrl").

316 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

to the source file. This causes a parse transform to substitute a fun for the query list comprehension. The (compiled)
fun will be called when the query handle is evaluated.

When cdlling ql ¢: g/ 1, 2 from the Erlang shell the parse transform is automatically called. When this happens the
fun substituted for the query list comprehension is not compiled but will be evaluated by er | _eval (3) . Thisisaso
true when expressions are evaluated by meansof fi | e: eval / 1, 2 or in the debugger.

To be very explicit, thiswill not work:

A= X] OO < [{1},{2}11,
QH = qlc:q(A),

The variable Awill be bound to the evaluated value of the list comprehension ([1, 2]). The compiler complains with
an error message ("argument is not a query list comprehension"); the shell process stops with abadar g reason.

q(QO isequivaenttoq(Q.C, []).

The{ cache, et s} optioncan beusedto cachetheanswersto aquery list comprehension. Theanswersarestoredin
one ETStable for each cached query list comprehension. When a cached query list comprehension is evaluated again,
answers are fetched from the table without any further computations. As a consequence, when all answersto a cached
guery list comprehension have been found, the ET S tables used for caching answers to the query list comprehension's
qualifiers can be emptied. The option cache isequivaentto{ cache, ets}.

The {cache, list} option can be used to cache the answers to a query list comprehension just like
{cache, ets}. Thedifference is that the answers are kept in alist (on the process heap). If the answers would
occupy more than a certain amount of RAM memory a temporary file is used for storing the answers. The option
max_| i st _si ze setsthelimit in bytes and the temporary fileis put on the directory set by thet npdi r option.

The cache option has no effect if it is known that the query list comprehension will be evaluated at most once. This
is always true for the top-most query list comprehension and also for the list expression of the first generator in a
list of qualifiers. Note that in the presence of side effects in filters or callback functions the answers to query list
comprehensions can be affected by the cache option.

The{uni que, true} option can be used to remove duplicate answers to aquery list comprehension. The unique
answers are stored in one ET Stablefor each query list comprehension. Thetableisemptied every timeit isknown that
there are no more answersto the query list comprehension. The option uni que isequivaentto{ uni que, true}.
If the uni que option is combined with the { cache, et s} option, two ETS tables are used, but the full answers
are stored in one table only. If the uni que option is combined with the { cache, 1i st} option the answers are
sorted twice using keysor t / 3; once to remove duplicates, and once to restore the order.

Thecache anduni que optionsapply not only to the query list comprehension itself but also to the results of looking
up constants, running match specifications, and joining handles.

1> Q = qlc:q([{A,X,Z,W} ||
A <- [alblc]l
{X,Z} <- [{all}l{bl4}l{cl6}]l
{W,Y} <- [{zla}l{3lb}l{4lc}]l
X =:=Y],
{cache, list}),
io:format("~s~n", [glc:info(Q)]).
begin
V1l =
qlc:q(l
PO ||
PO = {X,Z} <-

Ericsson AB. All Rights Reserved.: STDLIB | 317

qlc

glc:keysort(1l, [{a,1},{b,4},{c,6}]1, [1)

1),

V2 =
glc:q(l
PO ||
PO = {W,Y} <-
glc:keysort(2, [{2,a},{3,b},{4,c}], [1)
1),
V3 =
glc:q(l
[G1|G2] ||
Gl <- V1,
G2 <- V2,
element(1l, Gl) == element(2, G2)

1,
[{join,merge}, {cache,list}]),
gqlc:q([

{A, X, Z,W} ||
A <- [a,b,c],
[{X,Z}|{W,Y}] <- V3r
X ==Y

1)

end

In this example the cached results of the merge join are traversed for each value of A. Note that without the cache
option the join would have been carried out three times, once for each value of A

sort/1, 2 and keysort/ 2, 3 can also be used for caching answers and for removing duplicates. When sorting
answers are cached in alist, possibly stored on atemporary file, and no ETS tables are used.

Sometimes (see glc:table/2 below) traversal of tables can be done by looking up key values, which is assumed
to be fast. Under certain (rare) circumstances it could happen that there are too many key values to look up. The
{max_| ookup, MaxLookup} option canthen be used to limit the number of lookups: if more than MaxLookup
lookups would be required no lookups are done but the table traversed instead. The default valueisi nf i ni t y which
means that there is no limit on the number of keysto look up.

1> T = gb_trees:empty(),
QH = glc:q([X || {{X,Y},_} <- gb_table:table(T),
((X == 1) or (X == 2)) andalso
((Y ==a) or (Y ==b) or (Y ==20¢))]),
io:format("~s~n", [qlc:info(QH)]).
ets:match spec run(

lists:flatmap(fun(K) ->

case
gb_trees:lookup(K,
gb trees:from orddict([]))

of
{value,V} ->
[{K,V}I;
none ->
[]
end
end,
[{1,a},{1,b},{1,c},{2,a},{2,b},{2,c}]),
ets:match spec_compile([{{{'$1','$2'}," '}, [1,['$1'1}1))

In this example using the gb_t abl e module from the Implementing a QLC table section there are six keys to look
up: {1,a},{1,b},{1,c},{2,a},{2,b},and{2, c}. Thereason is that the two elements of the key { X, Y}
are compared separately.

318 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

The{| ookup, true} optioncanbeusedto ensurethat theql ¢ modulewill look up constantsin some QL C table.
If there are more than one QL C table among the generators' list expressions, constants have to be looked up in at least
one of thetables. The evaluation of the query failsif there are no constantsto look up. Thisoptionisuseful in situations
when it would be unacceptableto traverse all objectsin sometable. Settingthel ookup optiontof al se ensuresthat
no constants will be looked up ({ max_| ookup, 0} hasthe same effect). The default value is any which means
that constants will be looked up whenever possible.

The{j oin, Joi n} option can be used to ensure that a certain join method will be used: {j oi n, | ookup}
invokesthe lookup join method; {j oi n, ner ge} invokesthe mergejoin method; and{j oi n, nested_| oop}
invokes the method of matching every pair of objects from two handles. The last method is mostly very slow. The
evaluation of the query fails if the gl ¢ module cannot carry out the chosen join method. The default value is any
which means that some fast join method will be used if possible.

sort(QH1) -> QH2

sort(QH1l, SortOptions) -> QH2

Types:
SortOptions = sort_options()
QH1 = query_handl e_or _list()
QH2 = query_handl e()

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QH1 are sorted by
file_sorter:sort/3 according to the options.

The sorter will use temporary filesonly if QHL does not evaluate to a list and the size of the hinary representation of
the answers exceeds Si ze bytes, where Si ze isthe value of the si ze option.

sort (QHl) isequivaenttosort (QHL, []).

string to_handle(QueryString) -> QH | Error
string to handle(QueryString, Options) -> QH | Error
string to handle(QueryString, Options, Bindings) -> QH | Error
Types:

QueryString = string()

Options = [Option] | Option
Option = {max_ lookup, MaxLookup}
| {cache, cache()}
| cache
| {join, Join}
| {lookup, Lookup}
| {unique, boolean()}

| unique

MaxLookup = integer() >= 0 | infinity
Join = any | lookup | merge | nested loop
Lookup = boolean() | any
Bindings = erl _eval : bi nding_struct()
QH = query_handl e()
Error = {error, module(), Reason}
Reason = erl _parse:error_info() | erl_scan:error_info()

A string version of gl ¢: g/ 1, 2. When the query handle is evaluated the fun created by the parse transform is
interpreted by er | _eval (3) . The query string isto be one single query list comprehension terminated by a period.

Ericsson AB. All Rights Reserved.: STDLIB | 319

qlc

1> L = [1,2,3],

Bs = erl eval:add binding('L', L, erl eval:new bindings()),
QH = qlc:string to handle("[X+1 || X <- L].", [1, Bs),
glc:eval(QH).

[2,3,4]

string_to_handl e(QueryString) isequivaenttostri ng to_handl e(QueryString, []).

string_to_handl e(QueryString, Options) isequivdenttostring_to_handl e(QueryStri ng,
Options, erl_eval: new_ bindings()).

This function is probably useful mostly when called from outside of Erlang, for instance from a driver writtenin C.

table(TraverseFun, Options) -> QH
Types:
TraverseFun = TraverseFun® | TraverseFunl
TraverseFun® = fun(() -> TraverseResult)
TraverseFunl = fun((match_expression()) -> TraverseResult)
TraverseResult = Objects | term()
Objects = []1 | [term() | ObjectList]
ObjectList = TraverseFun@ | Objects
Options = [Option] | Option
Option = {format fun, FormatFun}
| {info_fun, InfoFun}
| {lookup fun, LookupFun}
| {parent fun, ParentFun}
| {post fun, PostFun}
| {pre fun, PreFun}
| {key equality, KeyComparison}
FormatFun = undefined | fun((SelectedObjects) -> FormatedTable)
SelectedObjects = all
| {all, NElements, DepthFun}
| {match spec, match_expression()}
| {Lookup, Position, Keys}

320 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

| {Lookup, Position, Keys, NElements, DepthFun}
NElements = infinity | integer() >=1
DepthFun = fun((term()) -> term())
FormatedTable = {Mod, Fun, Args} | abstract_expr() | string()
InfoFun undefined | fun((InfoTag) -> InfoValue)
InfoTag = indices | is unique objects | keypos | num of objects
InfoValue = undefined | term()
LookupFun = undefined | fun((Position, Keys) -> LookupResult)
LookupResult = [term()] | term()
ParentFun = undefined | fun(() -> ParentFunValue)
PostFun = undefined | fun(() -> term())
PreFun = undefined | fun((PreArgs) -> term())
PreArgs = [PreArgl
PreArg = {parent value, ParentFunValue} | {stop fun, StopFun}
ParentFunValue = undefined | term()
StopFun = undefined | fun(() -> term())
KeyComparison = '=:=' | '=='
Position = integer() >=1
Keys = [term()]
Mod = Fun = atom()
Args = [term()]
QH = query_handl e()

Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS, Dets and Mnesia tables, but it is
aso possible to turn many other data structures into QL C tables. The way to accomplish thisisto let function(s) in
the module implementing the data structure create a query handle by calling gl c: t abl e/ 2. The different ways
to traverse the table as well as properties of the table are handled by callback functions provided as options to
gl c:tabl e/ 2.

The callback function Tr aver seFun is used for traversing the table. It is to return alist of objects terminated by
either [] or anullary fun to be used for traversing the not yet traversed objects of the table. Any other return value
isimmediately returned as value of the query evaluation. Unary Tr aver seFuns are to accept a match specification
as argument. The match specification is created by the parse transform by analyzing the pattern of the generator
calingql c: t abl e/ 2 andfiltersusing variablesintroduced in the pattern. If the parse transform cannot find amatch
specification equivalent to the pattern and filters, Tr aver seFun will be called with a match specification returning
every object. Modul esthat can utilize match specificationsfor optimized traversal of tablesshouldcall gl c: t abl e/ 2
with a unary Tr aver seFun while other modules can provide a nullary Tr aver seFun. et s: tabl e/ 2 isan
example of theformer; gb_t abl e: t abl e/ 1 inthe Implementing a QLC table section is an example of the latter.

Pr eFun is a unary calback function that is called once before the table is read for the first time. If the call fails,
the query evaluation fails. Similarly, the nullary callback function Post Fun is called once after the table was last
read. The return value, which is caught, isignored. If Pr eFun has been called for atable, Post Fun is guaranteed
to be called for that table, even if the evaluation of the query fails for some reason. The order in which pre (post)
functionsfor different tables are evaluated is not specified. Other table access than reading, such ascalling | nf oFun,
is assumed to be OK at any time. The argument Pr eAr gs is alist of tagged values. Currently there are two tags,
par ent _val ue and st op_f un, used by Mnesiafor managing transactions. The value of par ent _val ue isthe
value returned by Par ent Fun, or undef i ned if thereisno Par ent Fun. Par ent Fun iscalled once just before
the call of Pr eFun in the context of the process calling eval , f ol d, or cur sor. Thevaue of stop_funisa
nullary fun that deletes the cursor if called from the parent, or undef i ned if thereis no cursor.

Ericsson AB. All Rights Reserved.: STDLIB | 321

qlc

The binary callback function LookupFun isused for looking up objectsin the table. The first argument Posi ti on
isthe key position or an indexed position and the second argument Key's is a sorted list of unique values. The return
valueisto bealist of al objects (tuples) such that the element at Posi t i on isamember of Keys. Any other return
valueisimmediately returned as value of the query evaluation. LookupFun iscalled instead of traversing thetableif
the parsetransform at compiletime can find out that the filters match and compare the element at Posi t i oninsucha
way that only Keys need to belooked up in order to find all potential answers. The key position is obtained by calling
I nf oFun(keypos) and the indexed positions by caling | nf oFun(i ndi ces) . If the key position can be used
for lookup it is always chosen, otherwise the indexed position requiring the least number of lookupsis chosen. If there
is a tie between two indexed positions the one occurring first in the list returned by | nf oFun is chosen. Positions
requiring more than max_lookup lookups are ignored.

The unary callback function | nf oFun is to return information about the table. undef i ned should be returned if
the value of some tag is unknown:

* indi ces.Returnsalist of indexed positions, alist of positive integers.

e is_unique_objects.Returnst r ue if the objects returned by Tr aver seFun are unique.

* keypos. Returnsthe position of the table's key, apositive integer.

e is_sorted_key.Returnst r ue if the objects returned by Tr aver seFun are sorted on the key.
 num of _obj ect s. Returns the number of objects in the table, a non-negative integer.

The unary callback function For mat Fun is used by glc:info/1,2 for displaying the call that created the table's query
handle. The default value, undef i ned, meansthati nf o/ 1, 2 displaysacall to' $MOD : ' $FUN / 0. Itisupto
For mat Fun to present the selected objects of the table in a suitable way. However, if a character list is chosen for
presentation it must be an Erlang expression that can be scanned and parsed (atrailing dot will beadded by gl c: i nfo
though). For mat Fun is called with an argument that describes the selected objects based on optimizations done
as aresult of analyzing the filters of the QLC where the call to gl c: t abl e/ 2 occurs. The possible values of the
argument are:

e {lookup, Position, Keys, NElenents, DepthFun}.LookupFun isused forlooking up objects
in the table.

« {match_spec, MatchExpressi on}.Noway of finding al possible answers by looking up keys
was found, but the filters could be transformed into a match specification. All answers are found by calling
Tr aver seFun(Mat chExpr essi on).

« {all, NElenents, DepthFun}.No optimizationwasfound. A match specification matching all objects
will beused if Tr aver seFun isunary.

NEl erment s isthe value of thei nf o/ 1, 2 option n_el enent s, and Dept hFun is a function that can be used
for limiting the size of terms; calling Dept hFun(Ter n) substitutes' ... "' for parts of Ter mbelow the depth
specified by thei nf o/ 1, 2 option dept h. If calling For mat Fun with an argument including NEl enment s and
Dept hFun fails, For mat Fun is caled once again with an argument excluding NEI enent s and Dept hFun
({1 ookup, Position, Keys} orall).

Thevaueof key_equal ity istobe' =: =" if the table considers two keys equal if they match, and to be ' ==
if two keys are equal if they compare equal. The default is' =: ="' .

See ets(3), dets(3) and mnesia(3) for the various options recognized by t abl e/ 1, 2 in respective module.

See Also

dets(3), Erlang Reference Manual, erl_eval(3), erlang(3), ets(3), file(3), error_logger(3), file_sorter(3), mnesia(3),
Programming Examples, shell(3)

322 | Ericsson AB. All Rights Reserved.: STDLIB

queue

queue

Erlang module

This module implements (double ended) FIFO queuesin an efficient manner.

All functions fail with reason badar g if arguments are of wrong type, for example queue arguments are not queues,
indexes are not integers, list arguments are not lists. Improper lists cause internal crashes. An index out of range for
aqueue aso causes afailure with reason badar g.

Some functions, where noted, fail with reason enpt y for an empty queue.

The data representing a queue as used by this module should be regarded as opaque by other modules. Any code
assuming knowledge of the format is running on thinice.

All operations has an amortized O(1) running time, except| en/ 1,j oi n/ 2,split/2,filter/2andnmenber/ 2
that have O(n). To minimize the size of a queue minimizing the amount of garbage built by queue operations, the
gueues do not contain explicit length information, and that is why | en/ 1 is O(n). If better performance for this
particular operation is essential, it is easy for the caller to keep track of the length.

Queues are double ended. The mental picture of a queue is aline of people (items) waiting for their turn. The queue
front is the end with the item that has waited the longest. The queue rear is the end an item enters when it starts to
wait. If instead using the mental picture of alist, the front is called head and the rear is called tail.

Entering at the front and exiting at the rear are reverse operations on the queue.
The module has several sets of interface functions. The "Original API", the "Extended API" and the "Okasaki API".

The "Original API" and the "Extended API" both use the mental picture of a waiting line of items. Both also have
reverse operations suffixed " _r".

The "Original API" item removal functions return compound terms with both the removed item and the resulting
queue. The"Extended API" contain alternative functionsthat build less garbage aswell asfunctionsfor just inspecting
the queue ends. Also the "Okasaki API" functions build less garbage.

The "Okasaki API" isinspired by "Purely Functional Data structures' by Chris Okasaki. It regards queues as lists.
The API isby many regarded as strange and avoidable. For example many reverse operations have lexically reversed
names, some with more readable but perhaps less understandabl e aliases.

Original API
Data Types

queue(Item)

Asreturned by new/ 0.

queue()

queue() isequivalenttoqueue(tern()).

Exports

new() -> queue()

Returns an empty queue.

Ericsson AB. All Rights Reserved.: STDLIB | 323

queue

is queue(Term :: term()) -> boolean()
Testsif Ter misaqueue and returnst r ue if soand f al se otherwise.

is empty(Q :: queue()) -> boolean()
Testsif Qisempty and returnst r ue if soand f al se otherwise.

len(Q :: queue()) -> integer() >= 0
Calculates and returns the length of queue Q

in(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts | t emat the rear of queue QL. Returns the resulting queue 2.

in r(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts | t emat the front of queue QL. Returns the resulting queue Q2.

out(Ql :: queue(Item)) ->
{{value, Item}, Q2 :: queue(Item)} |
{empty, Q1 :: queue(Item)}

Removes the item at the front of queue QL. Returnsthe tuple{ { val ue, Iten}, Q},whereltemistheitem
removed and Q2 is the resulting queue. If QL isempty, thetuple{ enpty, QL} isreturned.

out r(Ql :: queue(Item)) ->
{{value, Item}, Q2 :: queue(Item)} |
{empty, Q1 :: queue(Item)}

Removestheitem at the rear of the queue QL. Returnsthetuple{{val ue, Iten}, Q},whereltemistheitem
removed and Q2 isthe new queue. If QL isempty, thetuple{ enpty, QLl} isreturned.

from list(L :: [Item]) -> queue(Item)

Returns a queue containing the items in L in the same order; the head item of the list will become the front item of
the queue.

to list(Q :: queue(Item)) -> [Item]
Returns alist of the itemsin the queue in the same order; the front item of the queue will become the head of the list.

reverse(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue @ that contains the items of QL in the reverse order.

split(N :: integer() >= 0, Q1 :: queue(Item)) ->
{Q2 :: queue(Item), Q3 :: queue(Item)}
Splits QL intwo. The Nfront items are put in 2 and the rest in (B

join(Ql :: queue(Item), Q2 :: queue(Item)) -> Q3 :: queue(Item)
Returns a queue B that is the result of joining QL and Q2 with QL in front of Q2.

324 | Ericsson AB. All Rights Reserved.: STDLIB

queue

filter(Fun, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Types:
Fun = fun((Item) -> boolean() | [Item])
Returns a queue @ that isthe result of calling Fun(1t em) onall itemsin QL, in order from front to rear.

If Fun(It em returnst r ue, | t emiscopied totheresult queue. If it returnsf al se, | t emisnot copied. If it returns
alist thelist elements are inserted instead of | t emin the result queue.

So, Fun(ltem returning [It en] is thereby semantically equivalent to returning t r ue, just asreturning [] is
semantically equivalent to returning f al se. But returning alist builds more garbage than returning an atom.

member(Item, Q :: queue(Item)) -> boolean()
Returnst r ue if | t emmatches some element in Q otherwisef al se.

Extended API

Exports

get(Q :: queue(Item)) -> Item
Returns| t emat the front of queue Q
Failswith reason enpt y if Qisempty.

get r(Q :: queue(Item)) -> Item
Returns | t emat the rear of queue Q
Failswith reason enpt y if Qisempty.

drop(Q1l :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue @ that is the result of removing the front item from QL.
Failswith reason enpt y if QL isempty.

drop r(Q1l :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the rear item from QL.
Failswith reason enpt y if QL isempty.

peek(Q :: queue(Item)) -> empty | {value, Item}
Returnsthetuple{ val ue, 1ten} wherel t emisthefrontitem of Q or enpty if Qisempty.

peek r(Q :: queue(Item)) -> empty | {value, Item}
Returnsthetuple{ val ue, |ten} wherel t emistherear item of Q or enpt y if Qisempty.

Ericsson AB. All Rights Reserved.: STDLIB | 325

queue

Okasaki API

Exports

cons(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts | t emat the head of queue QL. Returns the new queue 2.

head(Q :: queue(Item)) -> Item
Returns | t emfrom the head of queue Q
Failswith reason enpt y if Qisempty.

tail(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the head item from QL.
Failswith reason enpt y if QL isempty.

snoc(Ql :: queue(Item), Item) -> Q2 :: queue(Item)
Inserts| t emasthetail item of queue QL. Returns the new queue 2.

daeh(Q :: queue(Item)) -> Item
last(Q :: queue(Item)) -> Item

Returnsthe tail item of queue Q.
Failswith reason enpt y if Qisempty.

liat(Q1l :: queue(Item)) -> Q2 :: queue(Item)
init(Ql :: queue(Item)) -> Q2 :: queue(Item)
lait(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue 2 that isthe result of removing the tail item from QL.
Failswith reason enpt y if QL isempty.

Thenamel ai t/ 1 isamisspelling - do not use it anymore.

326 | Ericsson AB. All Rights Reserved.: STDLIB

random

random

Erlang module

Random number generator. The method is attributed to B.A. Wichmann and [.D.Hill, in 'An efficient and portable
pseudo-random number generator', Journal of Applied Statistics. AS183. 1982. Also Byte March 1987.

The current algorithm is a modification of the version attributed to Richard A O'Keefe in the standard Prolog library.

Every time arandom number is requested, a state is used to calculateit, and anew state produced. The state can either
be implicit (kept in the process dictionary) or be an explicit argument and return value. In this implementation, the
state (the typer an()) consists of atuple of three integers.

It should be noted that this random number generator isnot cryptographically strong. If astrong cryptographic random
number generator is needed for example cr ypt o: r and_byt es/ 1 could be used instead.

Data Types
ran() = {integer(), integer(), integer()}
The state.

Exports

seed() -> ran()
Seeds random number generation with default (fixed) values in the process dictionary, and returns the old state.

seed(Al, A2, A3) -> undefined | ran()
Types:
1 = A2 = A3 = integer()
Seeds random number generation with integer values in the process dictionary, and returns the old state.
One way of obtaining a seed isto use the BIF now 0:

{A1,A2,A3} = now(),
random:seed(Al, A2, A3),

seed(X1 :: {Al, A2, A3}) -> undefined | ran()
Types:
Al = A2 = A3 = integer()

seed({Al, A2, A3}) isequivaenttoseed(Al, A2, A3).

seedO() -> ran()
Returns the default state.

Ericsson AB. All Rights Reserved.: STDLIB | 327

random

uniform() -> float()
Returns arandom float uniformly distributed between 0. 0 and 1. 0, updating the state in the process dictionary.

uniform(N) -> integer() >=1
Types.
N = integer() >=1

Givenaninteger N >= 1, uni f or nf 1 returns arandom integer uniformly distributed between 1 and N, updating
the state in the process dictionary.

uniform s(State®) -> {float(), Statel}
Types.
State® = Statel = ran()

Given astate, uni f or m_s/ 1returns arandom float uniformly distributed between 0. 0 and 1. 0, and anew state.

uniform s(N, State0®) -> {integer(), Statel}
Types:

N = integer() >=1

State® = Statel = ran()

Given aninteger N >= 1 and a state, uni f or m_s/ 2 returns a random integer uniformly distributed between 1
and N, and anew state.

Note
Some of the functions use the process dictionary variabler andom seed to remember the current seed.
If aprocesscallsuni f or n1 0 or uni f or m 1 without setting a seed first, seed/ 0 is called automatically.

The implementation changed in R15. Upgrading to R15 will break applications that expect a specific output for a
given seed. The output is still deterministic number series, but different compared to releases older than R15. The seed
{0, 0, 0} will for example no longer produce a flawed series of only zeros.

328 | Ericsson AB. All Rights Reserved.: STDLIB

re

re

Erlang module

This module contains regular expression matching functions for strings and binaries.
Theregular expression syntax and semantics resemble that of Perl.

Thelibrary's matching algorithms are currently based on the PCRE library, but not all of the PCRE library isinterfaced
and some parts of thelibrary go beyond what PCRE offers. The sections of the PCRE documentation which arerelevant
to this modul e are included here.

Note:

The Erlang literal syntax for strings uses the "\" (backslash) character as an escape code. You need to escape
backslashesin literal strings, both in your code and in the shell, with an additional backdlash, i.e.: "\\".

Data Types
mp() = {re pattern, term(), term(), term(), term()}

Opaque datatype containing a compiled regular expression. The mp() is guaranteed to be a tuple() having the atom
're_pattern’ as its first element, to alow for matching in guards. The arity of the tuple() or the content of the other
fields may changein future releases.
nl spec() = cr | crlf | Uf | anycrlf | any
compile option() = unicode
| anchored
| caseless
| dollar_endonly
| dotall
| extended
| firstline
| multiline
| no auto capture
| dupnames
| ungreedy
| {newline, nl _spec()}
| bsr _anycrlf
| bsr_unicode
| no start optimize
| ucp
| never utf

Exports

compile(Regexp) -> {ok, MP} | {error, ErrSpec}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 329

re

Regexp = iodata()

MP = mp()
ErrSpec =
{ErrString :: string(), Position :: integer() >= 0}

The sameasconpi | e(Regexp, [])

compile(Regexp, Options) -> {ok, MP} | {error, ErrSpec}
Types:

Regexp = iodata() | unicode:charlist()

Options = [Option]

Option = conpile_option()

MP = np()
ErrSpec =
{ErrString :: string(), Position :: integer() >= 0}

This function compiles a regular expression with the syntax described below into an internal format to be used later
as aparameter to the run/2,3 functions.

Compiling the regular expression before matching is useful if the same expression is to be used in matching against
multiple subjects during the program's lifetime. Compiling once and executing many timesis far more efficient than
compiling each time one wants to match.

When the unicode optionisgiven, the regular expression should begiven asavalid Unicodechar | i st () , otherwise
asany validi odat a() .

The options have the following meanings:

uni code
Theregular expressionisgiven asaUnicodechar | i st () and the resulting regular expression codeisto
berun against avalid Unicode char | i st () subject. Also consider the ucp option when using Unicode
characters.

anchored
The pattern is forced to be "anchored”, that is, it is constrained to match only at the first matching point in the
string that is being searched (the "subject string"). This effect can also be achieved by appropriate constructsin
the pattern itself.

casel ess
Letters in the pattern match both upper and lower case letters. It is equivalent to Perl's /i option, and it can
be changed within a pattern by a (?) option setting. Uppercase and lowercase |etters are defined asin the
| SO-8859-1 character set.

dol | ar _endonly
A dollar metacharacter in the pattern matches only at the end of the subject string. Without this option, a dollar
also matchesimmediately before a newline at the end of the string (but not before any other newlines). The
dol | ar _endonl y optionisignoredif mul ti | i ne isgiven. Thereis no equivalent option in Perl, and no
way to set it within a pattern.

dot al |
A dot in the pattern matches all characters, including those that indicate newline. Without it, a dot does not
match when the current position is at anewline. Thisoption is equivalent to Perl's /s option, and it can be
changed within a pattern by a (?s) option setting. A negative class such as [*a] always matches newline
characters, independent of this option's setting.

ext ended
Whitespace data characters in the pattern are ignored except when escaped or inside a character class.
Whitespace does not include the VT character (ASCII 11). In addition, characters between an unescaped
outside a character class and the next newline, inclusive, are also ignored. Thisis equivalent to Perl's /x

330 | Ericsson AB. All Rights Reserved.: STDLIB

re

option, and it can be changed within a pattern by a (?x) option setting. This option makes it possible to include
comments inside complicated patterns. Note, however, that this applies only to data characters. Whitespace
characters may never appear within special character sequences in a pattern, for example within the sequence
(?(which introduces a conditional subpattern.

firstline
An unanchored pattern is required to match before or at the first newline in the subject string, though the
matched text may continue over the newline.

mul tiline

By default, PCRE treats the subject string as consisting of a single line of characters (even if it actually
contains newlines). The "start of line" metacharacter (*) matches only at the start of the string, while the
"end of line" metacharacter ($) matches only at the end of the string, or before a terminating newline (unless
dol | ar _endonl y isgiven). Thisisthe same as Perl.

When nul tili ne isgiven, the "start of line" and "end of line" constructs match immediately following or
immediately beforeinternal newlinesin the subject string, respectively, aswell as at the very start and end. This
is equivalent to Perl's /m option, and it can be changed within a pattern by a (?m) option setting. If there are no
newlines in a subject string, or no occurrences of ~ or $in apattern, setting mul ti | i ne has no effect.

no_aut o_capture
Disables the use of numbered capturing parenthesesin the pattern. Any opening parenthesis that is not followed
by ? behaves asif it were followed by ?: but named parentheses can still be used for capturing (and they
acquire numbersin the usual way). Thereis no equivalent of this option in Perl.

dupnanes
Names used to identify capturing subpatterns need not be unique. This can be helpful for certain types of
pattern when it is known that only one instance of the named subpattern can ever be matched. There are more
details of named subpatterns below

ungr eedy
This option inverts the "greediness' of the quantifiers so that they are not greedy by default, but become greedy
if followed by "?". It is not compatible with Perl. It can aso be set by a (?U) option setting within the pattern.

{new i ne, NLSpec}

Override the default definition of a newlinein the subject string, which isLF (ASCII 10) in Erlang.

cr
Newlineisindicated by a single character CR (ASCII 13)
| f
Newlineisindicated by a single character LF (ASCII 10), the default
crif
Newlineisindicated by the two-character CRLF (ASCII 13 followed by ASCII 10) sequence.
anycr| f
Any of the three preceding sequences should be recognized.
any
Any of the newline sequences above, plus the Unicode sequences VT (vertical tab, U+000B), FF
(formfeed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator,
U+2029).
bsr_anycrl f
Specifies specifically that \R isto match only the cr, If or crlf sequences, not the Unicode specific newline
characters.
bsr_uni code
Specifies specifically that \R is to match al the Unicode newline characters (including crlf etc, the default).
no_start_optinze
This option disables optimization that may malfunction if " Special start-of-pattern items" are present in the
regular expression. A typical example would be when matching "DEFABC" against " (* COMMIT)ABC",
where the start optimization of PCRE would skip the subject up to the"A" and would never redlize that the

Ericsson AB. All Rights Reserved.: STDLIB | 331

re

(* COMMIT) instruction should have made the matching fail. This option isonly relevant if you use "start-of -
pattern items', as discussed in the section "PCRE regular expression details" below.

ucp
Specifies that Unicode Character Properties should be used when resolving \B, \b, \D, \d, \S, \s, \W and \w.
Without this flag, only ISO-Latin-1 properties are used. Using Unicode properties hurts performance, but is
semantically correct when working with Unicode characters beyond the | SO-Latin-1 range.

never utf
Specifies that the (*UTF) and/or (*UTF8) "start-of-pattern items" are forbidden. This flag can not be combined
with uni code. Useful if ISO-Latin-1 patterns from an external source are to be compiled.

inspect(MP, Item) -> {namelist, [binary()1}
Types.

MP = nmp()
Item = namelist

Thisfunction takes a compiled regular expression and an item, returning the relevant data from the regular expression.
Currently theonly supporteditemisnanel i st ,whichreturnsthetuple{ narmel i st, [bi nary()]}, containing
the names of al (unique) named subpatternsin the regular expression.

Example:

1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").
{ok,{re pattern,3,0,0,
<<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255, 255,
255,255, ...>>}}
2> re:inspect(MP,namelist).
{namelist, [<<"A">>,<<"B">>,<<"C">>]}
3> {ok,MPD} = re:compile("(?<C>A)|(?B)|(?<C>C)", [dupnames]).
{ok,{re pattern,3,0,0,
<<69,82,67,80,119,0,0,0,0,0,8,0,1,0,0,0,255,255,255, 255,
255,255, ...>>}}
4> re:inspect(MPD,namelist).
{namelist, [<<"B">>,<<"C">>]}

Note specificaly in the second exampl e that the duplicate name only occursoncein the returned list, and that thelist is
in aphabetical order regardless of where the names are positioned in the regular expression. The order of the namesis
the same as the order of captured subexpressionsif { capt ure, all _nanes} isgivenasanoptiontore: run/ 3.
Y ou can therefore create a name-to-value mapping from the result of r e: r un/ 3 like this:

1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").

{ok,{re pattern,3,0,0,
<<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,

255,255, ...>>}}

2> {namelist, N} = re:inspect(MP,namelist).

{namelist, [<<"A">>,<<"B">>,<<"C">>]}

3> {match,L} = re:run("AA",MP, [{capture,all names,binary}]).

{match, [<<"A">>, <<>>,<<>>]}

4> NameMap = lists:zip(N,L).

[{<<"A">>,<<"A">>}, {<<"B">>,<<>>F, {<<"(C">>, <<>>1]

More items are expected to be added in the future.

332 | Ericsson AB. All Rights Reserved.: STDLIB

re

run(Subject, RE) -> {match, Captured} | nomatch
Types:

Subject = iodata() | unicode:charlist()

RE = np() | iodata()

Captured = [CaptureData]

CaptureData = {integer(), integer()}

Thesameasrun(Subj ect,RE, []) .

run(Subject, RE, Options) ->
{match, Captured} | match | nomatch | {error, ErrType}
Types:
Subject = iodata() | unicode:charlist()
RE = np() | iodata() | unicode:charlist()
Options = [Option]
Option = anchored
| global
| notbol
| noteol
| notempty
| notempty atstart
| report_errors
| {offset, integer() >= 0}
| {match limit, integer() >= 0}
| {match limit recursion, integer() >= 0}
| {newline, NLSpec :: nl _spec()}
| bsr_anycrlf
| bsr_unicode
| {capture, ValueSpec}
| {capture, ValueSpec, Type}
| CompileOpt
Type = index | list | binary
ValueSpec = all
| all but first
| all_names
| first
| none
| ValuelList

Valuelist [ValuelD]

ValueID = integer() | string() | atom()
CompileOpt = conpile_option()

See compile/2 above.

Captured = [CaptureData] | [[CaptureDatal]l

CaptureData = {integer(), integer()}
| ListConversionData
| binary()
ListConversionData = string()
| {error, string(), binary()}

Ericsson AB. All Rights Reserved.: STDLIB | 333

re

| {incomplete, string(), binary()}
ErrType = match limit
| match_limit recursion
| {compile, CompileErr}
CompileErr =
{ErrString :: string(), Position :: integer() >= 0}

Executes a regexp matching, returning mat ch/ { mat ch, Capt ured} or nomat ch. The regular expression can
be given either asi odat a() inwhich caseit is automatically compiled (asby r e: conpi | e/ 2) and executed, or
asapre-compiled mp() inwhich caseit is executed against the subject directly.

When compilationisinvolved, the exception badar g isthrown if acompilation error occurs. Call r e: conpi | e/ 2
to get information about the location of the error in the regular expression.

If the regular expression is previously compiled, the option list can only contain the options anchor ed, gl obal ,
not bol , not eol ,report_errors,notenpty,notenpty_atstart,{offset, integer() >= 0},
{match_limt, integer() >= 0},{match_limt_recursion, integer() >= 0},{newine,
NLSpec} and{capture, Val ueSpec}/{capture, ValueSpec, Type}.Otherwiseall optionsvalidfor
ther e: conpi | e/ 2 function are allowed as well. Options allowed both for compilation and execution of a match,
namely anchor ed and { new i ne, NLSpec}, will affect both the compilation and execution if present together
with anon pre-compiled regular expression.

If the regular expression was previously compiled with the option uni code, the Subj ect should be provided as a
validUnicodechar | i st (), otherwiseany i odat a() will do. If compilationisinvolved and the option uni code
isgiven, both the Subj ect and the regular expression should be given asvalid Unicodechar | i st s().

The{capture, ValueSpec}/{capture, ValueSpec, Type} defineswhat to return from the function
upon successful matching. The capt ur e tuple may contain both a value specification telling which of the captured
substrings are to be returned, and a type specification, telling how captured substrings are to be returned (as index
tuples, lists or binaries). The capt ur e option makes the function quite flexible and powerful. The different options
are described in detail below.

If the capture options describe that no substring capturing at all isto bedone ({ capt ur e, none}), thefunctionwill
return the single atom mat ch upon successful matching, otherwise thetuple { mat ch, Val uelLi st} isreturned.
Disabling capturing can be done either by specifying none or an empty list asVal ueSpec.

Thereport _errors option adds the possibility that an error tuple is returned. The tuple will either indicate a
matching error (mat ch_limit ormatch_l i mi t _r ecur si on) or acompilation error, where the error tuple has
theformat {error, {compile, ConpileErr}}.Notethatif theoptionreport errors isnot given, the
function never returns error tuples, but will report compilation errors as a badarg exception and failed matches due
to exceeded match limits ssmply asnonat ch.

The options relevant for execution are:

anchored
Limitsr e: r un/ 3 to matching at the first matching position. If a pattern was compiled with anchor ed, or
turned out to be anchored by virtue of its contents, it cannot be made unanchored at matching time, hence there
isnounanchor ed option.

gl obal

Implementsglobal (repetitive) search (theg flagin Perl). Each matchisreturned asaseparatel i st () containing
the specific match as well as any matching subexpressions (or as specified by the capt ure opti on). The
Capt ur ed part of the return value will hencebeal i st () of I i st () swhen thisoptionisgiven.

The interaction of the global option with a regular expression which matches an empty string surprises some
users. When the global option is given, r e: r un/ 3 handles empty matches in the same way as Perl: a zero-
length match at any point will be retried with the options [anchored, notenpty_atstart] aswel. If
that search gives aresult of length > 0, the result isincluded. For example:

334 | Ericsson AB. All Rights Reserved.: STDLIB

re

re:run("cat","(|]at)", [globall).

The following matching will be performed:

At offset O
Theregexp (| at) will first match at theinitial position of the string cat , giving theresult set [{ O, 0},
{0, 0}] (thesecond { 0, 0} isdue to the subexpression marked by the parentheses). As the length of the
match is 0, we don't advance to the next position yet.

At offset O with[anchor ed, notenpty_atstart]
The search is retried with the options[anchor ed, notenpty_at start] at the same position,
which does not give any interesting result of longer length, so the search position is now advanced to the
next character (a).

At offset 1
Thistime, the search resultsin[{1, 0}, {1, 0}], so this search will also be repeated with the extra
options.

At offset 1 with[anchor ed, notenpty_atstart]
Now the ab alternativeisfound and the result will be [{1,2} {1,2}]. Theresult is added to the list of
results and the position in the search string is advanced two steps.

At offset 3
The search now once again matches the empty string, giving [{ 3, 0}, {3, 0}] .

At offset 1 with[anchor ed, notenpty_atstart]
Thiswill give no result of length > 0 and we are at the last position, so the global search is complete.

Theresult of the call is:
{match, [[{0,0},{0,0}],[{1,0},{1,03}]1,[{1,2},{1,2}1,[{3,0},{3,0}11}

not enpt y

An empty string is not considered to be avalid match if thisoption isgiven. If there are aternativesin the pattern,
they aretried. If all the alternatives match the empty string, the entire match fails. For example, if the pattern

a7?h?

is applied to a string not beginning with "a" or "b", it would normally match the empty string at the start of
the subject. With the not enpt y option, this match is not valid, so re:run/3 searches further into the string for
occurrences of "a" or "b".

notenpty_atstart

Thisislike not enpt y, except that an empty string match that is not at the start of the subject is permitted. If
the pattern is anchored, such a match can occur only if the pattern contains \K.

Perl hasno direct equivalent of not enpt y ornot enpt y_at st art , butit doesmakeaspecial case of apattern
match of the empty string within its split() function, and when using the /g modifier. It is possible to emulate Perl's
behavior after matching anull string by first trying the match again at the same offset withnot enpt y_at st art

and anchor ed, and then, if that fails, by advancing the starting offset (see below) and trying an ordinary match

again.

not bol
This option specifies that the first character of the subject string is not the beginning of aline, so the circumflex
metacharacter should not match before it. Setting thiswithout rul t i | i ne (at compile time) causes
circumflex never to match. This option only affects the behavior of the circumflex metacharacter. It does not
affect \A.

Ericsson AB. All Rights Reserved.: STDLIB | 335

re

not eol
This option specifies that the end of the subject string is not the end of aline, so the dollar metacharacter
should not match it nor (except in multiline mode) a newline immediately before it. Setting this without
mul tiline (at compiletime) causes dollar never to match. This option affects only the behavior of the dollar
metacharacter. It does not affect \Z or \z.

report_errors

This option gives better control of the error handlinginr e: run/ 3. When it is given, compilation errors (if the
regular expression isn't already compiled) as well as run-time errors are explicitly returned as an error tuple.

The possible run-time errors are:

match_limt
The PCRE library sets alimit on how many times the internal match function can be called. The
default value for thisis 10000000 in the library compiled for Erlang. If {error, match_limt}
isreturned, it means that the execution of the regular expression has reached this limit. Normally thisis
to beregarded asanonmat ch, which isthe default return value when this happens, but by specifying
report _errors,youwill getinformed when the match fails due to to many internal calls.

match_limt_recursion
Thiserror isvery similar tomat ch_I i ni t, but occurs when the internal match function of PCRE is
"recursively" called more times than the "match_limit_recursion” limit, which is by default 20000000
aswell. Notethat aslongasthemat ch_Iimt andmatch_| i mit_def aul t vauesarekept at
the default values, thenmat ch_I i mit _recursi on error can not occur, asthemat ch_|i mit error
will occur before that (each recursive call isalso acall, but not vice versa). Both limits can however be
changed, either by setting limits directly in the regular expression string (see reference section below) or
by giving optionstor e: run/ 3

It isimportant to understand that what isreferred to as"recursion” when limiting matchesis not actually recursion
on the C stack of the Erlang machine, neither is it recursion on the Erlang process stack. The version of PCRE
compiled into the Erlang VM uses machine "heap" memory to store values that needs to be kept over recursion
in regular expression matches.

{match_limt, integer() >= 0}

Thisoption limitsthe execution time of amatch in animplementation-specific way. It isdescribedin thefollowing
way by the PCRE documentation:

The match limit field provides a means of preventing PCRE from using
up a vast amount of resources when running patterns that are not going
to match, but which have a very large number of possibilities in their
search trees. The classic example is a pattern that uses nested
unlimited repeats.

Internally, pcre exec() uses a function called match(), which it calls
repeatedly (sometimes recursively). The limit set by match limit is
imposed on the number of times this function is called during a match,
which has the effect of limiting the amount of backtracking that can
take place. For patterns that are not anchored, the count restarts
from zero for each position in the subject string.

This means that runaway regular expression matches can fail faster if the limit islowered using this option. The
default value compiled into the Erlang virtual machine is 10000000

336 | Ericsson AB. All Rights Reserved.: STDLIB

re

Note:

This option does in no way affect the execution of the Erlang virtual machine in terms of "long running
BIF's'. r e: r un always give control back to the scheduler of Erlang processes at intervals that ensures the
real time properties of the Erlang system.

{match_limt _recursion, integer() >= 0}

This option limits the execution time and memory consumption of a match in an implementation-specific way,
very similartormat ch_| i mit. Itisdescribed in the following way by the PCRE documentation:

The match limit recursion field is similar to match limit, but instead
of limiting the total number of times that match() is called, it
limits the depth of recursion. The recursion depth is a smaller number
than the total number of calls, because not all calls to match() are
recursive. This limit is of use only if it is set smaller than

match_ limit.

Limiting the recursion depth limits the amount of machine stack that
can be used, or, when PCRE has been compiled to use memory on the heap
instead of the stack, the amount of heap memory that can be

used.

The Erlang virtual machine uses a PCRE library where heap memory is used when regular expression match
recursion happens, why this limits the usage of machine heap, not C stack.

Specifying a lower value may result in matches with deep recursion failing, when they should actually have
matched:

1> re:run("aaaaaaaaaaaaaz", " (a+)*z").

{match, [{0,14},{0,13}]}

2> re:run("aaaaaaaaaaaaaz","(a+)*z", [{match _limit recursion,5}1).

nomatch

3> re:run("aaaaaaaaaaaaaz"," (a+)*z",[{match limit recursion,5}, report errors]).
{error,match_limit recursion}

Thisoption, aswell asthemat ch_| i mi t option should only be used in very rare cases. Understanding of the
PCRE library internals is recommended before tampering with these limits.

{of fset, integer() >= 0}
Start matching at the offset (position) given in the subject string. The offset is zero-based, so that the default is
{of f set, 0} (al of the subject string).

{new i ne, NLSpec}

Override the default definition of anewlinein the subject string, which is LF (ASCII 10) in Erlang.

cr
Newlineisindicated by a single character CR (ASCII 13)

| f

Newlineisindicated by a single character LF (ASCII 10), the default
crlf

Newlineisindicated by the two-character CRLF (ASCII 13 followed by ASCII 10) sequence.
anycr| f

Any of the three preceding sequences should be recognized.

Ericsson AB. All Rights Reserved.: STDLIB | 337

re

any
Any of the newline sequences above, plus the Unicode sequences VT (vertical tab, U+000B), FF
(formfeed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator,
U+2029).

bsr_anycrl f
Specifies specifically that \R isto match only the cr, If or crlf sequences, not the Unicode specific newline
characters. (overrides compilation option)

bsr _uni code
Specifies specifically that \R isto match all the Unicode newline characters (including crlf etc, the default).
(overrides compilation option)

{capture, Val ueSpec}/{capture, ValueSpec, Type}

Specifies which captured substrings are returned and in what format. By default, r e: r un/ 3 captures all of the
matching part of the substring as well as all capturing subpatterns (all of the pattern is automatically captured).
The default return typeis (zero-based) indexes of the captured parts of the string, givenas{ Of f set , Lengt h}
pairs (thei ndex Type of capturing).

As an example of the default behavior, the following call:
re:run("ABCabcdABC", "abcd", [1]) .

returns, as first and only captured string the matching part of the subject ("abcd” in the middle) as a index pair
{3, 4} , where character positions are zero based, just as in offsets. The return value of the call above would
then be;

{match, [{3,4}1}
Another (and quite common) case is where the regular expression matches all of the subject, asin:
re:run("ABCabcdABC", " .*abcd.*",[]).

wherethereturn value correspondingly will point out all of the string, beginning at index 0 and being 10 characters
long:

{match, [{0,10}]1}

If the regular expression contains capturing subpatterns, like in the following case:
re:run("ABCabcdABC",".*(abcd).*",[]1).

al of the matched subject is captured, as well as the captured substrings:
{match, [{0,10},{3,4}1}

the complete matching pattern always giving the first return value in the list and the rest of the subpatterns being
added in the order they occurred in the regular expression.

The capture tupleis built up asfollows:

338 | Ericsson AB. All Rights Reserved.: STDLIB

re

Val ueSpec

Specifieswhich captured (sub)patternsare to bereturned. TheVal ueSpec can either be an atom describing
apredefined set of return values, or alist containing either the indexes or the names of specific subpatterns
to return.

The predefined sets of subpatterns are:

al |
All captured subpatterns including the complete matching string. Thisis the default.

al | _names
All named subpatternsin the regular expression, asif al i st () of al the namesin alphabetical
order was given. Thelist of al names can aso be retrieved with the inspect/2 function.

first
Only the first captured subpattern, which is always the complete matching part of the subject. All
explicitly captured subpatterns are discarded.

all _but _first
All but the first matching subpattern, i.e. all explicitly captured subpatterns, but not the complete
matching part of the subject string. Thisis useful if the regular expression as awhole matches a
large part of the subject, but the part you'reinterested inisin an explicitly captured subpattern. If the
return typeisl i st or bi nary, not returning subpatterns you're not interested in is a good way to
optimize.

none
Do not return matching subpatterns at all, yielding the single atom nmat ch asthe return value of
the function when matching successfully instead of the { mat ch, [i st ()} return. Specifying an
empty list gives the same behavior.

The value list is alist of indexes for the subpatterns to return, where index O is for all of the pattern, and
1isfor the first explicit capturing subpattern in the regular expression, and so forth. When using named
captured subpatterns (see below) in the regular expression, onecan useat on() sor st ri ng() sto specify
the subpatterns to be returned. For example, consider the regular expression:

".*(abcd).*"

matched against the string "ABCabcdABC", capturing only the "abcd" part (the first explicit subpattern):
re:run("ABCabcdABC",".*(abcd).*", [{capture,[1]1}]).

The call will yield the following result:
{match, [{3,4}]}

asthefirst explicitly captured subpatternis*(abed)", matching "abcd" in the subject, at (zero-based) position
3, of length 4.

Now consider the same regular expression, but with the subpattern explicitly named 'FOO':
".*(?<F00>abcd) . *"
With this expression, we could still give the index of the subpattern with the following call:

re:run("ABCabcdABC",".*(?<F00>abcd) .*", [{capture, [1]1}1).

Ericsson AB. All Rights Reserved.: STDLIB | 339

re

giving the same result as before. But, since the subpattern is named, we can also specify its name in the
value list:

re:run("ABCabcdABC",".*(?<F00>abcd) .*", [{capture,['FO0']}]).
which would yield the same result as the earlier examples, namely:
{match, [{3,4}1}

Thevalueslist might specify indexes or names not present in the regular expression, in which case thereturn
values vary depending on the type. If the typeisi ndex, thetuple{- 1, 0} is returned for values having
no corresponding subpattern in the regexp, but for the other types (bi nary and | i st), the values are the
empty binary or list respectively.

Type

Optionally specifies how captured substrings are to be returned. If omitted, the default of i ndex is used.
The Ty pe can be one of the following:

i ndex
Return captured substrings as pairs of byte indexes into the subject string and length of the matching
string in the subject (asif the subject string was flattened withi ol i st _to_bi nary/ 1 or
uni code: characters_t o_bi nary/ 2 prior to matching). Note that the uni code option
resultsin byte-oriented indexesin a (possibly virtual) UTF-8 encoded binary. A byte index tuple
{0, 2} might therefore represent one or two characters when uni code isin effect. This might seem
counter-intuitive, but has been deemed the most effective and useful way to way to doit. To return
listsinstead might result in simpler code if that is desired. This return type is the default.

list
Return matching substrings as lists of characters (Erlang st ri ng() s). It theuni code optionis
used in combination with the \C sequence in the regular expression, a captured subpattern can contain
bytes that are not valid UTF-8 (\C matches bytes regardless of character encoding). In that case the
| i st capturing may result in the same types of tuplesthat uni code: characters_to list/2
can return, namely three-tuples with thetag i nconpl et e or er r or , the successfully converted
characters and the invalid UTF-8 tail of the conversion as abinary. The best strategy isto avoid using
the \C sequence when capturing lists.

bi nary
Return matching substrings as binaries. If the uni code option is used, these binariesarein UTF-8.
If the \C sequence is used together with uni code the binaries may be invalid UTF-8.

In general, subpatterns that were not assigned avalue in the match arereturned asthetuple{ - 1, 0} whent ype
isi ndex. Unassigned subpatterns are returned as the empty binary or list, respectively, for other return types.
Consider the regular expression:

".*((?<F00>abdd) |a(..d)).*"

There are three explicitly capturing subpatterns, where the opening parenthesis position determines the order in
the result, hence ((?<FOO0>abdd) | a(. . d)) issubpattern index 1, (?<FOO>abdd) is subpattern index 2
and (. . d) issubpatternindex 3. When matched against the following string:

"ABCabcdABC"

340 | Ericsson AB. All Rights Reserved.: STDLIB

re

the subpattern at index 2 won't match, as"abdd" is not present in the string, but the compl ete pattern matches (due
tothealternativea(. . d) . The subpattern at index 2 is therefore unassigned and the default return value will be:

{match, [{0,10},{3,4},{-1,0},{4,3}1}
Setting the capture Ty pe to bi nar y would give the following:
{match, [<<"ABCabcdABC">>,<<"abcd">>,<<>>,<<"bcd">>]}

where the empty binary (<<>>) represents the unassigned subpattern. In the bi nary case, some information
about the matching is therefore lost, the <<>> might just as well be an empty string captured.

If differentiation between empty matches and non existing subpatterns is necessary, use thet ype i ndex and
do the conversion to the final type in Erlang code.

When the option gl obal isgiven, the capt ur e specification affects each match separately, so that:
re:run("cacb","c(a|b)", [global, {capture, [1],list}]).
givesthe result:
{match,[["a"],["b"]11}
The options solely affecting the compilation step are described inther e: conpi | e/ 2 function.

replace(Subject, RE, Replacement) -> iodata() | unicode:charlist()
Types.

Subject = iodata() | unicode:charlist()

RE = np() | iodata()

Replacement = iodata() | unicode:charlist()

Thesameasr epl ace(Subj ect, RE, Repl acenent,[]).

replace(Subject, RE, Replacement, Options) ->
iodata() | unicode:charlist()
Types:
Subject = iodata() | unicode:charlist()
RE = np() | iodata() | unicode:charlist()
Replacement = iodata() | unicode:charlist()
Options = [Option]
Option = anchored
| global
| notbol
| noteol
| notempty
| notempty atstart
| {offset, integer() >= 0}
| {newline, NLSpec}
| bsr_anycrlf

Ericsson AB. All Rights Reserved.: STDLIB | 341

re

| {match limit, integer() >= 0}
| {match limit recursion, integer() >= 0}
| bsr _unicode
| {return, ReturnType}
| CompileOpt
ReturnType = iodata | list | binary
CompileOpt = conpile_option()
NLSpec = cr | crlf | Uf | anycrlf | any
Replaces the matched part of the Subj ect string with the contents of Repl acenent .
The permissible options are the same as for r e: r un/ 3, except that the capt ur e option is not allowed. Instead a
{return, ReturnType} ispresent. Thedefault returntypeisi odat a, constructedinaway to minimize copying.

Thei odat a result can be used directly in many 1/O-operations. If aflat | i st () isdesired, specify {return,
I'ist} andif abinary ispreferred, specify {r et urn, bi nary}.

Asinther e: run/ 3 function, an np() compiled with theuni code option requiresthe Subj ect to beaUnicode
charli st ().If compilationisdoneimplicitly and theuni code compilation option is given to this function, both
the regular expression and the Subj ect should be given asvalid Unicodechar | i st () s.

The replacement string can contain the special character &, which inserts the whole matching expression in the resullt,
and the specia sequence \ N (where N is an integer > 0), \ gN or \ g{ N} resulting in the subexpression number N
will be inserted in the result. If no subexpression with that number is generated by the regular expression, nothing
isinserted.

Toinsert an & or \ inthe result, precede it with a\ . Note that Erlang already gives a special meaning to\ in literal
strings, so asingle\ hasto bewrittenas"\ \ " and therefore adouble\ as"\\\\ " . Example:

re:replace("abcd","c","[&]", [{return,list}]).
gives

“ab[c]d"
while

re:replace("abcd","c","[\\&]", [{return, list}]).
gives

"ab[&]d"

As with r e: run/ 3, compilation errors raise the badar g exception, r e: conpi | e/ 2 can be used to get more
information about the error.

split(Subject, RE) -> SplitlList
Types:
Subject = iodata() | unicode:charlist()
RE = np() | iodata()
SplitList = [iodata() | unicode:charlist()]

Thesameasspl it (Subject,RE []).

342 | Ericsson AB. All Rights Reserved.: STDLIB

re

split(Subject, RE, Options) -> SplitlList
Types:
Subject = iodata() | unicode:charlist()
RE = np() | iodata() | unicode:charlist()
Options = [Option]
Option = anchored
| notbol
| noteol
| notempty
| notempty atstart
| {offset, integer() >= 0}
| {newline, nl _spec()}
| {match limit, integer() >= 0}
| {match limit recursion, integer() >= 0}
| bsr_anycrlf
| bsr_unicode
| {return, ReturnType}
| {parts, NumParts}
| group
| trim
| CompileOpt
NumParts = integer() >= 0 | infinity
ReturnType = iodata | list | binary
CompileOpt = conpile_option()
See compile/2 above.
SplitList = [RetData] | [GroupedRetData]
GroupedRetData = [RetDatal]
RetData = iodata() | unicode:charlist() | binary() | list()

This function splits the input into parts by finding tokens according to the regular expression supplied.

The splitting isdone basically by running aglobal regexp match and dividing theinitial string wherever amatch occurs.
The matching part of the string is removed from the output.

Asinther e: run/ 3 function, an np() compiled with theuni code option requiresthe Subj ect to beaUnicode
charli st ().If compilationisdoneimplicitly and theuni code compilation option is given to this function, both
the regular expression and the Subj ect should be given asvalid Unicodechar | i st () s.

Theresultisgiven asalist of "strings’, the preferred datatype givenin ther et ur n option (default iodata).

If subexpressions are given in the regular expression, the matching subexpressions are returned in the resulting list
aswell. An example:

re:split("Erlang","[ln]", [{return,list}]).
will yield the result:
[IIErII’ Ilall’ Ilgll]

while

Ericsson AB. All Rights Reserved.: STDLIB | 343

re

re:split("Erlang","([ln])", [{return,list}]).
will yield
[“Er","l","a","n","g"]

The text matching the subexpression (marked by the parentheses in the regexp) is inserted in the result list where it
wasfound. In effect this meansthat concatenating the result of a split where the whol e regexp isasingle subexpression
(asiin the example above) will always result in the origina string.

As there is no matching subexpression for the last part in the example (the "g"), there is nothing inserted after that.
To make the group of strings and the parts matching the subexpressions more obvious, one might use the gr oup
option, which groups together the part of the subject string with the parts matching the subexpressions when the string
was split:

re:split("Erlang","([ln])", [{return,list},group]).
gives:
[["Er,"1"],["a","n"],["g"]]

Here the regular expression matched first the "I", causing "Er" to be the first part in the result. When the regular
expression matched, the (only) subexpression was bound to the "I", so the "I" is inserted in the group together with
"Er". The next match is of the "n", making "a" the next part to be returned. Since the subexpression is bound to the
substring "n" in this case, the "n" isinserted into this group. The last group consists of the rest of the string, as no
more matches are found.

By default, all parts of the string, including the empty strings, are returned from the function. For example:
re:split("Erlang","[lgl", [{return,list}]).
will return:

["Er","an", []]

sincethe matching of the"g" inthe end of the string |eaves an empty rest which isalso returned. This behaviour differs
from the default behaviour of the split function in Perl, where empty strings at the end are by default removed. To get
the "trimming" default behavior of Perl, specify t r i mas an option:

re:split("Erlang","[lg]", [{return,list},trim]).
The result will be:
[IIErII) Ilanll]

The"trim" option in effect says, "give me as many parts as possible except the empty ones', which might be useful in
some circumstances. Y ou can also specify how many parts you want, by specifying { parts, N}:

re:split("Erlang","[1gl", [{return,list}, {parts,2}1).

344 | Ericsson AB. All Rights Reserved.: STDLIB

re

Thiswill give:
["Er","ang"]

Note that the last part is "ang", not "an", as we only specified splitting into two parts, and the splitting stops when
enough parts are given, which iswhy the result differsfrom that of t r i m

More than three parts are not possible with thisindata, so
re:split("Erlang","[lgl", [{return,list}, {parts,4}]).

will give the same result as the default, which isto be viewed as "an infinite number of parts'.

Specifying 0 as the number of parts gives the same effect asthe option t r i m If subexpressions are captured, empty
subexpression matches at the end are also stripped from theresult if t r i mor { part s, 0} isspecified.

If you are familiar with Perl, thet r i mbehaviour corresponds exactly to the Perl default, the{ part s, N} whereNis
apositive integer corresponds exactly to the Perl behaviour with a positive numerical third parameter and the default
behaviour of r e: spl i t/ 3 correspondsto that when the Perl routineis given anegativeinteger asthethird parameter.

Summary of options not previously described for ther e: r un/ 3 function:
{return,ReturnType}
Specifies how the parts of the original string are presented in the result list. The possible types are:

iodata
Thevariant of i odat a() that givesthe least copying of data with the current implementation (often a
binary, but don't depend on it).

binary
All parts returned as binaries.

list
All parts returned as lists of characters ("strings").

group
Groups together the part of the string with the parts of the string matching the subexpressions of the regexp.

Thereturn valuefrom thefunctionwill inthiscasebeal i st () of | i st () s. Each sublist beginswith the string
picked out of the subject string, followed by the parts matching each of the subexpressionsin order of occurrence
in the regular expression.

{parts,N}
Specifies the number of parts the subject string is to be split into.

The number of parts should be a positive integer for a specific maximum on the number of partsandi nfinity
for the maximum number of parts possible (the default). Specifying { part s, 0} givesasmany partsaspossible
disregarding empty parts at the end, the same as specifyingtri m

trim

Specifiesthat empty parts at the end of the result list are to be disregarded. The same as specifying{ part s, 0} .
This corresponds to the default behaviour of thespl i t built in function in Perl.

PERL LIKE REGULAR EXPRESSIONS SYNTAX

The following sections contain reference material for the regular expressions used by this module. The regular
expression reference is based on the PCRE documentation, with changes in cases where the re module behaves
differently to the PCRE library.

Ericsson AB. All Rights Reserved.: STDLIB | 345

re

PCRE regular expression details

The syntax and semantics of the regular expressions that are supported by PCRE are described in detail below. Perl's
regular expressions are described in its own documentation, and regular expressionsin general are covered in anumber
of books, some of which have copious examples. Jeffrey Friedl's "Mastering Regular Expressions’, published by
O'Rellly, covers regular expressions in great detail. This description of PCRE's regular expressions is intended as
reference material.

The reference material is divided into the following sections:

e Special start-of-patternitems

e Characters and metacharacters
* Backdash

e Circumflex and dollar

* Full stop (period, dot) and \N

e Matching a single data unit

e Sguare brackets and character classes
* POSX character classes

* Vertical bar

* Internal option setting

e Subpatterns

* Duplicate subpattern numbers

e Named subpatterns

* Repetition

e Atomic grouping and possessive quantifiers
* Back references

e Assertions

e Conditional subpatterns

* Comments

* Recursive patterns

e Subpatterns as subroutines

* Oniguruma subroutine syntax

e Backtracking control

Special start-of-pattern items

A number of options that can be passedtor e: conpi | e/ 2 can aso be set by special items at the start of a pattern.
These are not Perl-compatible, but are provided to make these options accessible to pattern writers who are not able to
change the program that processes the pattern. Any number of these items may appear, but they must all be together
right at the start of the pattern string, and the letters must be in upper case.

UTF support

Unicode support is basically UTF-8 based. To use Unicode characters, you either call r e: conpi | e/ 2/re: run/ 3
with the uni code option, or the pattern must start with one of these special sequences:

(*UTF8)
(*UTF)

346 | Ericsson AB. All Rights Reserved.: STDLIB

re

Both options give the same effect, the input string is interpreted as UTF-8. Note that with these instructions, the
automatic conversion of lists to UTF-8 is not performed by the r e functions, why using these options is not
recommended. Add the uni code option when running r e: conpi | e/ 2 instead.

Some applications that allow their users to supply patterns may wish to restrict them to non-UTF data for security
reasons. If the never _ut f option is set at compile time, (*UTF) etc. are not allowed, and their appearance causes
an error.

Unicode property support
Another special sequence that may appear at the start of a patternis
(*UCP)

This has the same effect as setting the ucp option: it causes sequences such as\d and \w to use Unicode propertiesto
determine character types, instead of recognizing only characters with codes less than 256 via alookup table.

Disabling start-up optimizations

If apattern starts with (*NO_START_OPT), it has the same effect as setting theno_St art _opti m ze option at
compile time.

Newline conventions

PCRE supportsfivedifferent conventionsfor indicating line breaksin strings: asingle CR (carriagereturn) character, a
single LF (linefeed) character, the two-character sequence CRLF , any of the three preceding, or any Unicode newline
sequence.

Itisalso possibleto specify anewline convention by starting a pattern string with one of the following five sequences:

(*CR)
carriage return
(*LF)
linefeed
(*CRLF)
carriage return, followed by linefeed
(*ANYCRLF)
any of the three above
(*ANY)
al Unicode newline sequences

These override the default and the options giventor e: conpi | e/ 2. For example, the pattern:
(*CR)ab

changes the convention to CR. That pattern matches "a\nb" because LF is no longer a newline. If more than one of
them is present, the last one is used.

The newline convention affects where the circumflex and dollar assertions are true. It also affects the interpretation
of the dot metacharacter when dot al | isnot set, and the behaviour of \N. However, it does not affect what the \R
escape sequence matches. By default, thisis any Unicode newline sequence, for Perl compatibility. However, this can
be changed; see the description of \R in the section entitled "Newline sequences’ below. A change of \R setting can
be combined with a change of newline convention.

Setting match and recursion limits

The caller of re: run/ 3 can set alimit on the number of times the internal match() function is called and on the
maximum depth of recursivecalls. Thesefacilitiesare provided to catch runaway matchesthat are provoked by patterns
with huge matching trees (atypical example is a pattern with nested unlimited repeats) and to avoid running out of
system stack by too much recursion. When one of these limitsisreached, pcre_exec() gives an error return. The limits
can also be set by items at the start of the pattern of the form

Ericsson AB. All Rights Reserved.: STDLIB | 347

re

(*LIMIT_MATCH=d)
(*LIMIT_RECURSION=d)

where d isany number of decimal digits. However, the value of the setting must be less than the value set by the caller
of re: run/ 3 for it to have any effect. In other words, the pattern writer can lower the limit set by the programmer,
but not raise it. If there is more than one setting of one of these limits, the lower valueis used.

The current default value for both the limits are 10000000 in the Erlang VM. Note that the recursion limit does not
actually affect the stack depth of the VM, as PCRE for Erlang is compiled in such away that the match function never
does recursion on the "C-stack".

Characters and metacharacters

A regular expression is a pattern that is matched against a subject string from left to right. Most characters stand for
themselvesin a pattern, and match the corresponding characters in the subject. As atrivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. When caseless matching is specified (the casel ess
option), letters are matched independently of case.

The power of regular expressions comes from the ability to include alternatives and repetitions in the pattern. These
are encoded in the pattern by the use of metacharacters, which do not stand for themselves but instead are interpreted
in some specia way.

There are two different sets of metacharacters: those that are recognized anywhere in the pattern except within square
brackets, and those that are recognized within square brackets. Outside square brackets, the metacharacters are as
follows:

\

general escape character with several uses
N

assert start of string (or line, in multiline mode)

’ assert end of string (or line, in multiline mode)
match any character except newline (by default)
[start character class definition
| start of alternative branch
(start subpattern
) end subpattern
?
. extends the meaning of (, also 0 or 1 quantifier, also quantifier minimizer
*
0 or more quantifier
' 1 or more quantifier, also "possessive quantifier”
{

start min/max quantifier
Part of apattern that isin square bracketsis called a"character class’. In acharacter classthe only metacharacters are:

348 | Ericsson AB. All Rights Reserved.: STDLIB

re

general escape character

negate the class, but only if the first character

indicates character range

POSIX character class (only if followed by POSIX syntax)

terminates the character class

The following sections describe the use of each of the metacharacters.

Backslash

The backdlash character has several uses. Firstly, if it is followed by a character that is not a number or a letter, it
takes away any special meaning that character may have. This use of backslash as an escape character applies both
inside and outside character classes.

For example, if you want to match a* character, you write * in the pattern. This escaping action applies whether
or not the following character would otherwise be interpreted as a metacharacter, so it is always safe to precede a
non-alphanumeric with backslash to specify that it stands for itself. In particular, if you want to match a backslash,
you write\\.

Inuni code mode, only ASCII numbers and letters have any special meaning after a backslash. All other characters
(in particular, those whose codepoints are greater than 127) are treated as literals.

If a pattern is compiled with the ext ended option, white space in the pattern (other than in a character class) and
characters between a# outside a character class and the next newline are ignored. An escaping backslash can be used
to include awhite space or # character as part of the pattern.

If you want to remove the special meaning from a sequence of characters, you can do so by putting them between \Q
and \E. This s different from Perl in that $ and @ are handled as literals in \Q...\E sequences in PCRE, whereas in
Perl, $ and @ cause variable interpolation. Note the following examples:

Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz

\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The \Q...\E sequence is recognized both inside and outside character classes. An isolated \E that is not preceded by
\Q isignored. If \Q is not followed by \E later in the pattern, the literal interpretation continues to the end of the
pattern (that is, \E is assumed at the end). If the isolated \Q is inside a character class, this causes an error, because
the character class is not terminated.

Non-printing characters

A second use of backslash provides away of encoding non-printing charactersin patterns in avisible manner. There
is ho restriction on the appearance of non-printing characters, apart from the binary zero that terminates a pattern, but
when a pattern is being prepared by text editing, it is often easier to use one of the following escape sequences than
the binary character it represents:

\a

alarm, that is, the BEL character (hex 07)
\cx

"control-x", where x isany ASCI| character

Ericsson AB. All Rights Reserved.: STDLIB | 349

re

\e

escape (hex 1B)
\f
form feed (hex OC)
\n
linefeed (hex 0A)
\r
carriage return (hex 0D)
\t
tab (hex 09)
\ddd
character with octal code ddd, or back reference
\xhh
character with hex code hh
\x{ hhh..}

character with hex code hhh..

The precise effect of \cx on ASCII characters is as follows: if x is alower case letter, it is converted to upper case.
Then bit 6 of the character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A (A is 41, Z is 5A), but
\c{ becomes hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the data item (byte or 16-bit value) following \c
has a value greater than 127, a compile-time error occurs. Thislocks out non-ASCI| charactersin all modes.

The \c facility was designed for use with ASCII characters, but with the extension to Unicode it is even less useful
than it once was.

By default, after \x, from zero to two hexadecimal digits are read (letters can be in upper or lower case). Any number
of hexadecimal digits may appear between \x{ and }, but the character code is constrained as follows:

8-bit non-Unicode mode
less than 0x100
8-bit UTF-8 mode
less than Ox10ffff and avalid codepoint

Invalid Unicode codepoints are the range 0xd800 to Oxdfff (the so-called "surrogate” codepoints), and Oxffef.

If characters other than hexadecimal digits appear between \x{ and }, or if thereisno terminating }, thisform of escape
is not recognized. Instead, the initial \x will be interpreted as a basic hexadecimal escape, with no following digits,
giving a character whose valueis zero.

Characters whose value is less than 256 can be defined by either of the two syntaxes for \x. There is no difference in
the way they are handled. For example, \xdc is exactly the same as \x{ dc} .

After \O up to two further octal digits are read. If there are fewer than two digits, just those that are present are used.
Thus the sequence \O\x\07 specifies two binary zeros followed by a BEL character (code value 7). Make sure you
supply two digits after theinitial zero if the pattern character that follows isitself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class, PCRE reads it
and any following digits as a decima number. If the number is less than 10, or if there have been at least that many
previous capturing left parentheses in the expression, the entire sequence is taken as a back reference. A description
of how thisworksis given later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been that many capturing
subpatterns, PCRE re-reads up to three octal digitsfollowing the backslash, and usesthem to generate a data character.
Any subsequent digits stand for themselves. The value of the character is constrained in the same way as characters
specified in hexadecimal. For example:

\040
is another way of writing a ASCII space

350 | Ericsson AB. All Rights Reserved.: STDLIB

re

\40
isthe same, provided there are fewer than 40 previous capturing subpatterns
\7
isalways a back reference
\11
might be a back reference, or another way of writing atab
\011
isawaysatab
\0113
isatab followed by the character "3"
\113
might be a back reference, otherwise the character with octal code 113
\377
might be a back reference, otherwise the value 255 (decimal)
\81
is either aback reference, or abinary zero followed by the two characters"8" and "1"

Note that octal values of 100 or greater must not be introduced by a leading zero, because no more than three octal
digits are ever read.

All the sequences that define asingle character value can be used both inside and outside character classes. In addition,
inside a character class, \b isinterpreted as the backspace character (hex 08).

\N isnot allowed in a character class. \B, \R, and \X are not special inside a character class. Like other unrecognized
escape sequences, they aretreated astheliteral characters"B", "R", and "X". Outside a character class, these sequences
have different meanings.

Unsupported escape sequences

In Perl, the sequences|\I, \L, \u, and \U are recognized by its string handler and used to modify the case of following
characters. PCRE does not support these escape sequences.

Absolute and relative back references

The sequence\g followed by an unsigned or a negative number, optionally enclosed in braces, isan absolute or relative
back reference. A named back reference can be coded as \g{ hame} . Back references are discussed later, following the
discussion of parenthesized subpatterns.

Absolute and relative subroutine calls

For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a humber enclosed either in angle
brackets or single quotes, is an alternative syntax for referencing a subpattern as a " subroutine”. Details are discussed
later. Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a back
reference; the latter is a subroutine call.

Generic character types
Another use of backslash is for specifying generic character types:

\d
any decimal digit
\D
any character that is not adecimal digit
\h
any horizontal white space character
\H
any character that is not a horizontal white space character
\s
any white space character

Ericsson AB. All Rights Reserved.: STDLIB | 351

re

\S
any character that is not a white space character
\v
any vertical white space character
\V
any character that is not a vertical white space character
\w
any "word" character
\wW
any "non-word" character

Thereisalso the single sequence \N, which matches anon-newline character. Thisisthe sameasthe"." metacharacter
when dot al | isnot set. Perl also uses\N to match characters by name; PCRE does not support this.

Each pair of lower and upper case escape sequences partitionsthe complete set of charactersinto two digoint sets. Any
given character matches one, and only one, of each pair. The sequences can appear both inside and outside character
classes. They each match one character of the appropriate type. If the current matching point isat the end of the subject
string, all of them fail, because there is no character to match.

For compatibility with Perl, \s does not match the VT character (code 11). This makes it different from the POSIX
"space" class. The\s charactersare HT (9), LF (10), FF (12), CR (13), and space (32). If "use locale;" isincluded in
aPerl script, \s may match the VT character. In PCRE, it never does.

A "word" character is an underscore or any character that is aletter or digit. By default, the definition of letters and
digitsis controlled by PCRE's low-valued character tables, in Erlang's case (and without the uni code option), the
|SO-Latin-1 character set.

By default, in uni code mode, characters with values greater than 255, i.e. al characters outside the 1SO-Latin-1
character set, never match\d, \s, or \w, and alwaysmatch \D, \S, and \W. These sequencesretain their original meanings
from before UTF support was available, mainly for efficiency reasons. However, if theucp option isset, the behaviour
is changed so that Unicode properties are used to determine character types, as follows:

\d
any character that \p{ Nd} matches (decimal digit)
\s
any character that \p{Z} matches, plusHT, LF, FF, CR)
\w
any character that \p{L} or \p{ N} matches, plus underscore)

The upper case escapes match the inverse sets of characters. Note that \d matches only decimal digits, whereas \w
matchesany Unicode digit, aswell asany Unicode letter, and underscore. Note also that uc p affects\b, and \B because
they are defined in terms of \w and \W. Matching these sequences is noticeably slower when ucp is set.

The sequences\h, \H, \v, and \V are features that were added to Perl at release 5.10. In contrast to the other sequences,
which match only ASCII characters by default, these always match certain high-valued codepoints, whether or not
ucp isset. The horizonta space characters are:

U+0009

Horizontal tab (HT)
U+0020

Space
U+00A0

Non-break space
U+1680

Ogham space mark
U+180E

Mongolian vowel separator

352 | Ericsson AB. All Rights Reserved.: STDLIB

re

U+2000

En quad
U+2001

Em quad
U+2002

En space
U+2003

Em gpace
U+2004

Three-per-em space
U+2005

Four-per-em space
U+2006

Six-per-em space
U+2007

Figure space
U+2008

Punctuation space
U+2009

Thin space
U+200A

Hair space
U+202F

Narrow no-break space
U+205F

Medium mathematical space
U+3000

Ideographic space

The vertical space characters are;

U+000A

Linefeed (LF)
U+000B

Vertical tab (VT)
U+000C

Form feed (FF)
U+000D

Carriage return (CR)
U+0085

Next line (NEL)
U+2028

Line separator
U+2029

Paragraph separator

In 8-bit, non-UTF-8 mode, only the characters with codepoints |ess than 256 are relevant.
Newline sequences

Outside a character class, by default, the escape sequence \R matches any Unicode newline sequence. In non-UTF-8
mode \R is equivalent to the following:

(Z>\r\n[\n[\xOb|\f\r[\x85)
Thisisan example of an "atomic group", details of which are given below.

Ericsson AB. All Rights Reserved.: STDLIB | 353

re

This particular group matches either the two-character sequence CR followed by LF, or one of the single characters
LF (linefeed, U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL
(next line, U+0085). The two-character sequenceis treated as a single unit that cannot be split.

In Unicode mode, two additional characters whose codepoints are greater than 255 are added: LS (line separator, U
+2028) and PS (paragraph separator, U+2029). Unicode character property support is not needed for these characters
to be recognized.

It is possible to restrict \R to match only CR, LF, or CRLF (instead of the complete set of Unicode line endings) by
setting the option bsr _anycr | f either at compile time or when the pattern is matched. (BSR is an abbreviation
for "backslash R".) This can be made the default when PCRE is built; if thisis the case, the other behaviour can be
requested viathe bsr _uni code option. It is aso possible to specify these settings by starting a pattern string with
one of the following sequences:

(*BSR_ANYCRLF) CR, LF, or CRLF only (*BSR_UNICODE) any Unicode newline sequence

These override the default and the options given to the compiling function, but they can themselves be overridden by
options given to a matching function. Note that these special settings, which are not Perl-compatible, are recognized
only at the very start of apattern, and that they must bein upper case. If more than one of them is present, the last one
isused. They can be combined with a change of newline convention; for example, a pattern can start with:

(*ANY)(*BSR_ANYCRLF)

They can aso be combined with the (*UTF8), (*UTF) or (*UCP) specia sequences. Inside a character class, \R is
treated as an unrecognized escape sequence, and so matches the letter "R" by default.

Unicode character properties

Three additional escape sequences that match characters with specific properties are available. When in 8-bit non-
UTF-8 mode, these sequences are of course limited to testing characters whose codepoints are less than 256, but they
do work in this mode. The extra escape sequences are:
\p{ ¢

a character with the xx property
\P{>x¢

a character without the xx property
\X

a Unicode extended grapheme cluster

The property names represented by xx above are limited to the Unicode script names, the general category properties,
"Any", which matches any character (including newline), and some special PCRE properties (described in the next
section). Other Perl properties such as"InMusical Symbols' are not currently supported by PCRE. Note that \P{ Any}
does not match any characters, so aways causes a match failure.

Setsof Unicode charactersare defined asbelonging to certain scripts. A character from one of these sets can be matched
using a script name. For example:

\p{ Greek} \P{Han}
Those that are not part of an identified script are lumped together as "Common". The current list of scriptsis:

e Arabic

e Armenian
¢« Avestan

e Balinese
e Bamum

e Batak

e Bengdi

* Bopomofo

354 | Ericsson AB. All Rights Reserved.: STDLIB

re

Braille

Buginese

Buhid
Canadian_Aboriginal
Carian

Chakma

Cham

Cherokee
Common

Coptic

Cuneiform
Cypriot

Cyrillic

Deseret
Devanagari
Egyptian_Hieroglyphs
Ethiopic

Georgian
Glagolitic

Gothic

Greek

Gujarati

Gurmukhi

Han

Hangul

Hanunoo

Hebrew

Hiragana
Imperial_Aramaic
Inherited
Inscriptional_Pahlavi
Inscriptional_Parthian
Javanese

Kaithi

Kannada
Katakana
Kayah Li
Kharoshthi

Khmer

Lao

Latin

Lepcha

Limbu

Ericsson AB. All Rights Reserved.: STDLIB | 355

re

Linear B

Lisu

Lycian

Lydian
Malayalam
Mandaic
Meetei_Mayek
Meroitic_Cursive
Meroitic_Hieroglyphs
Miao
Mongolian
Myanmar

New Ta_Lue
Nko

Ogham
Old_ltalic
Old_Persian
Oriya
Old_South_Arabian
Old_Turkic
Ol_Chiki
Osmanya
Phags Pa
Phoenician
Rejang

Runic
Samaritan
Saurashtra
Sharada
Shavian
Sinhala
Sora_Sompeng
Sundanese
Syloti_Nagri
Syriac

Tagalog
Tagbanwa

Ta Le
Tai_Tham
Ta_Viet

Takri

Tamil

Telugu

356 | Ericsson AB. All Rights Reserved

.. STDLIB

re

e Thaana

e Tha

e Tibetan
e Tifinagh
e Ugaritic
e Va

e i

Each character has exactly one Unicode general category property, specified by a two-letter abbreviation. For
compatibility with Perl, negation can be specified by including acircumflex between the opening brace and the property
name. For example, \p{"Lu} isthe same as\P{Lu}.

If only one letter is specified with \p or \P, it includes all the general category properties that start with that |etter.
In this case, in the absence of negation, the curly brackets in the escape sequence are optional; these two examples
have the same effect:

o \p{L}
« \pL

The following general category property codes are supported:

C

Other
Cc

Control
Cf

Format
Cn

Unassigned
Co

Private use
Cs

Surrogate

Letter
LI

Lower case letter
Lm

Modifier letter
Lo

Other letter
Lt

Title case letter
Lu

Upper case letter

Mark
Mc

Spacing mark
Me

Enclosing mark
Mn

Non-spacing mark

Ericsson AB. All Rights Reserved.: STDLIB | 357

re

Number
Nd

Decima number
NI

L etter number
No

Other number
P

Punctuation
Pc

Connector punctuation
Pd

Dash punctuation
Pe

Close punctuation
Pf

Final punctuation
Pi

Initial punctuation
Po

Other punctuation
Ps

Open punctuation
S

Symbol
Sc

Currency symbol
Sk

Modifier symbol
Sm

Mathematical symbol
So

Other symbol
z

Separator
Zl

Line separator
Zp

Paragraph separator
Zs

Space separator

The specia property L& is also supported: it matches a character that hasthe Lu, LI, or Lt property, in other words,
aletter that is not classified as amodifier or "other".

The Cs (Surrogate) property appliesonly to charactersin the range U+D800 to U+DFFF. Such charactersare not valid
in Unicode strings and so cannot be tested by PCRE. Perl does not support the Cs property

The long synonyms for property names that Perl supports (such as \p{ Letter}) are not supported by PCRE, nor is it
permitted to prefix any of these propertieswith "Is".

No character that isin the Unicode table has the Cn (unassigned) property. Instead, this property is assumed for any
code point that is not in the Unicode table.

358 | Ericsson AB. All Rights Reserved.: STDLIB

re

Specifying caseless matching does not affect these escape sequences. For example, \p{ Lu} always matches only upper
case letters. Thisisdifferent from the behaviour of current versions of Perl.

Matching characters by Unicode property isnot fast, because PCRE hasto do amultistage table lookup in order to find
acharacter's property. That iswhy the traditional escape sequences such as\d and \w do not use Unicode propertiesin
PCRE by default, though you can make them do so by setting the ucp option or by starting the pattern with (* UCP).

Extended grapheme clusters

The \X escape matches any number of Unicode characters that form an "extended grapheme cluster”, and treats the
sequenceasan atomic group (seebelow). Upto and including rel ease 8.31, PCRE matched an earlier, simpler definition
that was equivalent to

(2>\PM\pM*)

That is, it matched a character without the "mark™ property, followed by zero or more characters with the "mark”
property. Characters with the "mark” property are typically non-spacing accents that affect the preceding character.

This simple definition was extended in Unicode to include more complicated kinds of composite character by giving
each character a grapheme breaking property, and creating rules that use these properties to define the boundaries of
extended grapheme clusters. In releases of PCRE later than 8.31, \X matches one of these clusters.

\X aways matches at least one character. Then it decides whether to add additional characters according to the
following rules for ending a cluster:

1.
End at the end of the subject string.

2.
Do not end between CR and LF; otherwise end after any control character.

3.
Do not break Hangul (a Korean script) syllable sequences. Hangul characters are of fivetypes: L, V, T, LV,
and LVT. An L character may befollowed by anL, V, LV, or LVT character; an LV or V character may be
followed by aV or T character; an LVT or T character may be follwed only by a T character.

4,
Do not end before extending characters or spacing marks. Characters with the "mark" property always have the
"extend" grapheme breaking property.

5.
Do not end after prepend characters.

6.

Otherwise, end the cluster.
PCRE's additional properties

Aswell asthe standard Unicode properties described above, PCRE supports four more that makeit possible to convert
traditional escape sequences such as \w and \s and POSIX character classes to use Unicode properties. PCRE uses
these non-standard, non-Perl propertiesinternally when PCRE_UCP is set. However, they may also be used explicitly.
These properties are:

Xan

Any alphanumeric character
Xps

Any POSIX space character
Xsp

Any Perl space character
Xwd

Any Perl "word" character

Ericsson AB. All Rights Reserved.: STDLIB | 359

re

Xan matches characters that have either the L (letter) or the N (number) property. Xps matches the characters tab,
linefeed, vertical tab, form feed, or carriage return, and any other character that has the Z (separator) property. Xspis
the same as Xps, except that vertical tab is excluded. Xwd matches the same characters as Xan, plus underscore.

There is another non-standard property, Xuc, which matches any character that can be represented by a Universal
Character Name in C++ and other programming languages. These are the characters $, @, ~ (grave accent), and
all characters with Unicode code points greater than or equal to U+00AO, except for the surrogates U+D800 to U
+DFFF. Note that most base (ASCII) characters are excluded. (Universal Character Names are of the form \uHHHH
or \UHHHHHHHH where H is a hexadecimal digit. Note that the Xuc property does not match these sequences but
the characters that they represent.)

Resetting the match start

The escape sequence \K causes any previously matched characters not to be included in the final matched sequence.
For example, the pattern:

foo\Kbar

matches "foobar", but reports that it has matched "bar”. This feature is similar to a lookbehind assertion (described
below). However, in this case, the part of the subject before the real match does not have to be of fixed length, as
lookbehind assertions do. The use of \K does not interfere with the setting of captured substrings. For example, when
the pattern

(foo)\K bar
matches "foobar”, the first substring is still set to "foo".

Perl documents that the use of \K within assertions is "not well defined". In PCRE, \K is acted upon when it occurs
inside positive assertions, but isignored in negative assertions.

Smple assertions

The final use of backslash is for certain simple assertions. An assertion specifies a condition that has to be met at a
particular point in amatch, without consuming any characters from the subject string. The use of subpatterns for more
complicated assertions is described below. The backslashed assertions are:

K matches at aword boundary

* matches when not at aword boundary

matches at the start of the subject

“ matches at the end of the subject also matches before a newline at the end of the subject
N matches only at the end of the subject

© matches at the first matching position in the subject

Inside a character class, \b has a different meaning; it matches the backspace character. If any other of these assertions
appears in a character class, by default it matches the corresponding literal character (for example, \B matches the
letter B).

A word boundary is a position in the subject string where the current character and the previous character do not both
match \w or \W (i.e. one matches \w and the other matches \W), or the start or end of the string if the first or last
character matches \w, respectively. In a UTF mode, the meanings of \w and \W can be changed by setting the ucp
option. When this is done, it also affects \b and \B. Neither PCRE nor Perl has a separate "start of word" or "end of
word" metasegquence. However, whatever follows \b normally determines which it is. For example, the fragment \ba
matches"a" at the start of aword.

360 | Ericsson AB. All Rights Reserved.: STDLIB

re

The\A,\Z, and \z assertions differ from the traditional circumflex and dollar (described in the next section) in that they
only ever match at the very start and end of the subject string, whatever options are set. Thus, they are independent
of multiline mode. These three assertions are not affected by the not bol or not eol options, which affect only the
behaviour of the circumflex and dollar metacharacters. However, if the startoffset argument of r e: run/ 3 is non-
zero, indicating that matching is to start at a point other than the beginning of the subject, \A can never match. The
difference between \Z and \z is that \Z matches before a newline at the end of the string as well as at the very end,
whereas \z matches only at the end.

The\G assertion is true only when the current matching position is at the start point of the match, as specified by the
startoffset argument of r e: r un/ 3. It differsfrom\A when the value of startoffset isnon-zero. By callingr e: r un/ 3
multiple times with appropriate arguments, you can mimic Perl's /g option, and it is in this kind of implementation
where\G can be useful.

Note, however, that PCRE's interpretation of \G, asthe start of the current match, is subtly different from Perl's, which
defines it as the end of the previous match. In Perl, these can be different when the previously matched string was
empty. Because PCRE does just one match at atime, it cannot reproduce this behaviour.

If al the alternatives of a pattern begin with \G, the expression is anchored to the starting match position, and the
"anchored" flag is set in the compiled regular expression.

Circumflex and dollar

The circumflex and dollar metacharacters are zero-width assertions. That is, they test for a particular condition being
true without consuming any characters from the subject string.

Outside a character class, in the default matching mode, the circumflex character is an assertion that is true only if
the current matching point is at the start of the subject string. If the startoffset argument of r e: r un/ 3 is non-zero,
circumflex can never match if themul ti | i ne option is unset. Inside a character class, circumflex has an entirely
different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are involved, but it should be the
first thing in each alternative in which it appearsif the pattern is ever to match that branch. If al possible alternatives
start with a circumflex, that is, if the pattern is constrained to match only at the start of the subject, it is said to be an
"anchored" pattern. (There are also other constructs that can cause a pattern to be anchored.)

The dollar character is an assertion that is true only if the current matching point is at the end of the subject string, or
immediately before a newline at the end of the string (by default). Note, however, that it does not actually match the
newline. Dollar need not be the last character of the pattern if a number of alternatives are involved, but it should be
thelast item in any branch in which it appears. Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very end of the string, by setting the
dol I ar _endonl y option at compile time. This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if thermul ti | i ne option is set. When thisis the
case, a circumflex matches immediately after internal newlines as well as at the start of the subject string. It does not
match after a newline that ends the string. A dollar matches before any newlines in the string, as well as at the very
end, whenmul ti | i ne is set. When newline is specified as the two-character sequence CRLF, isolated CR and LF
characters do not indicate newlines.

For example, the pattern /~abc$/ matches the subject string "def\nabc™ (where \n represents a newline) in multiline
mode, but not otherwise. Consequently, patternsthat are anchored in single line mode because al branches start with »
arenot anchored in multiline mode, and amatch for circumflex ispossible when the startoffset argument of r e: run/ 3
isnon-zero. Thedol | ar _endonl y optionisignoredif mul tili ne isset.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both modes, and if all
branches of a pattern start with \A it is aways anchored, whether or not mul ti | i ne isset.

Ericsson AB. All Rights Reserved.: STDLIB | 361

re

Full stop (period, dot) and \N

Outside a character class, a dot in the pattern matches any one character in the subject string except (by default) a
character that signifies the end of aline.

When aline ending is defined as asingle character, dot never matches that character; when the two-character sequence
CRLF is used, dot does not match CR if it isimmediately followed by LF, but otherwise it matches all characters
(including isolated CRs and LFs). When any Unicode line endings are being recognized, dot does not match CR or
LF or any of the other line ending characters.

The behaviour of dot with regard to newlines can be changed. If the dot al | option is set, a dot matches any one
character, without exception. If the two-character sequence CRLF is present in the subject string, it takes two dots
to match it.

The handling of dot is entirely independent of the handling of circumflex and dollar, the only relationship being that
they both involve newlines. Dot has no special meaning in a character class.

The escape sequence \N behaves like a dot, except that it is not affected by the PCRE_DOTALL option. In other
words, it matches any character except one that signifies the end of aline. Perl also uses \N to match characters by
name; PCRE does not support this.

Matching a single data unit

Outside a character class, the escape sequence \C matches any one data unit, whether or not a UTF mode is set. One
dataunit isone byte. Unlike adot, \C always matches line-ending characters. Thefeatureisprovided in Perl in order to
match individual bytesin UTF-8 mode, but it isunclear how it can usefully be used. Because \C breaks up characters
into individual data units, matching one unit with \C in a UTF mode means that the rest of the string may start with a
malformed UTF character. This has undefined results, because PCRE assumesthat it isdealing with valid UTF strings.

PCRE does not allow \C to appear in lookbehind assertions (described below) in a UTF mode, because this would
make it impossible to calculate the length of the lookbehind.

In general, the \C escape sequenceis best avoided. However, oneway of using it that avoids the problem of malformed
UTF charactersisto use alookahead to check the length of the next character, asin this pattern, which could be used
with a UTF-8 string (ignore white space and line breaks):

(?] (?=[\x00-\x7f]) (\C) |
(?=[\x80-\x{7ff}1) (\C) (\C) |
(?=[\x{800}-\x{ffff}]) (\C) (\C) (\C) |
(?=[\x{10000} -\x{1fffff}]) (\C) (\C) (\C) (\C))

A group that starts with (7] resets the capturing parentheses numbers in each aternative (see "Duplicate Subpattern
Numbers' below). The assertions at the start of each branch check the next UTF-8 character for values whose encoding
uses 1, 2, 3, or 4 bytes, respectively. The character's individual bytes are then captured by the appropriate number
of groups.

Square brackets and character classes

An opening square bracket introduces a character class, terminated by a closing sgquare bracket. A closing square
bracket on its own is not specia by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set, a lone
closing square bracket causes a compile-time error. If a closing square bracket is required as a member of the class, it
should be the first data character in the class (after an initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. In a UTF mode, the character may be more than one data
unit long. A matched character must be in the set of characters defined by the class, unless the first character in the

362 | Ericsson AB. All Rights Reserved.: STDLIB

re

class definition is a circumflex, in which case the subject character must not be in the set defined by the class. If a
circumflex isactually required asamember of the class, ensureit isnot thefirst character, or escapeit with abacksash.

For example, the character class [aeiou] matches any lower case vowel, while [*agiou] matches any character that is
not a lower case vowel. Note that a circumflex is just a convenient notation for specifying the characters that are in
the class by enumerating those that are not. A class that starts with a circumflex is not an assertion; it still consumes a
character from the subject string, and therefore it failsif the current pointer is at the end of the string.

In UTF-8 mode, characters with values greater than 255 (Oxffff) can be included in a class as alitera string of data
units, or by using the \x{ escaping mechanism.

When caseless matching is set, any letters in a class represent both their upper case and lower case versions, so for
example, a caseless[aeiou] matches"A" aswell as"a", and a caseless [*agiou] does not match A", whereas a caseful
version would. In a UTF mode, PCRE always understands the concept of case for characters whose values are less
than 256, so caseless matching is always possible. For characters with higher values, the concept of case is supported
if PCRE is compiled with Unicode property support, but not otherwise. If you want to use caseless matchinginaUTF
mode for characters 256 and above, you must ensure that PCRE is compiled with Unicode property support as well
aswith UTF support.

Characters that might indicate line breaks are never treated in any special way when matching character classes,
whatever line-ending sequence is in use, and whatever setting of the PCRE_DOTALL and PCRE_MULTILINE
optionsisused. A class such as ["a] always matches one of these characters.

The minus (hyphen) character can be used to specify arange of characters in a character class. For example, [d-m]
matches any letter between d and m, inclusive. If a minus character is required in a class, it must be escaped with
a backslash or appear in a position where it cannot be interpreted as indicating a range, typicaly as the first or last
character in the class.

Itisnot possibleto havetheliteral character "]" asthe end character of arange. A pattern such as[W-]46] isinterpreted
as a class of two characters ("W" and "-") followed by a literal string "46]", so it would match "W46]" or "-46]".
However, if the "]" is escaped with a backslash it is interpreted as the end of range, so [W-\]46] is interpreted as a
class containing a range followed by two other characters. The octal or hexadecimal representation of "]" can also
be used to end arange.

Ranges operate in the collating sequence of character values. They can aso be used for characters specified
numerically, for example [\000-\037]. Ranges can include any charactersthat are valid for the current mode.

If arangethat includes lettersis used when caseless matching is set, it matches the lettersin either case. For example,
[W-c] isequivalent to [][\W_"wxyzabc], matched caselessly, and in anon-UTF mode, if character tables for a French
locale arein use, [\xc8-\xcb] matches accented E characters in both cases. In UTF modes, PCRE supports the concept
of casefor characters with values greater than 255 only when it is compiled with Unicode property support.

The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V, \w, and \W may appear in a character class, and
add the characters that they match to the class. For example, \d{ABCDEF] matches any hexadecimal digit. In UTF
modes, the ucp option affects the meanings of \d, \s, \w and their upper case partners, just asit does when they appear
outside a character class, as described in the section entitled " Generic character types' above. The escape sequence \b
has a different meaning inside a character class; it matches the backspace character. The sequences\B, \N, \R, and \X
are not special inside a character class. Like any other unrecognized escape sequences, they are treated as the literal
characters"B", "N", "R", and "X".

A circumflex can conveniently be used with the upper case character typesto specify amore restricted set of characters
than the matching lower case type. For example, the class [MW_] matches any letter or digit, but not underscore,
whereas [\w] includes underscore. A positive character class should be read as "something OR something OR ..." and
anegative class as"NOT something AND NOT something AND NOT ...".

Theonly metacharactersthat are recognized in character classesare backslash, hyphen (only whereit can beinterpreted
as specifying a range), circumflex (only at the start), opening square bracket (only when it can be interpreted as

Ericsson AB. All Rights Reserved.: STDLIB | 363

re

introducing aPOSI X class name - see the next section), and the terminating closing square bracket. However, escaping
other non-alphanumeric characters does no harm.

POSIX character classes

Perl supports the POSIX notation for character classes. This uses names enclosed by [: and :] within the enclosing
square brackets. PCRE al so supports this notation. For example,

[01]:alpha]%]
matches "0", "1", any alphabetic character, or "%". The supported class names are:

alnum
letters and digits
apha
letters
ascii
character codes O - 127
blank
space or tab only
cntrl
control characters
digit
decimal digits (same as\d)
graph
printing characters, excluding space
lower
lower case letters
print
printing characters, including space
punct
printing characters, excluding letters and digits and space
space
whitespace (not quite the same as\s)
upper
upper case letters
word
"word" characters (same as \w)
xdigit
hexadecimal digits
The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). Natice that this list includes
the VT character (code 11). This makes "space" different to \s, which does not include VT (for Perl compatibility).

Thename"word" isaPerl extension, and "blank" isaGNU extension from Perl 5.8. Another Perl extension isnegation,
which isindicated by a” character after the colon. For example,

[12[:~digit:]]

matches 1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX syntax [.ch.] and [=ch=] where"ch" is
a"collating element”, but these are not supported, and an error isgiven if they are encountered.

By default, in UTF modes, characters with values greater than 255 do not match any of the POSIX character classes.
However, if the PCRE_UCP option is passed to pcre_compile(), some of the classes are changed so that Unicode
character properties are used. Thisis achieved by replacing the POSIX classes by other sequences, as follows:
[:anum:]

becomes \p{ Xan}

364 | Ericsson AB. All Rights Reserved.: STDLIB

re

[:apha]

becomes\p{L}
[:blank:]

becomes\h
[:digit:
]

becomes \p{ Nd}
[:lower:]

becomes\p{LI}
[:spacel]

becomes \p{ Xps}
][:upper:

becomes \p{Lu}
[:word:]

becomes \p{ Xwd}

Negated versions, such as [:“apha;] use \P instead of \p. The other POSIX classes are unchanged, and match only
characters with code points less than 256.

Vertical bar
Vertical bar characters are used to separate alternative patterns. For example, the pattern
gilbertjsullivan

matches either "gilbert" or "sullivan”. Any number of alternatives may appear, and an empty aternative is permitted
(matching the empty string). The matching process tries each aternative in turn, from left to right, and the first one
that succeedsis used. If the alternatives are within a subpattern (defined below), "succeeds' means matching the rest
of the main pattern as well as the aternative in the subpattern.

Internal option setting

The settings of the casel ess, nul tiline, dotall, and ext ended options (which are Perl-compatible) can
be changed from within the pattern by a sequence of Perl option letters enclosed between "(?' and ")". The option
letters are
i

for casel ess

m
formul tiline
s
fordot al |
X

for ext ended

For example, (7im) sets caseless, multiline matching. It is also possible to unset these options by preceding the letter
with ahyphen, and acombined setting and unsetting such as (2im-sx), which setscasel ess andnul ti | i ne while
unsetting dot al | and ext ended, isalso permitted. If aletter appears both before and after the hyphen, the option
iS unset.

The PCRE-specific options dupnanes, ungr eedy, and ext r a can be changed in the same way as the Perl-
compatible options by using the characters J, U and X respectively.

When one of these option changes occurs at top level (that is, not inside subpattern parentheses), the change applies
to the remainder of the pattern that follows. If the change is placed right at the start of a pattern, PCRE extracts it
into the global options.

Ericsson AB. All Rights Reserved.: STDLIB | 365

re

An option change within asubpattern (see bel ow for adescription of subpatterns) affectsonly that part of the subpattern
that followsit, so

(a(?A)b)c
matches abc and aBc and no other strings (assuming casel ess isnot used). By this means, options can be made to

havedifferent settingsin different parts of the pattern. Any changes madein one aternative do carry on into subsequent
branches within the same subpattern. For example,

(a(?)blc)
matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is abandoned before the option

setting. This is because the effects of option settings happen at compile time. There would be some very weird
behaviour otherwise.

Note: There are other PCRE-specific options that can be set by the application when the compiling or matching
functions are called. In some cases the pattern can contain specia leading sequences such as (* CRLF) to override
what the application has set or what has been defaulted. Details are given in the section entitled "Newline sequences’
above. There are also the (*UTF8) and (* UCP) leading sequences that can be used to set UTF and Unicode property
modes; they are equivalent to setting the uni code and the ucp options, respectively. The (*UTF) sequence is a
generic version that can be used with any of the libraries. However, the application can set the never _ut f option,
which locks out the use of the (* UTF) sequences.

Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Turning part of a pattern into a
subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern
cat(aract|erpillar|)

matches "cataract",
string.

caterpillar”, or "cat". Without the parentheses, it would match "cataract", "erpillar" or an empty

2. It sets up the subpattern as a capturing subpattern. This means that, when the complete pattern matches, that portion
of the subject string that matched the subpattern is passed back to the caller viathe return value of r e: r un/ 3.

Opening parentheses are counted from | eft to right (starting from 1) to obtain numbersfor the capturing subpatterns.For
example, if the string "the red king" is matched against the pattern

the ((redjwhite) (king|queen))
the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3, respectively.

The fact that plain parentheses fulfil two functions is not always helpful. There are often times when a grouping
subpeattern is required without a capturing requirement. If an opening parenthesisis followed by a question mark and
a colon, the subpattern does not do any capturing, and is not counted when computing the number of any subsequent
capturing subpatterns. For example, if the string "the white queen" is matched against the pattern

the ((?:redjwhite) (king|queen))

the captured substrings are "white queen™ and "queen”, and are numbered 1 and 2. The maximum number of capturing
subpatternsis 65535.

As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern, the option
letters may appear between the "?" and the ":". Thus the two patterns

+ (?:saturday|sunday)
* (?(A)saturday|sunday)

366 | Ericsson AB. All Rights Reserved.: STDLIB

re

match exactly the same set of strings. Because alternative branches are tried from left to right, and options are not
reset until the end of the subpattern isreached, an option setting in one branch does affect subsequent branches, so the
above patterns match "SUNDAY" aswell as " Saturday".

Duplicate subpattern numbers

Perl 5.10 introduced a feature whereby each aternative in a subpattern uses the same numbers for its capturing
parentheses. Such asubpattern startswith (7| and isitself anon-capturing subpattern. For example, consider this pattern:

(A(Sat)ur|(Sun))day

Because the two alternatives are inside a (7| group, both sets of capturing parentheses are numbered one. Thus, when
the pattern matches, you can look at captured substring number one, whichever alternative matched. This construct is
useful when you want to capture part, but not all, of one of a number of alternatives. Inside a (7| group, parentheses
are numbered as usual, but the number is reset at the start of each branch. The numbers of any capturing parentheses
that follow the subpattern start after the highest number used in any branch. The following example is taken from the
Perl documentation. The numbers underneath show in which buffer the captured content will be stored.

before --------------- branch-reset----------- after
/(Ca) ([x(y)z] (p(ar)]| (t)ulv)) (z) /x
1 2 2 3 2 3 4

A back reference to a numbered subpattern uses the most recent value that is set for that number by any subpattern.
The following pattern matches "abcabc" or "defdef":

/(?|(abc)|(de))\V/

In contrast, a subroutine call to a humbered subpattern always refers to the first one in the pattern with the given
number. The following pattern matches "abcabc” or "defabc™:

1(?(abe)|(def)) (?1)/

If a condition test for a subpattern's having matched refers to a non-unique number, the test is true if any of the
subpatterns of that number have matched.

An alternative approach to using this "branch reset" feature is to use duplicate named subpatterns, as described in the
next section.

Named subpatterns

Identifying capturing parentheses by number is simple, but it can be very hard to keep track of the numbers in
complicated regular expressions. Furthermore, if an expression is modified, the numbers may change. To help with
this difficulty, PCRE supports the naming of subpatterns. This feature was not added to Perl until release 5.10. Python
had the feature earlier, and PCRE introduced it at release 4.0, using the Python syntax. PCRE now supports both the
Perl and the Python syntax. Perl allowsidentically numbered subpatternsto have different names, but PCRE does not.

In PCRE, a subpattern can be named in one of three ways: (?<name>...) or (?name'...) asin Perl, or (?P<name>...) as
in Python. References to capturing parentheses from other parts of the pattern, such as back references, recursion, and
conditions, can be made by name as well as by number.

Names consist of up to 32 aphanumeric characters and underscores. Named capturing parentheses are still alocated
numbers as well as names, exactly asif the names were not present. The capt ur e specificationtor e: run/ 3 can
use named values if they are present in the regular expression.

By default, aname must be unique within a pattern, but it is possible to relax this constraint by setting thedupnanes
option at compile time. (Duplicate names are also aways permitted for subpatterns with the same number, set up as
described in the previous section.) Duplicate names can be useful for patterns where only one instance of the named

Ericsson AB. All Rights Reserved.: STDLIB | 367

re

parentheses can match. Suppose you want to match the name of a weekday, either as a 3-letter abbreviation or as the
full name, and in both cases you want to extract the abbreviation. This pattern (ignoring the line breaks) does the job:

(?<DN>Mon|Fri|Sun) (?:day)?|
(?<DN>Tue) (?:sday)?|
(?7<DN>Wed) (?:nesday)?|
(?<DN>Thu) (?:rsday)?|
(?<DN>Sat) (?:urday)?

There are five capturing substrings, but only oneis ever set after amatch. (An alternative way of solving this problem
isto use a"branch reset" subpattern, as described in the previous section.)

In case of capturing named subpatterns which names are not unique, the first matching occurrence (counted from left
to right in the subject) isreturned from r e: exec/ 3, if the nameis specified in the val ues part of the capt ur e
statement. Theal | _names capturing value will match all of the names in the same way.

Warning: Y ou cannot use different namesto distinguish between two subpatternswith the same number because PCRE
uses only the numbers when matching. For this reason, an error is given at compile time if different names are given
to subpatterns with the same number. However, you can give the same name to subpatterns with the same number,
even when dupnanes isnot set.

Repetition
Repetition is specified by quantifiers, which can follow any of the following items:

* aliteral datacharacter

» the dot metacharacter

* the\C escape sequence

» the\X escape sequence

« the\R escape sequence

e anescape such as\d or \pL that matches a single character

e acharacter class

» aback reference (see next section)

e aparenthesized subpattern (including assertions)

e asubroutine call to a subpattern (recursive or otherwise)

The general repetition quantifier specifies a minimum and maximum number of permitted matches, by giving the two
numbers in curly brackets (braces), separated by a comma. The numbers must be less than 65536, and the first must
be less than or equal to the second. For example:

z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace onitsown is not a special character. If the second number is omitted,
but the commais present, there is no upper limit; if the second number and the comma are both omitted, the quantifier
specifies an exact number of required matches. Thus

[aeiou]{3,}
matches at least 3 successive vowels, but may match many more, while
\d{ 8}

matches exactly 8 digits. An opening curly bracket that appearsin a position where a quantifier is not allowed, or one
that does not match the syntax of a quantifier, istaken as alitera character. For example, {,6} is not a quantifier, but
aliteral string of four characters.

368 | Ericsson AB. All Rights Reserved.: STDLIB

re

In Unicode mode, quantifiers apply to characters rather than to individual data units. Thus, for example, \x{ 100}{ 2}
matches two characters, each of which is represented by a two-byte sequence in a UTF-8 string. Similarly, \X{3}
matches three Unicode extended grapheme clusters, each of which may be several data units long (and they may be
of different lengths).

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the quantifier were not
present. This may be useful for subpatterns that are referenced as subroutines from elsewhere in the pattern (but see
also the section entitled "Defining subpatterns for use by reference only" below). Items other than subpatterns that
have a{0} quantifier are omitted from the compiled pattern.

For convenience, the three most common quantifiers have single-character abbreviations:

*

isequivalent to {0,}
+

isequivalent to{1,}
?

isequivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no characters with a quantifier that
has no upper limit, for example:

(&)

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However, because there
are cases where this can be useful, such patterns are now accepted, but if any repetition of the subpattern doesin fact
match no characters, the loop is forcibly broken.

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the maximum number of
permitted times), without causing the rest of the pattern to fail. The classic example of where this gives problemsisin
trying to match commentsin C programs. These appear between /* and */ and within the comment, individual * and /
characters may appear. An attempt to match C comments by applying the pattern

N* *\x]

to the string

/* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches the minimum
number of times possible, so the pattern

N* X A*/

does the right thing with the C comments. The meaning of the various quantifiers is not otherwise changed, just the
preferred number of matches. Do not confuse this use of question mark with its use as a quantifier in its own right.
Because it has two uses, it can sometimes appear doubled, asin

\d?Ad
which matches one digit by preference, but can match two if that is the only way the rest of the pattern matches.

If the ungr eedy option is set (an option that is not available in Perl), the quantifiers are not greedy by default, but
individual ones can be made greedy by following them with a question mark. In other words, it inverts the default
behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 1 or with a limited
maximum, more memory is required for the compiled pattern, in proportion to the size of the minimum or maximum.

If apattern startswith .* or .{0,} andthedot al | option (equivalent to Perl's/s) is set, thus allowing the dot to match
newlines, the pattern is implicitly anchored, because whatever follows will be tried against every character position

Ericsson AB. All Rights Reserved.: STDLIB | 369

re

in the subject string, so there is no point in retrying the overall match at any position after the first. PCRE normally
treats such a pattern as though it were preceded by \A.

In cases where it is known that the subject string contains no newlines, it is worth setting dot al | in order to obtain
this optimization, or alternatively using ” to indicate anchoring explicitly.

However, there are some cases where the optimization cannot be used. When .* is inside capturing parentheses that
are the subject of a back reference elsewhere in the pattern, a match at the start may fail where a later one succeeds.
Consider, for example:

(*)abo\l

If the subject is"xyz123abc123" the match point isthe fourth character. For thisreason, such apattern isnot implicitly
anchored.

Another case where implicit anchoring is not applied is when the leading .* isinside an atomic group. Once again, a
match at the start may fail where alater one succeeds. Consider this pattern:

(?>*7?a)b

It matches "ab" in the subject "aab". The use of the backtracking control verbs (* PRUNE) and (* SKIP) also disable
this optimization.

When a capturing subpattern is repeated, the value captured is the substring that matched the final iteration. For
example, after

(tweedle[dume]{ 3}\s*)+

has matched "tweedledum tweedl edee" the val ue of the captured substring is"tweedledee". However, if thereare nested
capturing subpatterns, the corresponding captured values may have been set in previous iterations. For example, after

/(a|(b))+/
matches "aba" the value of the second captured substring is"b".

Atomic grouping and possessive quantifiers

With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy") repetition, failure of what follows normally
causes the repeated item to be re-evaluated to see if a different number of repeats alows the rest of the pattern to
match. Sometimesit is useful to prevent this, either to change the nature of the match, or to causeiit fail earlier than it
otherwise might, when the author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line
123456bar

After matching al 6 digits and then failing to match "foo", the normal action of the matcher isto try again with only
5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing. "Atomic grouping” (aterm taken
from Jeffrey Friedl's book) provides the means for specifying that once a subpattern has matched, it is not to be re-
evaluated in thisway.

If we use atomic grouping for the previous example, the matcher gives up immediately on failing to match "foo" the
first time. The notation is akind of specia parenthesis, starting with (?> asin this example:

(?>\d+)foo

Thiskind of parenthesis"locks up" the part of the pattern it contains once it has matched, and afailure further into the
pattern is prevented from backtracking into it. Backtracking past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that an identical standalone
pattern would match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above example can be thought
of asamaximizing repeat that must swallow everything it can. So, while both \d+ and \d+? are prepared to adjust the

370 | Ericsson AB. All Rights Reserved.: STDLIB

re

number of digitsthey match in order to make the rest of the pattern match, (?>\d+) can only match an entire sequence
of digits.

Atomic groupsin general can of course contain arbitrarily complicated subpatterns, and can be nested. However, when
the subpattern for an atomic group is just a single repeated item, as in the example above, a simpler notation, called
a "possessive quantifier" can be used. This consists of an additional + character following a quantifier. Using this
notation, the previous example can be rewritten as

\d++foo

Note that a possessive quantifier can be used with an entire group, for example:

(abclxyz){2,3} +

Possessive quantifiers are always greedy; the setting of the ungr eedy option is ignored. They are a convenient
notation for the simpler formsof atomic group. However, thereisno differencein the meaning of apossessive quantifier

and the equivalent atomic group, though there may be a performance difference; possessive quantifiers should be
dlightly faster.

The possessive quantifier syntax isan extension to the Perl 5.8 syntax. Jeffrey Friedl originated theidea (and the name)
in the first edition of his book. Mike McCloskey liked it, so implemented it when he built Sun's Java package, and
PCRE copied it from there. It ultimately found its way into Perl at release 5.10.

PCRE has an optimization that automatically "possessifies' certain simple pattern constructs. For example, the
sequence A+B istreated as A++B because thereisno point in backtracking into a sequence of A'swhen B must follow.

When apattern contains an unlimited repeat inside asubpattern that can itself be repeated an unlimited number of times,
the use of an atomic group is the only way to avoid some failing matches taking a very long time indeed. The pattern

(\D+[<\d+>)*]17]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>, followed by
either ! or 2. When it matches, it runs quickly. However, if it is applied to

it takes along time before reporting failure. Thisis because the string can be divided between the internal \D+ repeat
and the external * repeat in a large number of ways, and all have to be tried. (The example uses [!7] rather than a
single character at the end, because both PCRE and Perl have an optimization that allowsfor fast failure when asingle
character is used. They remember the last single character that is required for amatch, and fail early if it is not present
in the string.) If the pattern is changed so that it uses an atomic group, like this:

((P>\D+)[<\d+>)*[17]
sequences of non-digits cannot be broken, and failure happens quickly.

Back references

Outside acharacter class, abackslash followed by adigit greater than 0 (and possibly further digits) isaback reference
toacapturing subpattern earlier (that is, to itsleft) in the pattern, provided there have been that many previous capturing
left parentheses.

However, if the decimal number following the backslash is less than 10, it is aways taken as a back reference, and
causes an error only if there are not that many capturing left parentheses in the entire pattern. In other words, the
parentheses that are referenced need not be to the left of the reference for numbers less than 10. A "forward back
reference” of this type can make sense when a repetition is involved and the subpattern to the right has participated
in an earlier iteration.

It isnot possible to have anumerical "forward back reference” to a subpattern whose number is 10 or more using this
syntax because a sequence such as\50 isinterpreted as a character defined in octal. See the subsection entitled "Non-
printing characters' above for further details of the handling of digitsfollowing a backslash. Thereis no such problem
when named parentheses are used. A back referenceto any subpattern ispossible using named parentheses (see below).

Ericsson AB. All Rights Reserved.: STDLIB | 371

re

Another way of avoiding the ambiguity inherent in the use of digits following a backslash is to use the \g escape
sequence. This escape must be followed by an unsigned number or a negative number, optionally enclosed in braces.
These examples are all identical:

e (ring),\1

e (ring),\gl

+ (ring), \g{ 1}

An unsigned number specifies an absolute reference without the ambiguity that is present in the older syntax. It isalso
useful when literal digits follow the reference. A negative number is arelative reference. Consider this example:
(abc(def)ghi)\g{ -1}

The sequence \g{ -1} is areference to the most recently started capturing subpattern before \g, that is, is it equivalent
to\2inthisexample. Similarly, \g{-2} would be equivalent to\1. The use of relative references can be helpful inlong
patterns, and also in patterns that are created by joining together fragments that contain references within themselves.

A back reference matches whatever actually matched the capturing subpattern in the current subject string, rather than
anything matching the subpattern itself (see" Subpatterns as subroutines' below for away of doing that). So the pattern
(senglrespons)e and \libility

matches "sense and sensibility" and "response and responsibility”, but not "sense and responsibility”. If caseful
matching isin force at the time of the back reference, the case of lettersisrelevant. For example,

((A)yrah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the origina capturing subpattern is matched
caselesdly.

There are several different ways of writing back references to named subpatterns. The .NET syntax \k{ name} and the
Perl syntax \k<name> or \k'name' are supported, asisthe Python syntax (?P=name). Perl 5.10's unified back reference
syntax, in which \g can be used for both numeric and named references, is also supported. We could rewrite the above
examplein any of the following ways:

e (?<pl>(?)rah)\st\k<pl>

o (?pY'(?)rah)\st\k{ p1}

o (?P<pl>(?)rah)\s+(?P=pl)

* (<pI>(?)rah)\st\g{ p1}

A subpattern that is referenced by name may appear in the pattern before or after the reference.

There may be more than one back reference to the same subpattern. If a subpattern has not actually been used in a
particular match, any back referencesto it awaysfail. For example, the pattern

(&(bc)\2

awaysfailsif it starts to match "a" rather than "bc". Because there may be many capturing parentheses in a pattern,
all digits following the backslash are taken as part of a potential back reference number. If the pattern continues with
adigit character, some delimiter must be used to terminate the back reference. If theext ended option is set, thiscan
be whitespace. Otherwise an empty comment (see "Comments' below) can be used.

Recursive back references

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is first used, so, for
example, (a\1) never matches. However, such references can be useful inside repeated subpatterns. For example, the
pattern

(alo\1)+

matches any number of "a's and also "aba", "ababbaa' etc. At each iteration of the subpattern, the back reference
matches the character string corresponding to the previousiteration. In order for thisto work, the pattern must be such

372 | Ericsson AB. All Rights Reserved.: STDLIB

re

that thefirst iteration does not need to match the back reference. This can be done using alternation, asin the example
above, or by aquantifier with aminimum of zero.

Back references of thistype cause the group that they referenceto be treated as an atomic group. Once the whole group
has been matched, a subsequent matching failure cannot cause backtracking into the middle of the group.

Assertions

An assertionisatest on the charactersfollowing or preceding the current matching point that does not actually consume
any characters. The simple assertions coded as\b, \B, \A, \G, \Z, \z, * and $ are described above.

More complicated assertions are coded as subpatterns. There aretwo kinds: those that [ook ahead of the current position
in the subject string, and those that look behind it. An assertion subpattern is matched in the normal way, except that
it does not cause the current matching position to be changed.

Assertion subpatterns are not capturing subpatterns. If such an assertion contains capturing subpatternswithin it, these
are counted for the purposes of numbering the capturing subpatternsin the whole pattern. However, substring capturing
iscarried out only for positive assertions. (Perl sometimes, but not always, does do capturing in negative assertions.)

For compatibility with Perl, assertion subpatterns may be repeated; though it makes no sense to assert the same thing
several times, the side effect of capturing parentheses may occasionally be useful. In practice, there only three cases:
D
If the quantifier is{ 0}, the assertion is never obeyed during matching. However, it may contain internal
capturing parenthesized groups that are called from el sewhere via the subroutine mechanism.
2
If quantifier is{0,n} where nisgreater than zero, it istreated asif it were { 0,1} . At run time, the rest of the
pattern match is tried with and without the assertion, the order depending on the greediness of the quantifier.
(©)
If the minimum repetition is greater than zero, the quantifier isignored. The assertion is obeyed just once when
encountered during matching.

Lookahead assertions
L ookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example,

\w+(?=;)

matches aword followed by a semicolon, but does not include the semicolon in the match, and
foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar pattern
(?foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo"; it finds any occurrence of
"bar" whatsoever, because the assertion (?'foo) is always true when the next three characters are "bar". A lookbehind
assertion is needed to achieve the other effect.

If you want to force amatching failure at some point in a pattern, the most convenient way to do it iswith (?!) because
an empty string always matches, so an assertion that requires there not to be an empty string must always fail. The
backtracking control verb (*FAIL) or (*F) isasynonym for (?).

Lookbehind assertions
Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For example,
(?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The contents of alookbehind assertion are restricted
such that all the strings it matches must have afixed length. However, if there are several top-level alternatives, they
do not all have to have the same fixed length. Thus

Ericsson AB. All Rights Reserved.: STDLIB | 373

re

(?<=bullock|donkey)

is permitted, but

(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted only at the top level of a

lookbehind assertion. This is an extension compared with Perl, which requires all branches to match the same length
of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is acceptable to PCRE if
rewritten to use two top-level branches:

(?7<=abc|abde)

In some cases, the escape sequence \K (see above) can be used instead of a lookbehind assertion to get round the
fixed-length restriction.

Theimplementation of lookbehind assertionsis, for each alternative, to temporarily move the current position back by
thefixed length and then try to match. If there areinsufficient characters before the current position, the assertion fails.

InaUTF mode, PCRE does not allow the\C escape (which matchesasingle dataunit eveninaUTF mode) to appear in
lookbehind assertions, because it makesit impossible to calculate the length of the lookbehind. The\X and \R escapes,
which can match different numbers of data units, are also not permitted.

"Subroutine” calls (see below) such as (72) or (?& X) are permitted in lookbehinds, as long as the subpattern matches
afixed-length string. Recursion, however, is not supported.

Possessive quantifiers can be used in conjunction with lookbehind assertions to specify efficient matching of fixed-
length strings at the end of subject strings. Consider a simple pattern such as

abcd$

when applied to along string that does not match. Because matching proceeds from left to right, PCRE will ook for
each "a" in the subject and then see if what follows matches the rest of the pattern. If the pattern is specified as

A * abed$

theinitial .* matches the entire string at first, but when this fails (because there is no following "a"), it backtracks to
match al but the last character, then all but the last two characters, and so on. Once again the search for "a" coversthe
entire string, from right to left, so we are no better off. However, if the pattern iswritten as

A * +(2<=abcd)

there can be no backtracking for the .*+ item; it can match only the entire string. The subsequent lookbehind assertion
does a single test on the last four characters. If it fails, the match fails immediately. For long strings, this approach
makes a significant difference to the processing time.

Using multiple assertions
Several assertions (of any sort) may occur in succession. For example,
(?<=\d{ 3})(?<!999)fo0

matches "foo" preceded by three digitsthat are not "999". Notice that each of the assertionsis applied independently at
the same point in the subject string. First thereisacheck that the previous three characters are all digits, and then there
isacheck that the same three characters are not "999". This pattern does not match "foo" preceded by six characters,
the first of which are digits and the last three of which are not "999". For example, it doesn't match "123abcfoo”. A
pattern to do that is

(2<=\d{ 3}...)(?<!999)fo0

374 | Ericsson AB. All Rights Reserved.: STDLIB

re

This time the first assertion looks at the preceding six characters, checking that the first three are digits, and then the
second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo", while
(?7<=\d{ 3} (?1999)...)foo

is another pattern that matches "foo" preceded by three digits and any three characters that are not "999".

Conditional subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose between two alternative
subpatterns, depending on the result of an assertion, or whether a specific capturing subpattern has already been
matched. The two possible forms of conditional subpattern are:

e (condition)yes-pattern)
e (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used. If there are more than
two alternatives in the subpattern, a compile-time error occurs. Each of the two alternatives may itself contain nested
subpatterns of any form, including conditional subpatterns; the restriction to two alternatives applies only at the level
of the condition. This pattern fragment is an example where the alternatives are complex:

(A1) (AIBIC) | (D | (A2)EIF) | E))
There are four kinds of condition: references to subpatterns, references to recursion, a pseudo-condition called
DEFINE, and assertions.

Checking for a used subpattern by number

If the text between the parentheses consists of a sequence of digits, the condition is true if a capturing subpattern of
that number has previously matched. If there is more than one capturing subpattern with the same number (see the
earlier section about duplicate subpattern numbers), the condition is true if any of them have matched. An alternative
notation is to precede the digits with a plus or minus sign. In this case, the subpattern number is relative rather than
absolute. The most recently opened parentheses can be referenced by ((-1), the next most recent by (?(-2), and so on.
Insideloopsit can also make sense to refer to subsequent groups. The next parentheses to be opened can be referenced
as (?(+1), and so on. (The value zero in any of these formsis not used; it provokes a compile-time error.)

Consider the following pattern, which contains non-significant whitespace to make it more readable (assume the
ext ended option) and to divide it into three parts for ease of discussion:

QAO? 01+ (DY)

The first part matches an optional opening parenthesis, and if that character is present, sets it as the first captured
substring. The second part matches one or more characters that are not parentheses. The third part is a conditional
subpattern that tests whether or not thefirst set of parentheses matched or not. If they did, that is, if subject started with
an opening parenthesis, the condition is true, and so the yes-pattern is executed and a closing parenthesis is required.
Otherwise, since no-pattern is not present, the subpattern matches nothing. In other words, this pattern matches a
sequence of non-parentheses, optionally enclosed in parentheses.

If you were embedding this pattern in alarger one, you could use arelative reference:
...other stuff... (\()?[*0]+ (A(-D V)) ...

This makes the fragment independent of the parentheses in the larger pattern.
Checking for a used subpattern by name

Ericsson AB. All Rights Reserved.: STDLIB | 375

re

Perl usesthe syntax (?(<name>)...) or (?('name’)...) to test for aused subpattern by name. For compatibility with earlier
versions of PCRE, which had this facility before Perl, the syntax (?(name)...) is also recognized. However, thereisa
possible ambiguity with this syntax, because subpattern names may consist entirely of digits. PCRE looks first for a
named subpattern; if it cannot find one and the name consists entirely of digits, PCRE looks for a subpattern of that
number, which must be greater than zero. Using subpattern names that consist entirely of digitsis not recommended.

Rewriting the above example to use a named subpattern gives this:
(2<OPEN> \()?[*()]+ (A<OPEN>) \))

If the name used in a condition of thiskind is a duplicate, the test is applied to al subpatterns of the same name, and
istrueif any one of them has matched.

Checking for pattern recursion

If the condition is the string (R), and there is no subpattern with the name R, the condition is true if arecursive call
to the whole pattern or any subpattern has been made. If digits or a name preceded by ampersand follow the letter
R, for example:

(AR3)...) or (A(R&name)...)

the condition is true if the most recent recursion is into a subpattern whose number or name is given. This condition
does not check the entire recursion stack. If the name used in a condition of thiskind is a duplicate, the test is applied
to al subpatterns of the same name, and istrueif any one of them isthe most recent recursion.

At "top level", al these recursion test conditions are false. The syntax for recursive patterns is described below.
Defining subpatterns for use by reference only

If the condition is the string (DEFINE), and there is no subpattern with the name DEFINE, the condition is always
false. In this case, there may be only one alternative in the subpattern. It is always skipped if control reaches this point
in the pattern; theidea of DEFINE isthat it can be used to define " subroutines’ that can be referenced from elsewhere.
(The use of subroutinesisdescribed below.) For example, apattern to match an |Pv4 address such as"192.168.23.245"
could be written like this (ignore whitespace and line breaks):

(ADEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9] Ad)) \b (?&byte) (\.(?&byte)){3} \b

Thefirst part of the pattern isa DEFINE group inside which a another group named "byte" is defined. This matchesan
individual component of an | Pv4 address (anumber less than 256). When matching takes place, this part of the pattern
is skipped because DEFINE acts like a false condition. The rest of the pattern uses references to the named group to
match the four dot-separated components of an 1Pv4 address, insisting on aword boundary at each end.

Assertion conditions

If the condition is not in any of the above formats, it must be an assertion. This may be a positive or negative
lookahead or lookbehind assertion. Consider this pattern, again containing non-significant whitespace, and with the
two alternatives on the second line:

(?(?=["a-z]*[a-2])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive |lookahead assertion that matches an optional sequence of non-letters followed by aletter.
In other words, it tests for the presence of at least one letter in the subject. If aletter isfound, the subject is matched
against the first alternative; otherwise it is matched against the second. This pattern matches stringsin one of the two
forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

376 | Ericsson AB. All Rights Reserved.: STDLIB

re

Comments

There are two ways of including comments in patterns that are processed by PCRE. In both cases, the start of the
comment must not be in a character class, nor in the middle of any other sequence of related characters such as (?: or
a subpattern name or number. The characters that make up a comment play no part in the pattern matching.

The segquence (?# marks the start of a comment that continues up to the next closing parenthesis. Nested parentheses
are not permitted. If the PCRE_EXTENDED option is set, an unescaped # character also introduces acomment, which
in this case continues to immediately after the next newline character or character sequence in the pattern. Which
characters are interpreted as newlines is controlled by the options passed to a compiling function or by a specia
seguence at the start of the pattern, as described in the section entitled "Newline conventions” above. Note that the end
of thistype of comment isaliteral newline sequencein the pattern; escape sequencesthat happen to represent anewline
do not count. For example, consider this pattern whenext ended isset, and the default newline conventionisinforce:

abc #comment \n still comment

On encountering the # character, pcre_compile() skips along, looking for a newline in the pattern. The sequence \n
is still literal at this stage, so it does not terminate the comment. Only an actual character with the code value OxOa
(the default newline) does so.

Recursive patterns

Consider the problem of matching a string in parentheses, allowing for unlimited nested parentheses. Without the use
of recursion, the best that can be done is to use a pattern that matches up to some fixed depth of nesting. It is not
possible to handle an arbitrary nesting depth.

For some time, Perl has provided a facility that allows regular expressions to recurse (amongst other things). It does
this by interpolating Perl code in the expression at run time, and the code can refer to the expression itself. A Perl
pattern using code interpolation to solve the parentheses problem can be created like this:

$re=ar{\((7 (>[*01+) | (%p{$re}))* V}x;
The(?p{...}) iteminterpolates Perl code at runtime, and inthis caserefersrecursively to the patterninwhichit appears.

Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports special syntax for recursion of the
entire pattern, and also for individual subpattern recursion. After its introduction in PCRE and Python, this kind of
recursion was subsequently introduced into Perl at release 5.10.

A specia item that consists of (? followed by a number greater than zero and a closing parenthesis is a recursive
subroutine call of the subpattern of the given number, provided that it occursinside that subpattern. (If not, it isanon-
recursive subroutine call, which is described in the next section.) The specia item (?R) or (?0) is arecursive call of
the entire regular expression.

This PCRE pattern solves the nested parentheses problem (assume the ext ended option is set so that whitespace
isignored):

(MO 1(R))* V)
First it matches an opening parenthesis. Then it matches any number of substrings which can either be a sequence of

non-parentheses, or arecursive match of the pattern itself (that is, acorrectly parenthesized substring). Finally thereis
aclosing parenthesis. Note the use of a possessive quantifier to avoid backtracking into sequences of non-parentheses.

If thiswere part of alarger pattern, you would not want to recurse the entire pattern, so instead you could use this:
ACC0I++1(?2))* V)
We have put the pattern into parentheses, and caused the recursion to refer to them instead of the whole pattern.

In alarger pattern, keeping track of parenthesis numbers can be tricky. This is made easier by the use of relative
references. Instead of (?1) in the pattern above you can write (?-2) to refer to the second most recently opened

Ericsson AB. All Rights Reserved.: STDLIB | 377

re

parentheses preceding the recursion. In other words, a negative number counts capturing parentheses leftwards from
the point at which it is encountered.

It is also possible to refer to subsequently opened parentheses, by writing references such as (?+2). However, these
cannot be recursive because the reference is not inside the parentheses that are referenced. They are always non-
recursive subroutine calls, as described in the next section.

An aternative approach is to use named parentheses instead. The Perl syntax for thisis (?& name); PCRE's earlier
syntax (?P>name) is also supported. We could rewrite the above example as follows:

(2<pn>\((["01++ | (?&pn))* V))

If there is more than one subpattern with the same name, the earliest oneis used.

This particular example pattern that we have been looking at contains nested unlimited repeats, and so the use of a

possessive quantifier for matching strings of non-parentheses isimportant when applying the pattern to strings that do
not match. For example, when this pattern is applied to

()

it yields"no match" quickly. However, if apossessive quantifier isnot used, the match runsfor avery long timeindeed
because there are so many different ways the + and * repeats can carve up the subject, and all have to be tested before
failure can be reported.

At the end of a match, the values of capturing parentheses are those from the outermost level. If the pattern above
is matched against

(ab(cd)ef)

the value for the inner capturing parentheses (numbered 2) is "ef", which is the last value taken on at the top level.
If a capturing subpattern is not matched at the top level, its final captured value is unset, even if it was (temporarily)
set at a deeper level during the matching process.

Do not confusethe (7R) item with the condition (R), which testsfor recursion. Consider this pattern, which matchestext
in angle brackets, allowing for arbitrary nesting. Only digits are allowed in nested brackets (that is, when recursing),
whereas any characters are permitted at the outer level.

<(? (AR) \d++ | [*<>]*+) [(PR)) * >

In this pattern, ((R) is the start of a conditional subpattern, with two different alternatives for the recursive and non-
recursive cases. The (?R) item isthe actual recursive call.

Differences in recursion processing between PCRE and Perl

Recursion processing in PCRE differs from Perl in two important ways. In PCRE (like Python, but unlike Perl), a
recursive subpattern call is always treated as an atomic group. That is, once it has matched some of the subject string,
it is never re-entered, even if it contains untried alternatives and there is a subsequent matching failure. This can be
illustrated by the following pattern, which purports to match a palindromic string that contains an odd number of
characters (for example, "a", "aba", "abcba’, "abcdcba'):

AOC\2)$
Theideaisthat it either matches a single character, or two identical characters surrounding a sub-palindrome. In Perl,
this pattern works; in PCRE it does not if the patternislonger than three characters. Consider the subject string "abcba":

At the top levdl, the first character is matched, but asiit is not at the end of the string, the first alternative fails; the
second alternativeis taken and the recursion kicks in. The recursive call to subpattern 1 successfully matches the next
character ("b"). (Note that the beginning and end of line tests are not part of the recursion).

Back at the top level, the next character ("c") is compared with what subpattern 2 matched, which was"a'. Thisfails.
Because the recursion is treated as an atomic group, there are now no backtracking points, and so the entire match
fails. (Perl is able, at this point, to re-enter the recursion and try the second alternative.) However, if the pattern is
written with the alternatives in the other order, things are different:

378 | Ericsson AB. All Rights Reserved.: STDLIB

re

MOCPD\21)$

Thistime, the recursing alternative istried first, and continues to recurse until it runs out of characters, at which point
therecursion fails. But thistime we do have another alternative to try at the higher level. That isthe big difference: in
the previous case the remaining aternative is at a deeper recursion level, which PCRE cannot use.

To change the pattern so that it matches all palindromic strings, not just those with an odd number of characters, it
is tempting to change the pattern to this:

MOPD\212%

Again, this works in Perl, but not in PCRE, and for the same reason. When a deeper recursion has matched a single
character, it cannot be entered again in order to match an empty string. The solution is to separate the two cases, and
write out the odd and even cases as alternatives at the higher level:

AZ(OCD2DIC)(?3)\4]))

If you want to match typical palindromic phrases, the pattern has to ignore all non-word characters, which can be
donelike this:

AMW* +(2:((O\W* +(2D\W* H2]) [((OWW* +(23)\W* HA\W* + \W* +))\W* +$

If runwiththecasel ess option, this pattern matches phrases such as"A man, aplan, acanal: Panamal" and it works
well in both PCRE and Perl. Note the use of the possessive quantifier *+ to avoid backtracking into sequences of non-
word characters. Without this, PCRE takes a great deal longer (ten times or more) to match typical phrases, and Perl
takes so long that you think it has gone into a loop.

WARNING: The palindrome-matching patterns above work only if the subject string does not start with a palindrome
that is shorter than the entire string. For example, although "abcba" is correctly matched, if the subject is "ababa’,
PCRE findsthe palindrome "aba" at the start, then fails at top level because the end of the string does not follow. Once
again, it cannot jump back into the recursion to try other alternatives, so the entire match fails.

The second way in which PCRE and Perl differ in their recursion processing is in the handling of captured values. In
Perl, when a subpattern is called recursively or as a subpattern (see the next section), it has no access to any values
that were captured outside the recursion, whereas in PCRE these values can be referenced. Consider this pattern:

~()(\1a(?2))

In PCRE, this pattern matches "bab". The first capturing parentheses match "b", then in the second group, when the
back reference \1 fails to match "b", the second aternative matches "a" and then recurses. In the recursion, \1 does
now match "b" and so the whole match succeeds. In Perl, the pattern fails to match because inside the recursive call
\1 cannot access the externally set value.

Subpatterns as subroutines

If the syntax for arecursive subpattern call (either by number or by name) is used outside the parentheses to which it
refers, it operates like a subroutine in a programming language. The called subpattern may be defined before or after
the reference. A numbered reference can be absolute or relative, as in these examples:

e (..(absolute)...)...(?2)...

o (..(relative)...)...(?1)...

o (.(?#1)..(relative)...

An earlier example pointed out that the pattern
(senglrespons)e and \ibility

matches "sense and sensibility" and "response and responsibility”, but not "sense and responsibility”. If instead the
pattern

(senglrespons)e and (?1)ibility

Ericsson AB. All Rights Reserved.: STDLIB | 379

re

is used, it does match "sense and responsibility” as well as the other two strings. Another example is given in the
discussion of DEFINE above.

All subroutine calls, whether recursive or not, are always treated as atomic groups. That is, once a subroutine has
matched some of the subject string, it is never re-entered, even if it contains untried aternatives and there is a
subsequent matching failure. Any capturing parentheses that are set during the subroutine call revert to their previous
values afterwards.

Processing options such as case-independence are fixed when a subpattern is defined, so if it is used as a subroutine,
such options cannot be changed for different calls. For example, consider this pattern:

(abe)(7:(7-1))

It matches "abcabc”. It does not match "abcABC" because the change of processing option does not affect the called
subpattern.

Oniguruma subroutine syntax

For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a number enclosed either in angle
brackets or single quotes, is an aternative syntax for referencing a subpattern as a subroutine, possibly recursively.
Here are two of the examples used above, rewritten using this syntax:

(?2<pn>\(((?>["0]+) [\g<pn>)*\))
(senglrespons)e and \g'L'ibility

PCRE supports an extension to Oniguruma: if anumber is preceded by a plus or aminus sign it is taken as arelative
reference. For example:

(abc)(7:\g<-1>)

Note that \g{ ...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a back reference;
the latter is a subroutine call.

Backtracking control

Perl 5.10 introduced a number of "Special Backtracking Control Verbs', which are still described in the Perl
documentation as "experimental and subject to change or removal in afuture version of Perl". It goesonto say: "Their
usage in production code should be noted to avoid problems during upgrades." The same remarks apply to the PCRE
features described in this section.

The new verbs make use of what was previously invalid syntax: an opening parenthesis followed by an asterisk. They
are generally of the form (*VERB) or (*VERB:NAME). Some may take either form, possibly behaving differently
depending on whether or not anameis present. A nameis any sequence of characters that does not include a closing
parenthesis. The maximum length of name is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit libraries. If
the name is empty, that is, if the closing parenthesis immediately follows the colon, the effect is asif the colon were
not there. Any number of these verbs may occur in a pattern.

The behaviour of these verbsin repeated groups, assertions, and in subpatterns called as subroutines (whether or not
recursively) is documented below.

Optimizations that affect backtracking verbs

PCRE contains some optimizations that are used to speed up matching by running some checks at the start of each
match attempt. For example, it may know the minimum length of matching subject, or that a particular character must
be present. When one of these optimizati ons bypasses the running of amatch, any included backtracking verbswill not,
of course, be processed. Y ou can suppress the start-of-match optimizations by setting theno_start _opti m ze
optionwhen callingr e: conpi | e/ 2 orr e: run/ 3, or by starting the pattern with (*NO_START_OPT).

Experiments with Perl suggest that it too has similar optimizations, sometimes leading to anomal ous resullts.

380 | Ericsson AB. All Rights Reserved.: STDLIB

re

Verbs that act immediately
The following verbs act as soon as they are encountered. They may not be followed by a name.
(*ACCEPT)

This verb causes the match to end successfully, skipping the remainder of the pattern. However, when it isinside a
subpattern that is called as a subroutine, only that subpattern is ended successfully. Matching then continues at the
outer level. If (*ACCEPT) in triggered in a positive assertion, the assertion succeeds; in a negative assertion, the
assertion fails.

If (*ACCEPT) isinside capturing parentheses, the data so far is captured. For example:

A((?A|B(*ACCEPT)|C)D)

This matches"AB", "TAAD", or "ACD"; when it matches "AB", "B" is captured by the outer parentheses.

(*FAIL) or (*F)

This verb causes a matching failure, forcing backtracking to occur. It is equivalent to (?!) but easier to read. The Perl

documentation notes that it is probably useful only when combined with (}) or (?{}). Those are, of course, Perl
features that are not present in PCRE. The nearest equivalent is the callout feature, asfor example in this pattern:

a+(2C)(*FAIL)

A match with the string "aaaa" always fails, but the callout is taken before each backtrack happens (in this example,
10 times).

Recording which path was taken

There is one verb whose main purpose is to track how a match was arrived at, though it also has a secondary use in
conjunction with advancing the match starting point (see (* SKIP) below).

Warning:

InErlang, thereisnointerfacetoretrieveamark withr e: run/ { 2, 3] , soonly the secondary purposeisrelevant
to the Erlang programmer!

The rest of this section is therefore deliberately not adapted for reading by the Erlang programmer, however the
examples might help in understanding NAMES as they can be used by (* SKIP).

(*MARK:NAME) or (*:NAME)

A nameis aways required with this verb. There may be as many instances of (*MARK) asyou like in a pattern, and
their names do not have to be unique.

When amatch succeeds, the name of the last-encountered (* MARK:NAME), (* PRUNE:NAME), or (* THEN:NAME)
on the matching path is passed back to the caller as described in the section entitled "Extradatafor pcr e_exec() " in
thepcr eapi documentation. Hereisan example of pcr et est output, where the /K modifier requests the retrieval
and outputting of (*MARK) data:

re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XY
0: XY
MK: A
XZ
0: XZ
MK: B

Ericsson AB. All Rights Reserved.: STDLIB | 381

re

The (*MARK) nameistagged with "MK:" in this output, and in this example it indicates which of the two alternatives
matched. Thisis amore efficient way of obtaining this information than putting each alternative in its own capturing
parentheses.

If averb with a name is encountered in a positive assertion that is true, the name is recorded and passed back if it is
the last-encountered. This does not happen for negative assertions or failing positive assertions.

After apartial match or afailed match, the last encountered namein the entire match processis returned. For example:

re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XP
No match, mark = B

Note that in this unanchored example the mark is retained from the match attempt that started at the letter "X" in the
subject. Subsequent match attempts starting at "P" and then with an empty string do not get as far as the (*MARK)
item, but nevertheless do not reset it.

Verbsthat act after backtracking

The following verbs do nothing when they are encountered. Matching continues with what follows, but if thereis no
subsequent match, causing a backtrack to the verb, a failure is forced. That is, backtracking cannot pass to the left
of the verb. However, when one of these verbs appears inside an atomic group or an assertion that is true, its effect
is confined to that group, because once the group has been matched, there is never any backtracking into it. In this
situation, backtracking can "jump back" to the left of the entire atomic group or assertion. (Remember also, as stated
above, that thislocalization also appliesin subroutine calls.)

These verbs differ in exactly what kind of failure occurs when backtracking reaches them. The behaviour described
below is what happens when the verb is not in a subroutine or an assertion. Subsequent sections cover these special
Cases.

(*COMMIT)

This verb, which may not be followed by a name, causes the whole match to fail outright if there is alater matching
failure that causes backtracking to reach it. Even if the pattern is unanchored, no further attempts to find a match by
advancing the starting point take place. If (* COMMIT) is the only backtracking verb that is encountered, once it has
beenpassedr e: run/ { 2, 3} iscommitted to finding amatch at the current starting point, or not at all. For example:

a+(* COMMIT)b

This matches "xxaab" but not "aacaab". It can be thought of as a kind of dynamic anchor, or "I've started, so | must
finish." The name of the most recently passed (* MARK) in the path is passed back when (* COMMIT) forces amatch
failure.

If thereis more than one backtracking verb in apattern, adifferent onethat follows (* COMMIT) may betriggered first,
so merely passing (*COMMIT) during amatch does not always guarantee that a match must be at this starting point.

Notethat (* COMMIT) at the start of apattern isnot the same as an anchor, unless PCRE's start-of-match optimizations
are turned off, as shown in this example:

1> re:run("xyzabc"," (*COMMIT)abc", [{capture,all,list}]).

{match, ["abc"]}

2> re:run("xyzabc"," (*COMMIT)abc", [{capture,all,list},no start optimize]).
nomatch

PCRE knows that any match must start with "a", so the optimization skips along the subject to "a" before running the
first match attempt, which succeeds. When the optimization is disabled by theno_start _opti m ze option, the
match starts at "x" and so the (* COMMIT) causesit to fail without trying any other starting points.

382 | Ericsson AB. All Rights Reserved.: STDLIB

re

(*PRUNE) or (*PRUNE:NAME)

This verb causes the match to fail at the current starting position in the subject if there is alater matching failure that
causes backtracking to reach it. If the pattern is unanchored, the normal "bumpalong" advance to the next starting
character then happens. Backtracking can occur asusual to theleft of (* PRUNE), beforeit isreached, or when matching
to theright of (*PRUNE), but if thereis no match to the right, backtracking cannot cross (* PRUNE). In simple cases,
the use of (*PRUNE) is just an alternative to an atomic group or possessive quantifier, but there are some uses of
(*PRUNE) that cannot be expressed in any other way. In an anchored pattern (*PRUNE) has the same effect as
(*COMMIT).

The behaviour of (*PRUNE:NAME) isthe not the same as (*MARK:NAME)(* PRUNE). Itislike (*MARK:NAME)
in that the name is remembered for passing back to the caller. However, (* SKIP:NAME) searches only for names
set with (*MARK).

Warning:

The fact that (*PRUNE:NAME) remembers the name is useless to the Erlang programmer, as names can not
be retrieved.

(*SKIP)

This verb, when given without a name, is like (* PRUNE), except that if the pattern is unanchored, the "bumpalong”
advanceisnot to the next character, but to the position in the subject where (* SK | P) was encountered. (* SKIP) signifies
that whatever text was matched leading up to it cannot be part of a successful match. Consider:

a+t(*SKIP)b
If the subject is "aaaac...", after the first match attempt fails (starting at the first character in the string), the starting
point skips on to start the next attempt at "c". Note that a possessive quantifer does not have the same effect as this

example; although it would suppress backtracking during the first match attempt, the second attempt would start at
the second character instead of skipping onto "c".

(*SKIP:.NAME)

When (* SKIP) has an associated name, its behaviour is modified. When it is triggered, the previous path through the
patternis searched for the most recent (* MARK) that hasthe samename. If oneisfound, the"bumpalong" advanceisto
the subject position that corresponds to that (* MARK) instead of to where (* SKIP) was encountered. If no (*MARK)
with amatching name is found, the (* SKIP) isignored.

Note that (*SKIP.NAME) searches only for names set by (*MARK:NAME). It ignores names that are set by
(*PRUNE:NAME) or (*THEN:NAME).

(*THEN) or (* THEN:NAME)

This verb causes a skip to the next innermost aternative when backtracking reachesit. That is, it cancels any further
backtracking within the current aternative. Its name comes from the observation that it can be used for a pattern-
based if-then-else block:

(COND1 (*THEN) FOO | COND2 (* THEN) BAR | COND3 (* THEN) BAZ) ...

If the CONDZ1 pattern matches, FOO istried (and possibly further items after the end of the group if FOO succeeds);
on failure, the matcher skips to the second aternative and tries CONDZ2, without backtracking into COND1. If that
succeeds and BAR fails, COND3 is tried. If subsequently BAZ fails, there are no more alternatives, so there is a
backtrack to whatever came before the entire group. If (* THEN) is not inside an alternation, it acts like (* PRUNE).

The behaviour of (*THEN:NAME) is the not the same as (*MARK:NAME)(* THEN). It is like (*MARK:NAME)
in that the name is remembered for passing back to the caler. However, (* SKIP:.NAME) searches only for names
set with (*MARK).

Ericsson AB. All Rights Reserved.: STDLIB | 383

re

Warning:

The fact that (* THEN:NAME) remembers the name is useless to the Erlang programmer, as names can not be
retrieved.

A subpattern that does not contain a| character isjust apart of theenclosing aternative; it isnot anested alternation with
only one alternative. The effect of (* THEN) extends beyond such a subpattern to the enclosing alternative. Consider
this pattern, where A, B, etc. are complex pattern fragments that do not contain any | characters at thislevel:

A (B(*THEN)C) |D

If A and B are matched, but there is afailure in C, matching does not backtrack into A; instead it moves to the next
alternative, that is, D. However, if the subpattern containing (* THEN) is given an alternative, it behaves differently:
A (B(*THEN)C | (*FAIL)) | D

The effect of (*THEN) is now confined to the inner subpattern. After a failure in C, matching moves to (*FAIL),

which causes the whole subpattern to fail because there are no more alternatives to try. In this case, matching does
now backtrack into A.

Note that a conditional subpattern is not considered as having two alternatives, because only oneisever used. In other
words, the | character in a conditional subpattern has a different meaning. Ignoring white space, consider:

A *7(%?=a) a| b(* THEN)C)

If the subject is "ba", this pattern does not match. Because .*? is ungreedy, it initially matches zero characters. The
condition (?=a) then fails, the character "b" ismatched, but "c" isnot. At this point, matching does not backtrack to .*?
as might perhaps be expected from the presence of the | character. The conditional subpattern is part of the single
alternative that comprises the whole pattern, and so the match fails. (If there was a backtrack into .*?, allowing it to
match "b", the match would succeed.)

The verbsjust described provide four different "strengths" of control when subsequent matching fails. (* THEN) isthe
weakest, carrying on the match at the next aternative. (* PRUNE) comes next, failing the match at the current starting
position, but allowing an advance to the next character (for an unanchored pattern). (* SKIP) is similar, except that the
advance may be more than one character. (* COMMIT) isthe strongest, causing the entire match to fail.

More than one backtracking verb

If more than one backtracking verb is present in a pattern, the one that is backtracked onto first acts. For example,
consider this pattern, where A, B, etc. are complex pattern fragments:

(A(*COMMIT)B(* THEN)C|ABD)

If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to fail. However, if A and B match,
but C fails, the backtrack to (* THEN) causes the next alternative (ABD) to be tried. This behaviour is consistent, but
is not always the same as Perl's. It means that if two or more backtracking verbs appear in succession, all the the last
of them has no effect. Consider this example:

...(*COMMIT)(* PRUNE)...

If there isamatching failure to the right, backtracking onto (* PRUNE) casesit to be triggered, and its action is taken.
There can never be a backtrack onto (*COMMIT).

Backtracking verbsin repeated groups

PCRE differs from Perl in its handling of backtracking verbsin repeated groups. For example, consider:

/(a(* COMMIT)b)+ac/

If the subject is"abac", Perl matches, but PCRE fails because the (* COMMIT) in the second repeat of the group acts.
Backtracking verbsin assertions

384 | Ericsson AB. All Rights Reserved.: STDLIB

re

(*FAIL) in an assertion hasits normal effect: it forces an immediate backtrack.

(*ACCEPT) in a positive assertion causes the assertion to succeed without any further processing. In a negative
assertion, (* ACCEPT) causes the assertion to fail without any further processing.

The other backtracking verbs are not treated specialy if they appear in a positive assertion. In particular, (* THEN)
skips to the next aternative in the innermost enclosing group that has alternations, whether or not this is within the
assertion.

Negative assertions are, however, different, in order to ensure that changing a positive assertion into a negative
assertion changes its result. Backtracking into (*COMMIT), (* SKIP), or (*PRUNE) causes a negative assertion to
be true, without considering any further alternative branches in the assertion. Backtracking into (* THEN) causesit to
skip to the next enclosing aternative within the assertion (the normal behaviour), but if the assertion does not have
such an alternative, (* THEN) behaves like (* PRUNE).

Backtracking verbs in subroutines

These behaviours occur whether or not the subpattern is called recursively. Perl's treatment of subroutinesis different
in some cases.

(*FAIL) in asubpattern called as a subroutine has its normal effect: it forces an immediate backtrack.

(*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to succeed without any further
processing. Matching then continues after the subroutine call.

(*COMMIT), (*SKIP), and (* PRUNE) in a subpattern called as a subroutine cause the subroutine match to fail.

(* THEN) skips to the next alternative in the innermost enclosing group within the subpattern that has aternatives. If
there is no such group within the subpattern, (* THEN) causes the subroutine match to fail.

Ericsson AB. All Rights Reserved.: STDLIB | 385

sets

sets

Erlang module

Sets are collections of elements with no duplicate elements. The representation of a set is not defined.

This module provides exactly the same interface as the module or dset s but with a defined representation. One
differenceisthat whilethismodul e considerstwo elementsasdifferent if they do not match (=: =), or dset s considers
two elements as different if and only if they do not compare equal (==).

Data Types

set (Element)

As returned by new/ 0.

set()

set () isequivalenttoset (tern()).

Exports

new() -> set()
Returns a new empty set.

is set(Set) -> boolean()
Types.
Set = term()
Returnst r ue if Set isaset of elements, otherwisef al se.

size(Set) -> integer() >= 0
Types.
Set = set()

Returns the number of elementsin Set .

to list(Set) -> List
Types:
Set = set (Element)
List = [Element]

Returns the e ements of Set asalist.

from list(List) -> Set
Types.
List = [Element]
Set = set (Element)

Returns an set of the elementsin Li st .

386 | Ericsson AB. All Rights Reserved.: STDLIB

sets

is element(Element, Set) -> boolean()
Types:
Set = set (Element)
Returnst r ue if El enent isan element of Set , otherwisef al se.

add element(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El enent inserted.

del element(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns Set 1, but with El enent removed.

union(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns the merged (union) set of Set 1 and Set 2.

union(SetList) -> Set

Types:
SetlList = [set (Element)]
Set = set (Element)

Returns the merged (union) set of the list of sets.

intersection(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns the intersection of Set 1 and Set 2.

intersection(SetList) -> Set
Types:
SetList = [set (Element), ...]
Set = set (Element)

Returns the intersection of the non-empty list of sets.

is disjoint(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set (Element)

Returnst r ue if Set 1 and Set 2 are digjoint (have no elementsin common), and f al se otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 387

sets

subtract(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 which are not also elements of Set 2.

is subset(Setl, Set2) -> boolean()
Types.
Setl = Set2 = set (Element)

Returnst r ue when every element of Set 11 is also amember of Set 2, otherwisef al se.

fold(Function, AccO, Set) -> Accl

Types:
Function = fun((Element, AccIn) -> AccOut)
Set = set (Element)
AccO = Accl = AccIn = AccOut = Acc

Fold Funct i on over every element in Set returning the final value of the accumulator.

filter(Pred, Setl) -> Set2

Types.
Pred = fun((Element) -> boolean())
Setl = Set2 = set (Element)

Filter elementsin Set 1 with boolean function Pr ed.

See Also
ordsets(3), gh_sets(3)

388 | Ericsson AB. All Rights Reserved.: STDLIB

shell

shell

Erlang module

Themodule shel | implements an Erlang shell.

The shell is a user interface program for entering expression sequences. The expressions are evauated and a value
is returned. A history mechanism saves previous commands and their values, which can then be incorporated in
later commands. How many commands and results to save can be determined by the user, either interactively,
by callingshel | : history/ 1 andshel | : resul ts/1, or by setting the application configuration parameters
shel |l _history |l engthandshell saved_resul ts fortheapplication STDLIB.

The shell uses a helper process for evaluating commands in order to protect the history mechanism from exceptions.
By default the evaluator processis killed when an exception occurs, but by callingshel | : cat ch_exception/ 1
or by setting the application configuration parameter shel | _cat ch_except i on for the application STDLIB this
behavior can be changed. See a so the example below.

Variable bindings, and local process dictionary changes which are generated in user expressions are preserved, and
the variables can be used in later commands to access their values. The bindings can also be forgotten so the variables
can be re-used.

The special shell commands all have the syntax of (local) function calls. They are evaluated as normal function calls
and many commands can be used in one expression sequence.

If a command (local function call) is not recognized by the shell, an attempt is first made to find the function
in the module user _def aul t, where customized local commands can be placed. If found, then the function is
evaluated. Otherwise, an attempt is made to evaluate the function in the module shel | _def aul t . The module
user _def aul t must be explicitly loaded.

The shell also permits the user to start multiple concurrent jobs. A job can be regarded as a set of processes which
can communicate with the shell.

Thereissome support for reading and printing recordsin the shell. During compilation record expressionsaretransated
to tuple expressions. In runtime it is not known whether a tuple actually represents a record. Nor are the record
definitions used by compiler available at runtime. So in order to read the record syntax and print tuples as records
when possible, record definitions have to be maintained by the shell itself. The shell commands for reading, defining,
forgetting, listing, and printing records are described below. Note that each job has its own set of record definitions.
To facilitate matters record definitionsin the modulesshel | _def aul t anduser _def aul t (if loaded) are read
each time anew job is started. For instance, adding the line

-include lib("kernel/include/file.hrl").

touser _def aul t makesthe definition of f i | e_i nf o readily available in the shell.
The shell runsin two modes:

e Nornmal (possibly restricted) mode, inwhich commands can be edited and expressions eval uated.
e Job Control Mode JCL, in which jobs can be started, killed, detached and connected.

Only the currently connected job can 'talk’ to the shell.

Shell Commands
b()

Prints the current variable bindings.

Ericsson AB. All Rights Reserved.: STDLIB | 389

shell

f()

Removes all variable bindings.
f(X)

Removes the binding of variable X.
h()

Prints the history list.

hi story(N)

Sets the number of previous commands to keep in the history list to N. The previous number is returned. The
default number is 20.

resul ts(N)

Sets the number of results from previous commands to keep in the history list to N. The previous number is
returned. The default number is 20.

e(N

Repeats the command N, if N is positive. If it is negative, the Nth previous command is repeated (i.e., e(- 1)
repeats the previous command).

V(N

Usesthe return value of the command Nin the current command, if Nis positive. If it isnegative, the return value
of the Nth previous command isused (i.e., v(- 1) usesthe value of the previous command).

hel p()
Evaluatesshel | _def aul t: hel p().
c(File)

Evaluates shel | _defaul t: c(File). This compiles and loads code in Fi | e and purges old versions of
code, if necessary. Assumes that the file and module names are the same.

cat ch_excepti on(Bool)

Sets the exception handling of the evaluator process. The previous exception handling is returned. The default
(f al se)istokill theevaluator processwhen an exception occurs, which causesthe shell to create anew evaluator
process. When the exception handling isset tot r ue the evaluator processlives on which meansthat for instance
portsand ETS tables as well as processes linked to the evaluator process survive the exception.

rd(Recor dNane, RecordDefinition)

Defines arecord in the shell. Recor dNane isan atom and Recor dDef i ni ti on liststhe field names and the
default values. Usually record definitions are made known to the shell by use of the r r commands described
below, but sometimesit is handy to define records on the fly.

rf()

Removes all record definitions, then reads record definitions from the modules shel | _default and
user def aul t (if loaded). Returns the names of the records defined.

r f (Recor dNanes)

Removes selected record definitions. Recor dNanes is arecord name or alist of record names. Use' ' to
remove al record definitions.

ri()

Prints all record definitions.

390 | Ericsson AB. All Rights Reserved.: STDLIB

shell

r1 (Recor dNanes)
Prints selected record definitions. Recor dNanes isarecord name or alist of record names.

rp(Term

Prints a term using the record definitions known to the shell. All of Ter mis printed; the depth is not limited as
isthe case when areturn value is printed.

rr(Modul e)

Reads record definitions from a module's BEAM file. If there are no record definitions in the BEAM file, the
source file is located and read instead. Returns the names of the record definitions read. Modul e isan atom.

rr(WIdcard)

Readsrecord definitions from files. Existing definitions of any of the record namesread arereplaced. W | dcar d
isawildcard string as defined infi | el i b(3) but not an atom.

rr(WIdcardO Modul e, Recor dNanes)

Reads record definitions from files but discards record names not mentioned in Recor dNanes (arecord name
or alist of record names).

rr(WIdcardO Modul e, RecordNames, Options)

Reads record definitions from files. The compiler options {i Dir}, {d, Macro}, and
{d, Macro, Val ue} arerecognized and used for setting up the include path and macro definitions. Use' '
asvalue of Recor dNames to read all record definitions.

Example

The following example is along dialogue with the shell. Commands starting with > are inputs to the shell. All other
lines are output from the shell. All commandsin this example are explained at the end of the dialogue. .

strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ~G)
1>Str = "abcd".

"abcd"

2> L = length(Str).

4

3> Descriptor = {L, list to atom(Str)}.
{4,abcd}

4> L.

4

5> b().

Descriptor = {4,abcd}

L =4

Str = "abcd"

ok

6> f(L).

ok

7> b().

Descriptor = {4,abcd}
Str = "abcd"

ok

8> f(L).

ok

9> {L, } = Descriptor.
{4,abcd}

10> L.

Ericsson AB. All Rights Reserved.: STDLIB | 391

shell

4

11> {P, Q, R} = Descriptor.

** exception error: no match of right hand side value {4,abcd}

12> P.

* 1: variable 'P' is unbound **

13> Descriptor.

{4,abcd}

14>{P, Q} = Descriptor.

{4,abcd}

15> P.

4

16> f().

ok

17> put(aa, hello).

undefined

18> get(aa).

hello

19> Y = testl:demo(1l).

11

20> get().

[{aa,worked}]

21> put(aa, hello).

worked

22> Z = testl:demo(2).

** exception error: no match of right hand side value 1
in function testl:demo/1

23> Z.

* 1: variable 'Z' is unbound **

24> get(aa).

hello

25> erase(), put(aa, hello).

undefined

26> spawn(testl, demo, [1]).

<0.57.0>

27> get(aa).

hello

28> io:format("hello hello\n").

hello hello

ok

29> e(28).

hello hello

ok

30> v(28).

ok

31> c(ex).

{ok, ex}

32> rr(ex).

[rec]

33> rl(rec).

-record(rec,{a,b = val()}).

ok

34> #rec{}.

** exception error: undefined shell command val/0

35> #rec{b = 3}.

#rec{a = undefined,b

36> rp(v(-1)).

#rec{a = undefined,b = 3}

3}

ok

37> rd(rec, {f = orddict:new()}).
rec

38> #rec{}.

#rec{f = [1}

ok

39> rd(rec, {c}), A.
* 1: variable 'A' is unbound **

392 | Ericsson AB. All Rights Reserved.: STDLIB

shell

40> #rec{}.
#rec{c = undefined}
ok

41> testl:loop(0).
Hello Number: 0
Hello Number: 1
Hello Number: 2

3

Hello Number:

User switch command
--> i
--> C

Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exception exit: killed
42> E = ets:new(t, [1).
17
43> ets:insert({d,1,2}).
** exception error: undefined function ets:insert/1
44> ets:insert(E, {d,1,2}).
** exception error: argument is of wrong type
in function ets:insert/2
called as ets:insert(16,{d,1,2})
45> f(E).
ok
46> catch _exception(true).
false
47> E = ets:new(t, [1).
18
48> ets:insert({d,1,2}).
* exception error: undefined function ets:insert/1
49> ets:insert(E, {d,1,2}).
true
50> halt().
strider 2>

Comments

Command 1 setsthe variable St r to the string " abcd"” .

Command 2 sets L to the length of the string evaluatingthe BIFat om to_| i st.
Command 3 builds the tuple Descr i pt or.

Command 4 prints the value of the variable L.

Command 5 evaluatestheinternal shell command b() , whichisan abbreviation of "bindings'. This printsthe current
shell variables and their bindings. The ok at the end is the return value of the b() function.

Command 6 f (L) evaluates the internal shell command f (L) (abbreviation of "forget"). The value of the variable
L isremoved.

Command 7 prints the new bindings.

Command 8 has no effect since L has no vaue.

Command 9 performs a pattern matching operation on Descr i pt or , binding anew valueto L.
Command 10 prints the current value of L.

Ericsson AB. All Rights Reserved.: STDLIB | 393

shell

Command 11 triesto match{ P, Q R} against Descri pt or whichis{4, abc}. The match fails and none
of the new variables become bound. The printout starting with"** excepti on error: " isnot the value of the
expression (the expression had no value because its evaluation failed), but rather a warning printed by the system to
inform the user that an error has occurred. The values of the other variables (L, St r , etc.) are unchanged.

Commands 12 and 13 show that P is unbound because the previous command failed, and that Descr i pt or hasnot
changed.

Commands 14 and 15 show a correct match where P and Qare bound.
Command 16 clears all bindings.
The next few commands assumethat t est 1: deno(X) isdefined in the following way:

demo(X) ->
put(aa, worked),
X =1,
X + 10.
Commands 17 and 18 set and inspect the value of the item aa in the process dictionary.

Command 19 evaluatest est 1: deno(1) . The evaluation succeeds and the changes made in the process dictionary
become visible to the shell. The new value of the dictionary item aa can be seen in command 20.

Commands 21 and 22 change the value of the dictionary itemaa tohel | o and call t est 1: deno(2) . Evaluation
fails and the changes made to the dictionary int est 1: deno(2) , before the error occurred, are discarded.

Commands 23 and 24 show that Z was not bound and that the dictionary item aa has retained its original value.

Commands 25, 26 and 27 show the effect of evaluating t est 1: denpo(1) in the background. In this case, the
expression isevaluated in anewly spawned process. Any changes madein the processdictionary arelocal to the newly
spawned process and therefore not visible to the shell.

Commands 28, 29 and 30 use the history facilities of the shell.

Command 29 is e(28) . This re-evaluates command 28. Command 30 is v(28) . This uses the value (result) of
command 28. In the cases of a pure function (a function with no side effects), the result is the same. For a function
with side effects, the result can be different.

The next few commands show some record manipulation. It is assumed that ex. er | defines arecord like this:

-record(rec, {a, b = val()}).

val() ->
3.

Commands 31 and 32 compilesthefileex. er | and readstherecord definitionsin ex. beam If the compiler did not
output any record definitions on the BEAM file, r r (ex) triesto read record definitions from the source file instead.

Command 33 prints the definition of the record named r ec.

Command 34 tries to create ar ec record, but fails since the function val / 0 is undefined. Command 35 shows the
workaround: explicitly assign values to record fields that cannot otherwise be initialized.

Command 36 prints the newly created record using record definitions maintained by the shell.
Command 37 defines arecord directly in the shell. The definition replaces the one read from the fileex. beam

Command 38 creates a record using the new definition, and prints the resullt.

394 | Ericsson AB. All Rights Reserved.: STDLIB

shell

Command 39 and 40 show that record definitions are updated as side effects. The evauation of the command fails
but the definition of r ec has been carried out.

For the next command, itisassumedthat t est 1: | oop(N) isdefined in the following way:

loop(N) ->
io:format("Hello Number: ~w~n", [N]),
loop(N+1) .

Command 41 evaluatest est 1: | oop(0) , which puts the system into an infinite loop. At this point the user types
Cont rol G, which suspends output from the current process, which is stuck in aloop, and activates JCL mode. In
JCL mode the user can start and stop jobs.

In this particular case, thei command ("interrupt") is used to terminate the looping program, and the c command is
used to connect to the shell again. Since the process was running in the background before we killed it, there will be
more printouts beforethe"** exception exit: kill ed" messageisshown.

Command 42 creates an ETS table.

Command 43 tries to insert atuple into the ETS table but the first argument (the tabl€) is missing. The exception kills
the evaluator process.

Command 44 corrects the mistake, but the ETS table has been destroyed since it was owned by the killed evaluator
process.

Command 46 sets the exception handling of the evaluator processto t r ue. The exception handling can also be set
when starting Erlang, likethis:erl -stdlib shell _catch_exception true.

Command 48 makes the same mistake asin command 43, but this time the evaluator process lives on. The single star
at the beginning of the printout signals that the exception has been caught.

Command 49 successfully inserts the tuple into the ETS table.
Thehal t () command exits the Erlang runtime system.

JCL Mode

When the shell starts, it starts a single evaluator process. This process, together with any local processes which it
spawns, isreferred to asaj ob. Only the current job, which is said to be connect ed, can perform operations with
standard 10. All other jobs, which are said to bedet ached, are bl ocked if they attempt to use standard |O.

All jobs which do not use standard 10 run in the normal way.

The shell escape key * G(Control G) detaches the current job and activates JCL mode. The JCL mode promptis” - -
>"If " ?" isentered at the prompt, the following help message is displayed:

--> 7

¢ [nn] - connect to job

i [nn] - interrupt job

k [nn] - kill job

j - list all jobs

s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang

? | h - this message

The JCL commands have the following meaning:

Ericsson AB. All Rights Reserved.: STDLIB | 395

shell

c [nn]

Connects to job number <nn> or the current job. The standard shell is resumed. Operations which use standard
10 by the current job will be interleaved with user inputs to the shell.

i [nn]

Stops the current evaluator process for job number nn or the current job, but does not kill the shell process.
Accordingly, any variable bindings and the process dictionary will be preserved and the job can be connected
again. This command can be used to interrupt an endless [oop.

k [nn]

Kills job number nn or the current job. All spawned processes in the job are killed, provided they have not
evaluatedthegr oup_| eader/ 1 BIF and arelocated on the local machine. Processes spawned on remote nodes
will not bekilled.

Listsall jobs. A list of all known jobsis printed. The current job name is prefixed with **',

Starts anew job. Thiswill be assigned the new index [nn] which can be used in references.
[shel I]

Starts a new job. This will be assigned the new index [nn] which can be used in references. If the optional
argument shel | isgiven, it isassumed to be a module that implements an aternative shell.

2}

-

[node]

Starts aremote job on node. Thisisused in distributed Erlang to allow a shell running on one node to control a
number of applications running on a network of nodes. If the optional argument shel | isgiven, it is assumed
to be amodule that implements an alternative shell.

Quits Erlang. Note that this option isdisabled if Erlang is started with theignore break, +Bi , system flag (which
may be useful e.g. when running arestricted shell, see below).

Displays this message.
Itispossibleto alter the behavior of shell escape by meansof the STDLIB applicationvariableshel | _esc. Thevalue
of thevariablecan beeitherj cl (erl -stdlib shell _esc jcl)orabort (erl -stdlib shell_esc
abor t). Thefirst option sets~G to activate J CL mode (which isalso default behavior). Thelatter sets”G to terminate
the current shell and start anew one. JCL mode cannot be invoked whenshel | _esc issettoabort .

If you want an Erlang node to have aremotejob active from the start (rather than the default local job), you start Erlang
withthe-rensh flag. Example: erl -snane this_node -renmsh ot her node@t her host

Restricted Shell

The shell may be started in a restricted mode. In this mode, the shell evaluates a function cal only if allowed. This
feature makes it possible to, for example, prevent a user from accidentally calling a function from the prompt that
could harm a running system (useful in combination with the the system flag +Bi).

When the restricted shell evaluates an expression and encounters a function call or an operator application, it calls a
callback function (with information about the function call in question). This callback function returnst r ue to let
the shell go ahead with the evaluation, or f al se to abort it. There are two possible callback functions for the user
to implement:

| ocal _al | owed(Func, ArgList, State) -> {true, NewState} | {fal se, NewSt at e}

396 | Ericsson AB. All Rights Reserved.: STDLIB

shell

to determineif the call to the local function Func with arguments Ar gLi st should be allowed.

non_| ocal _al | owed(FuncSpec, ArgLi st State) -> {true, Newst at e} |
{fal se, NewState} | {{redirect, NewFuncSpec, NewAr gLi st}, NewSt at e}

to determine if the call to non-local function FuncSpec ({ Modul e, Func} or afun) with arguments Ar gLi st
should be alowed. The return value { r edi r ect , NewFuncSpec, NewAr gLi st} can be used to let the shell
evaluate some other function than the one specified by Func Spec and Ar gLi st .

These callback functions are in fact called from local and non-local evaluation function handlers, described in the
erl_eval manual page. (Argumentsin Ar gLi st are evaluated before the callback functions are called.)

The St at e argument isatuple { Shel | St at e, Expr St at e} . The return value NewSt at e has the same form.
This may be used to carry a state between calls to the callback functions. Data saved in Shel | St at e lives through
an entire shell session. Data saved in Expr St at e lives only through the evaluation of the current expression.

There are two ways to start arestricted shell session:

e Usethe STDLIB application variabler est ri ct ed_shel | and specify, asits vaue, the name of the
callback module. Example (with callback functionsimplemented in callback_mod.erl): $ erl -stdlib
restricted_shell call back _nod

e Fromanormal shell session, call functionshel | : start _restri cted/ 1. Thisexitsthe current evaluator
and starts a new one in restricted mode.

Notes:

e When restricted shell mode is activated or deactivated, new jobs started on the node will run in restricted or
normal mode respectively.

* If restricted mode has been enabled on a particular node, remote shells connecting to this node will also runin
restricted mode.

« The callback functions cannot be used to allow or disallow execution of functions called from compiled code
(only functions called from expressions entered at the shell prompt).
Errorswhen|oading the callback moduleishandled in different ways depending on how therestricted shell isactivated:

« |f therestricted shell is activated by setting the kernel variable during emulator startup and the callback module
cannot be loaded, a default restricted shell allowing only the commandsq() andi nit: stop() isusedas
fallback.

e |ftherestricted shell isactivated usingshel | : start_restri ct ed/ 1 and the callback module cannot be
loaded, an error report is sent to the error logger and the call returns{ er r or , Reason}.

Prompting

The default shell prompt function displays the name of the node (if the node can be part of a distributed system) and
the current command number. The user can customize the prompt function by callingshel | : pronpt _f unc/ 1 or
by setting the application configuration parameter shel | _pr onpt _f unc for the application STDLIB.

A customized prompt function is stated asatuple { Mod, Func}. Thefunctioniscalled asMbd: Func(L) , where
L isalist of key-value pairs created by the shell. Currently thereis only one pair: { hi story, N}, whereN isthe
current command number. The function should return a list of characters or an atom. This constraint is due to the
Erlang I/O-protocol. Unicode characters beyond codepoint 255 are allowed in the list. Note that in restricted mode the
call Mod: Func(L) must be allowed or the default shell prompt function will be called.

Exports

history(N) -> integer() >= 0
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 397

shell

N = integer() >= 0

Sets the number of previous commands to keep in the history list to N. The previous number is returned. The default
number is 20.

results(N) -> integer() >= 0
Types.
N = integer() >= 0

Sets the number of results from previous commands to keep in the history list to N. The previous number is returned.
The default number is 20.

catch exception(Bool) -> boolean()
Types:
Bool = bool ean()
Setsthe exception handling of the evaluator process. The previousexception handling isreturned. Thedefault (f al se)
is to kill the evaluator process when an exception occurs, which causes the shell to create a new evaluator process.

When the exception handling is set to t r ue the evaluator process lives on which means that for instance ports and
ETStables aswell as processes linked to the evaluator process survive the exception.

prompt func(PromptFunc) -> PromptFunc2
Types:
PromptFunc = PromptFunc2 = default | {module(), atom()}

Sets the shell prompt function to Pr onpt Func. The previous prompt function is returned.

start restricted(Module) -> {error, Reason}

Types:
Module = module()
Reason = code: | oad_error_rsn()

Exits a normal shell and starts a restricted shell. Modul e specifies the callback module for the functions
| ocal _al |l owed/ 3 andnon_I ocal _al | owed/ 3. The function is meant to be called from the shell.

If the callback module cannot be loaded, an error tupleis returned. The Reason in the error tupleis the one returned
by the code loader when trying to load the code of the callback module.

stop restricted() -> no return()
Exits arestricted shell and starts a normal shell. The function is meant to be called from the shell.

strings(Strings) -> Strings2
Types:
Strings = Strings2 = boolean()
Sets pretty printing of liststo St r i ngs. The previous value of the flag is returned.

The flag can aso be set by the STDLIB application variable shel | _stri ngs. The default ist r ue which means
that lists of integers will be printed using the string syntax, when possible. The value f al se means that no lists will
be printed using the string syntax.

398 | Ericsson AB. All Rights Reserved.: STDLIB

shell_default

shell _default

Erlang module

Thefunctionsinshel | _def aul t are called when no module nameis given in a shell command.

Consider the following shell dialogue:

1 > lists:reverse("abc").

Ilcball
2 > c(foo).
{ok, foo}

In command one, themodulel i st s iscalled. In command two, no module name is specified. The shell searchesthe
modulesuser _def aul t followed by shel | _def aul t for thefunctionf oo/ 1.

shel | _def aul t isintended for "systemwide" customizationstotheshell. user _def aul t isintended for "local"
or individual user customizations.

Hint
To add your own commands to the shell, create a module called user _def aul t and add the commands you want.
Then add the following line asthefirst linein your . er | ang filein your home directory.

code:load abs("$PATH/user default").

$PATH isthe directory where your user _def aul t module can be found.

Ericsson AB. All Rights Reserved.: STDLIB | 399

slave

slave

Erlang module

This module provides functions for starting Erlang slave nodes. All slave nodes which are started by a master will
terminate automatically when the master terminates. All TTY output produced at the slave will be sent back to the
master node. File I/O is done via the master.

Slave nodes on other hosts than the current one are started with the program r sh. The user must be allowed tor sh
to the remote hosts without being prompted for a password. This can be arranged in a number of ways (refer to the
r sh documentation for details). A dave node started on the same host as the master inherits certain environment
values from the master, such as the current directory and the environment variables. For what can be assumed about
the environment when a dlave is started on another host, read the documentation for ther sh program.

An alternative to the r sh program can be specified on the command lineto er | asfollows: - r sh Program

The slave node should use the same file system at the master. At least, Erlang/OTP should be installed in the same
place on both computers and the same version of Erlang should be used.

Currently, a node running on Windows NT can only start slave nodes on the host on which it is running.

The master node must be alive.

Exports

start(Host) -> {ok, Node} | {error, Reason}
start(Host, Name) -> {ok, Node} | {error, Reason}
start(Host, Name, Args) -> {ok, Node} | {error, Reason}

Types.
Host = Name = atom()
Args = string()
Node = node()

Reason = timeout | no rsh | {already running, Node}

Starts a slave node on the host Host . Host names need not necessarily be specified as fully qualified names; short
names can also be used. Thisis the same condition that applies to names of distributed Erlang nodes.

The name of the started node will be Nane @Host . If no name is provided, the name will be the same as the node
which executes the call (with the exception of the host name part of the node name).

The slave noderesetsitsuser process so that al terminal 1/0 which is produced at the daveis automatically relayed
to the master. Also, the file process will be relayed to the master.

The Ar gs argument is used to set er | command line arguments. If provided, it is passed to the new node and can
be used for avariety of purposes. See erl(1)

As an example, suppose that we want to start a slave node at host H with the node name Name @+, and we also want
the slave node to have the following properties:

e directory Di r should be added to the code path;
» theMnesiadirectory should be set to M
« theunix DI SPLAY environment variable should be set to the display of the master node.

The following code is executed to achieve this:

400 | Ericsson AB. All Rights Reserved.: STDLIB

slave

E = " -env DISPLAY " ++ net adm:localhost() ++ ":0 ",
Arg = "-mnesia dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

If successful, the function returns { ok, Node}, where Node is the name of the new node. Otherwise it returns
{error, Reason},where Reason can be one of:

ti meout
The master node failed to get in contact with the slave node. This can happen in a number of circumstances:

e Erlang/OTPisnot installed on the remote host
» thefile system on the other host has a different structure to the the master
« the Erlang nodes have different cookies.
no_rsh
Thereisnor sh program on the computer.
{al ready_runni ng, Node}
A node with the name Nane@+ost already exists.

start link(Host) -> {ok, Node} | {error, Reason}
start link(Host, Name) -> {ok, Node} | {error, Reason}
start _link(Host, Name, Args) -> {ok, Node} | {error, Reason}

Types:
Host = Name = atom()
Args = string()

Node = node()
Reason = timeout | no _rsh | {already running, Node}

Startsaslave nodeinthesameway asst art/ 1, 2, 3, except that the slave node islinked to the currently executing
process. If that process terminates, the slave node also terminates.

Seestart/ 1, 2, 3 for adescription of arguments and return values.

stop(Node) -> ok
Types:

Node = node()
Stops (kills) anode.

pseudo([Master | ServerList]) -> ok
Types:

Mast er = node()

ServerList = [atom)]

Calspseudo(Mast er, ServerList).If wewant to start a node from the command line and set up a number
of pseudo servers, an Erlang runtime system can be started as follows:

% erl -name abc -s slave pseudo klacke@super x --

Ericsson AB. All Rights Reserved.: STDLIB | 401

slave

pseudo(Master, ServerList) -> ok
Types:
Master = node()
ServerList = [atom()]
Starts a number of pseudo servers. A pseudo server is aserver with aregistered name which does absolutely nothing

but pass on all message to the real server which executes at a master node. A pseudo server is an intermediary which
only has the same registered name as the real server.

For example, if we have started a slave node N and want to execute pxw graphics code on this node, we can start the
server pxw_ser ver asapseudo server at the slave node. The following code illustrates:

rpc:call(N, slave, pseudo, [node(), [pxw server]]).

relay(Pid) -> no _return()
Types:
Pid = pid()
Runs a pseudo server. This function never returns any value and the process which executes the function will receive
messages. All messages received will simply be passed onto Pi d.

402 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

sofs

Erlang module

Thesof s moduleimplementsoperationson finite setsand rel ationsrepresented as sets. Intuitively, asetisacollection
of elements; every element belongs to the set, and the set contains every element.

Given aset A and a sentence S(x), where x is afree variable, anew set B whose elements are exactly those elements
of A for which S(x) holds can be formed, thisisdenoted B = {x in A : S(X)}. Sentences are expressed using the logical
operators "for some" (or "thereexists'), “for al", "and", "or", "not". If the existence of aset containing all the specified
elementsis known (as will always be the case in this module), we write B = {x : S(X)}.

The unordered set containing the elements a, b and c is denoted { a, b, c}. This notation is not to be confused with
tuples. The ordered pair of aand b, with first coordinate aand second coordinate b, is denoted (a, b). An ordered pair
isan ordered set of two elements. In this module ordered sets can contain one, two or more elements, and parentheses
are used to enclose the elements. Unordered sets and ordered sets are orthogonal, again in this module; there is no
unordered set equal to any ordered set.

The set that contains no elements is called the empty set. If two sets A and B contain the same elements, then A is
equal to B, denoted A = B. Two ordered sets are equal if they contain the same number of elements and have equal
elements at each coordinate. If a set A contains all elements that B contains, then B is a subset of A. The union of
two sets A and B isthe smallest set that contains al elements of A and all elements of B. The intersection of two sets
A and B is the set that contains all elements of A that belong to B. Two sets are digjoint if their intersection is the
empty set. The difference of two sets A and B is the set that contains al elements of A that do not belong to B. The
symmetric difference of two sets is the set that contains those element that belong to either of the two sets, but not
both. The union of a collection of setsis the smallest set that contains al the elements that belong to at least one set
of the collection. The intersection of a non-empty collection of sets is the set that contains all elements that belong
to every set of the collection.

The Cartesian product of two sets X and Y, denoted X x Y, isthe set {a: a= (X, y) for some x in X and for some
yinY}. Arelationisasubset of X x Y. Let R bearelation. The fact that (x, y) belongsto Riswritten asx Ry. Since
relations are sets, the definitions of the last paragraph (subset, union, and so on) apply to relations aswell. The domain
of Ristheset{x:x Ry forsomeyinY}. Therangeof Ristheset {y : x Ry for somex in X}. The converse of R
istheset{a: a=(y, x) for some (x,y) in R}. If A isasubset of X, then theimage of A under Ristheset{y: xRy
for somex in A}, and if B isasubset of Y, then theinverseimage of B istheset {x : x Ry for somey inB}.If Ris
arelationfrom X toY and Sisarelation from Y to Z, then the relative product of R and Sistherelation T from X to
Z defined so that x T z if and only if there existsan elementy in Y such that x Ry andy Sz. Therestriction of R to
A isthe set S defined so that x Sy if and only if there exists an element x in A such that x Ry. If Sisarestriction of
Rto A, then Risan extension of Sto X. If X =Y thenwe call R arelation in X. Thefield of arelation R in X isthe
union of the domain of R and the range of R. If Risarelationin X, and if Sisdefined so that x Sy if x Ry and not
X =y, then Sisthe strict relation corresponding to R, and vice versa, if Sisarelationin X, and if R is defined so that
xRy if x Sy or x =y, then R is the weak relation corresponding to S. A relation Rin X isreflexiveif x R x for every
element x of X; itissymmetricif x Ry impliesthat y R x; and it istransitive if x Ry andy R zimply that x R z.

A function F isarelation, a subset of X x Y, such that the domain of F is equal to X and such that for every x in X
thereisaunique element y in Y with (x, y) in F. The latter condition can be formulated asfollows: if x Fy and x F z
theny = z. In thismodule, it will not be required that the domain of F be equal to X for arelation to be considered a
function. Instead of writing (X, y) in F or x Fy, we write F(x) = y when F is a function, and say that F maps x onto
y, or that the value of F at x isy. Since functions are relations, the definitions of the last paragraph (domain, range,
and so on) apply to functions as well. If the converse of afunction F is afunction F, then F is called the inverse of
F. The relative product of two functions F1 and F2 is called the composite of F1 and F2 if the range of F1 is a subset
of the domain of F2.

Ericsson AB. All Rights Reserved.: STDLIB | 403

sofs

Sometimes, when the range of afunction is more important than the function itself, the functionis called afamily. The
domain of afamily is called theindex set, and the range is called the indexed set. If x isafamily from | to X, then x[i]
denotes the value of the function at index i. The notation "afamily in X" isused for such afamily. When the indexed
set isaset of subsets of aset X, then we call x afamily of subsets of X. If x isafamily of subsets of X, then the union
of the range of x is called the union of the family x. If x is non-empty (the index set is non-empty), the intersection of
the family x is the intersection of the range of x. In this module, the only families that will be considered are families
of subsets of some set X; in the following the word "family" will be used for such families of subsets.

A partition of aset X isacollection S of non-empty subsets of X whose union is X and whose elements are pairwise
digoint. A relationin asetisan equivalencerelation if it isreflexive, symmetric and transitive. If R isan equivalence
relation in X, and x isan element of X, the equivalence class of x with respect to R isthe set of all those elementsy of
X for which x R y holds. The equivalence classes constitute a partitioning of X. Conversely, if Cisa partition of X,
then the relation that holds for any two elements of X if they belong to the same equivalence class, is an equivalence
relation induced by the partition C. If R is an equivalence relation in X, then the canonical map is the function that
maps every element of X onto its equivalence class.

Relations as defined above (as sets of ordered pairs) will from now on be referred to as binary relations. We cal a
set of ordered sets (x[1], ..., X[n]) an (n-ary) relation, and say that the relation is a subset of the Cartesian product
X[1] % ... x X[n] where x[i] isan element of X[i], 1 <=i <= n. The projection of an n-ary relation R onto coordinatei
istheset {x[i] : (x[1], ..., X[i], ..., X[n]) in R for some x[j] in X[j], 1 <=j <=nand noti = j}. The projections of abinary
relation R onto the first and second coordinates are the domain and the range of R respectively. The relative product
of binary relations can be generalized to n-ary relations as follows. Let TR be an ordered set (R[1], ..., R[n]) of binary
relations from X to Y[i] and Sabinary relation from (Y[1] x ... x Y[n]) to Z. The relative product of TR and Sisthe
binary relation T from X to Z defined so that x T zif and only if thereexistsan element y[i] in Y[i] foreach1<=i<=n
suchthat x R[i] y[i] and (y[1], ..., Y[n]) Sz. Now let TR beaan ordered set (R[1], ..., R[n]) of binary relationsfrom X[i]
to Y[i] and Sasubset of X[1] x ... x X[n]. The multiple relative product of TR and Sisdefinedto betheset {z:z=
((x[al, ..., x[nD), (y[1]....,y[n])) for some (x[1], ..., X[n]) in Sand for some (x[i], y[i]) in R[i], 1 <=i <=n}. The natural
join of an n-ary relation R and an m-ary relation S on coordinatei and j is defined to betheset {z: z= (x[1], ..., X[n],

y1], ..., yij-1, y[j+1l, ..., yim]) for some (x[1], ..., X[n]) in R and for some (y[1], ..., y[m]) in S such that x[i] = y[j1}.

The sets recognized by this module will be represented by elements of the relation Sets, defined as the smallest set

such that:

« forevery aom T except' 'and for every term X, (T, X) belongs to Sets (atomic sets);

* (I'1,ID belongsto Sets (the untyped empty set);

o foreverytupleT ={T[1], ..., T[n]} and for every tuple X ={X[1], ..., X[n]}, if (T[i], X][i]) belongs to Sets for
every 1 <=i <=nthen (T, X) belongsto Sets (ordered sets);

o forevery term T, if X isthe empty list or anon-empty sorted list [X[1], ..., X[n]] without duplicates such that
(T, X[i]) belongsto Setsfor every 1 <=i <= n, then ([T], X) belongs to Sets (typed unordered sets).

An external setisan element of the range of Sets. A typeisan element of the domain of Sets. If Sisan element (T, X)
of Sets, then T isavalid type of X, T isthetype of S, and X is the external set of S. from_ternv2 creates a set from
atype and an Erlang term turned into an external set.

The actual sets represented by Sets are the elements of the range of the function Set from Sets to Erlang terms and
sets of Erlang terms:

e Set(T,Term) = Term, where T is an atom;

« Se({TI], ..., Tnl}, {X[2], ..., X[n]}) = (Set(T[1], X[1]), ..., Set(T(n], X[n]));

« Set((T], [X[A], ..., X[N]]) = {Set(T, X[1]), ..., Set(T, X[n])};

« ST D) =4}

When thereis no risk of confusion, elements of Setswill be identified with the sets they represent. For instance, if U

isthe result of calling uni on/ 2 with S1 and S2 as arguments, then U is said to be the union of S1 and S2. A more
precise formulation would be that Set(U) is the union of Set(S1) and Set(S2).

404 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

The types are used to implement the various conditions that sets need to fulfill. As an example, consider the relative
product of two sets R and S, and recall that the relative product of R and Sis defined if R is a binary relationto Y
and Sisabinary relation from Y. The function that implements the relative product, relative_product/2, checks that
the arguments represent binary relations by matching [{ A,B}] against the type of the first argument (Argl say), and
[{C,D}] against the type of the second argument (Arg2 say). The fact that [{ A,B}] matches the type of Arglisto be
interpreted as Argl representing abinary relation from X to Y, where X is defined as all sets Set(x) for some element
X in Sets the type of which is A, and similarly for Y. In the same way Arg2 is interpreted as representing a binary
relation from W to Z. Finaly it is checked that B matches C, which is sufficient to ensure that W isequal to Y. The
untyped empty set is handled separately: itstype, ['_], matches the type of any unordered set.

A few functions of this module (drestriction/3, famly projection/2, partition/2,
partition_fam ly/2,projection/2,restriction/3,substitution/?2)acceptanErlang function
as ameans to modify each element of a given unordered set. Such afunction, called SetFun in the following, can be
specified as a functional object (fun), atuple { ext ernal , Fun}, or an integer. If SetFun is specified as a fun,
the fun is applied to each element of the given set and the return value is assumed to be a set. If SetFun is specified
asatuple{external, Fun}, Funisappliedto the external set of each element of the given set and the return
value is assumed to be an external set. Selecting the elements of an unordered set as external sets and assembling a
new unordered set from a list of external sets isin the present implementation more efficient than modifying each
element as a set. However, this optimization can only be utilized when the elements of the unordered set are atomic or
ordered sets. It must also be the case that the type of the elements matches some clause of Fun (the type of the created
set is the result of applying Fun to the type of the given set), and that Fun does nothing but selecting, duplicating
or rearranging parts of the elements. Specifying a SetFun as an integer | is equivalent to specifying { ext er nal ,
fun(X) -> elenent(l, X) end}, butisto be preferred since it makes it possible to handle this case even
more efficiently. Examples of SetFuns:

fun sofs:union/1

fun(S) -> sofs:partition(1l, S) end

{external, fun(A) -> A end}

{external, fun({A, ,C}) -> {C,A} end}

{external, fun({_ ,C}}) -> C end}

{external, fun({_ ,{ ,E}=C}}) -> {E,{E,C}} end}
2

A
A

The order in which a SetFun is applied to the elements of an unordered set is not specified, and may changein future
versions of sofs.

The execution time of the functions of this module is dominated by the time it takes to sort lists. When no sorting
is needed, the execution time is in the worst case proportiona to the sum of the sizes of the input arguments
and the returned value. A few functions execute in constant time: f rom external ,is_enpty_set,is_set,
is_sofs _set,to_external, type.

Thefunctions of thismodule exit the processwithabadar g,bad_functi on,ort ype ni smat ch messagewhen
given badly formed arguments or sets the types of which are not compatible.

When comparing external sets the operator ==/ 2 isused.

Data Types

anyset() = ordset() | a_set()

Any kind of set (also included are the atomic sets).
binary relation() = relation()

A binary relation.

Ericsson AB. All Rights Reserved.: STDLIB | 405

sofs

external set() = term()
An external set.

family() = a_function()
A family (of subsets).
a_function() = relation()
A function.

ordset()

An ordered set.

relation() = a_set()

An n-ary relation.

a set()

An unordered set.

set of sets() = a_set()
An unordered set of unordered sets.

set fun() = integer() >=1
| {external, fun((external_set()) -> external _set())}
| fun((anyset()) -> anyset())

A SetFun.

spec_fun() = {external, fun((external _set()) -> boolean())}
| fun((anyset()) -> boolean())

type() = term()

A type.

tuple of(T)
A tuple where the elements are of type T.

Exports

a_function(Tuples) -> Function
a_function(Tuples, Type) -> Function
Types:
Function = a_function()
Tuples = [tuple()]
Type = type()
Createsafunction.a_f uncti on(F, T) isequivdenttofrom term(F, T),iftheresultisafunction.If notype
isexplicitly given, [{ at om at on}] isused astype of the function.

canonical relation(Set0fSets) -> BinRel
Types:

406 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

BinRel = binary relation()
Set0fSets = set_of sets()
Returns the binary relation containing the elements (E, Set) such that Set belongs to SetOf Sets and E belongs to Set.

If SetOfSetsis a partition of aset X and R is the equivalence relation in X induced by SetOf Sets, then the returned
relation is the canonical map from X onto the equivalence classes with respect to R.

1> Ss = sofs:from term([[a,b],[b,c]l]),

CR = sofs:canonical relation(Ss),

sofs:to _external(CR).
[{a,[a,bl},{b,[a,bl},{b, [b,cl},{c,[b,cl}]

composite(Functionl, Function2) -> Function3
Types.
Functionl = Function2 = Function3 = a_function()

Returns the composite of the functions Functionl and Function2.

1> F1 = sofs:a function([{a,1},{b,2},{c,2}]1),
F2 = sofs:a function([{1,x},{2,y},{3,2}]),

F = sofs:composite(Fl, F2),

sofs:to external(F).

[{a,x},{b,y},{c,y}]

constant function(Set, AnySet) -> Function
Types:
AnySet = anyset ()
Function = a_function()
Set = a_set()
Creates the function that maps each element of the set Set onto AnySet.

1> S = sofs:set([a,b]),

E = sofs:from term(1),

R = sofs:constant function(S, E),
sofs:to external(R).
[{a,1},{b,1}]

converse(BinRell) -> BinRel2
Types.
BinRell = BinRel2 = binary_rel ation()

Returns the converse of the binary relation BinRel 1.

1> R1 = sofs:relation([{1,a},{2,b},{3,a}]),
R2 = sofs:converse(R1l),
sofs:to external(R2).

Ericsson AB. All Rights Reserved.: STDLIB | 407

sofs

[{a,1},{a,3},{b,2}]

difference(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = a_set ()

Returns the difference of the sets Setl and Set2.

digraph to family(Graph) -> Family
digraph to family(Graph, Type) -> Family
Types:
Graph = di graph: graph()
Family = famly()
Type = type()
Creates a family from the directed graph Graph. Each vertex a of Graph is represented by a pair (a, {b[1], ..., b[n]})

wherethe b[i]'sarethe out-neighbours of a. If notypeisexplicitly given, [{atom, [atom]}] isused astype of the family.
It isassumed that Typeisavalid type of the external set of the family.

If G is a directed graph, it holds that the vertices and edges of G are the same as the vertices and edges of
famly_ to_digraph(digraph_to fanmly(Q).

domain(BinRel) -> Set
Types:
BinRel = binary_rel ation()
Set = a_set()
Returns the domain of the binary relation BinRel.

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:domain(R),

sofs:to _external(S).

[1,2]

drestriction(BinRell, Set) -> BinRel2
Types:
BinRell = BinRel2 = binary _relation()
Set = a_set()
Returns the difference between the binary relation BinRel 1 and the restriction of BinRel1 to Set.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([2,4,6]1),

R2 = sofs:drestriction(R1l, S),

sofs:to external(R2).

[{1,a},{3,c}]

drestriction(R, S) isequivalenttodifference(R restriction(R S)).

408 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

drestriction(SetFun, Setl, Set2) -> Set3
Types:

SetFun = set _fun()

Setl = Set2 = Set3 = a_set()

Returns asubset of Set1 containing those elementsthat do not yield an element in Set2 asthe result of applying SetFun.

1> SetFun = {external, fun({ A,B,C}) -> {B,C} end},
sofs:relation([{a,aa,1l},{b,bb,2},{c,cc,3}1),
sofs:relation([{bb, 2}, {cc,3},{dd,4}]),
sofs:drestriction(SetFun, R1l, R2),

sofs:to external(R3).

[{a,aa,1}]

pel
N
nnu

drestriction(F, Sl1, S2) isequivalenttodi fference(Sl, restriction(F, S1, S2)).

empty set() -> Set
Types.
Set = a_set()
Returns the untyped empty set. enpt y_set () isequivalenttofromterm([], [' _']).

extension(BinRell, Set, AnySet) -> BinRel2
Types:
AnySet = anyset ()
BinRell = BinRel2 = binary_relation()
Set = a_set()

Returns the extension of BinRel1 such that for each element E in Set that does not belong to the domain of BinRel1,
BinRel2 contains the pair (E, AnySet).

1> S = sofs:set([b,c]),

A = sofs:empty set(),
R = sofs:family([{a,[1,21},{b,[31}]),
X = sofs:extension(R, S, A),

sofs:to external(X).

[{a,[1,21},{b, [31},{c,[1}]

family(Tuples) -> Family
family(Tuples, Type) -> Family

Types.
Family = famly()
Tuples = [tuple()]

Type = type()
Creates afamily of subsets. fami | y(F, T) isequivalenttofromterm(F, T),if theresultisafamily. If no
typeisexplicitly given,[{at om [atonj}] isused astype of the family.

Ericsson AB. All Rights Reserved.: STDLIB | 409

sofs

family difference(Familyl, Family2) -> Family3
Types:
Familyl = Family2 = Family3 = fam | y()

If Familyl and Family2 are families, then Family3 is the family such that the index set is equal to the index set of
Family1, and Family3][i] isthe difference between Family1[i] and Family2[i] if Family2 mapsi, Family1[i] otherwise.

1> F1 = sofs:family([{a,[1,2]},{b,[3,41}]),
F2 = sofs:family([{b,[4,5]},{c,[6,71}]),

F3 = sofs:family difference(Fl, F2),
sofs:to external(F3).

[{a,[1,21},{b,[31}]

family domain(Familyl) -> Family2
Types.
Familyl = Family2 = famly()

If Familyl isafamily and Family1[i] is a binary relation for every i in the index set of Family1, then Family2 is the
family with the same index set as Family1 such that Family2[i] is the domain of Family1][i].

1> FR = sofs:from term([{a, [{1,a},{2,b},{3,c}1},{b,[1},{c,[{4,d},{5,e}1}]),
F = sofs:family domain(FR),

sofs:to external(F).

[{a,[1,2,3]1},{b,[1},{c,[4,5]}]

family field(Familyl) -> Family2
Types:
Familyl = Family2 = fam | y()

If Familyl is afamily and Family1[i] is a binary relation for every i in the index set of Familyl, then Family2 is the
family with the same index set as Family1 such that Family2[i] isthe field of Family1[i].

1> FR = sofs:from term([{a,[{1,a},{2,b},{3,c}1},{b,[1},{c,[{4,d},{5,e}1}]),
F = sofs:family field(FR),

sofs:to _external (F).

[{a,[1,2,3,a,b,cl1},{b,[1},{c,[4,5,d,el}]

famly_field(Fam|yl) is equivdent to family_union(famly_domain(Famnlyl),
fam | y_range(Fanilyl)).

family intersection(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Familylisafamily and Family1[i] isaset of setsfor every i intheindex set of Familyl, then Family2 isthe family
with the same index set as Family1 such that Family2][i] is the intersection of Family1]i].

If Family1[i] isan empty set for somei, then the process exits with abadar g message.

410 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

1> F1 = sofs:from term([{a,[[1,2,31,[2,3,411},{b,[[x,y,z],[x,yl1}1),
F2 = sofs:family intersection(F1),

sofs:to external(F2).

[{a,[2,31},{b, [x,y]1}]

family intersection(Familyl, Family2) -> Family3
Types:
Familyl = Family2 = Family3 = famly()

If Family1 and Family2 are families, then Family3 isthe family such that the index set isthe intersection of Familyl's
and Family2'sindex sets, and Family3[i] is the intersection of Family1[i] and Family2[i].

1> F1 = sofs:family([{a,[1,2]},{b,[3,41},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]1},{c,[7,8]1},{d,[9,10]1}1),
F3 = sofs:family intersection(F1, F2),

sofs:to external(F3).

[{b, [4]1},{c,[1}]

family projection(SetFun, Familyl) -> Family2
Types:
SetFun = set_fun()
Familyl = Family2 = famly()
If Familylisafamily then Family2 isthe family with the sameindex set as Family1 such that Family?2[i] is the result
of calling SetFun with Family1][i] as argument.

1> F1 = sofs:from_term([{a,[[1,2],[2,3]11},{b,[[11}]),
F2 = sofs:family projection(fun sofs:union/1, F1),
sofs:to _external(F2).

[{a,[1,2,3]1},{b,[1}]

family range(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Familyl is afamily and Family1[i] is a binary relation for every i in the index set of Family1, then Family?2 is the
family with the sameindex set as Family1 such that Family2[i] isthe range of Family1][i].

1> FR = sofs:from term([{a, [{1,a},{2,b},{3,c}1},{b,[1},{c,[{4,d},{5,e}]1}]),
F = sofs:family range(FR),

sofs:to external(F).

[{a,[a,b,c]},{b,[1},{c,[d,el}]

family specification(Fun, Familyl) -> Family2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 411

sofs

Fun = spec_fun()
Familyl = Family2 = famly()
If Familyl is a family, then Family2 is the restriction of Family1 to those elementsi of the index set for which Fun

applied to Family1[i] returnst r ue. If Funisatuple{external , Fun2}, Fun2is applied to the external set of
Family1[i], otherwise Fun is applied to Family1][i].

1> F1 = sofs:family([{a,[1,2,3]},{b,[1,2]1},{c,[11}]),
SpecFun = fun(S) -> sofs:no elements(S) =:= 2 end,

F2 = sofs:family specification(SpecFun, F1),

sofs:to external(F2).

[{b,[1,2]}]

family to digraph(Family) -> Graph
family to digraph(Family, GraphType) -> Graph
Types.
Graph = di graph: graph()
Family = famly()
GraphType = [di graph: d_type()]
Creates adirected graph from the family Family. For each pair (g, {b[1], ..., b[n]}) of Family, the vertex aaswell the
edges (a, b[i]) for 1 <=i <= n are added to a newly created directed graph.

If no graph typeis given digraph:new/0 is used for creating the directed graph, otherwise the GraphType argument
is passed on as second argument to digraph: new/1.

It Fisafamily, it holdsthat Fisasubset of di graph_to famly(fanmly to digraph(F), type(F)).
Equality holdsif uni on_of fami | y(F) isasubset of dormai n(F) .

Creating acycle in an acyclic graph exits the processwith acycl i ¢ message.

family to relation(Family) -> BinRel

Types:
Family = fam |l y()
BinRel = binary_rel ation()

If Family is afamily, then BinRel is the binary relation containing all pairs (i, x) such that i belongs to the index set
of Family and x belongs to Family[i].

1> F = sofs:family([{a,[1}, {b,[1]}, {c,[2,3]1}1),
R = sofs:family to relation(F),
sofs:to _external(R).

[{b,1},{c,2},{c,3}]

family union(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Familylisafamily and Family1[i] is aset of setsfor eachi in theindex set of Familyl, then Family2 is the family
with the same index set as Family1 such that FamilyZ2[i] is the union of Family1[i].

412 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

1> F1 = sofs:from term([{a,[[1,2]1,[2,311},{b,[[11}1),
F2 = sofs:family union(F1),

sofs:to external(F2).

[{a,[1,2,3]1},{b,[1}]

fam |y _uni on(F) isequivalenttof ami |y _proj ection(fun sofs:union/1, F).

family union(Familyl, Family2) -> Family3
Types:

Familyl = Family2 = Family3 = fam|y()
If Familyl and Family?2 are families, then Family3 is the family such that the index set is the union of Familyl's and
Family2'sindex sets, and Family3][i] isthe union of Family1[i] and Family2[i] if both mapsi, Family1[i] or Family2]i]
otherwise.

1> F1 = sofs:family([{a,[1,2]},{b,[3,4]1},{c,[5,61}1),
F2 = sofs:family([{b, [4,51},{c,[7,81},{d,[9,10]}1),
F3 = sofs:family union(Fl, F2),

sofs:to _external(F3).
[{a,[1,21},{b,[3,4,51},{c,[5,6,7,8]1},{d,[9,10]}]

field(BinRel) -> Set

Types:
BinRel = binary_rel ation()
Set = a_set()

Returnsthe field of the binary relation BinRel.

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:field(R),

sofs:to external(S).

[1,2,a,b,c]

fiel d(R) isequivaenttouni on(donai n(R), range(R)).

from external (ExternalSet, Type) -> AnySet
Types.
ExternalSet = external _set()
AnySet = anyset ()
Type = type()
Creates aset from the external set External Set and thetype Type. Itisassumed that Typeisavalid type of External Set.

from sets(ListOfSets) -> Set
Types:
Set = a_set ()
List0fSets = [anyset ()]
Returns the unordered set containing the sets of the list ListOf Sets.

Ericsson AB. All Rights Reserved.: STDLIB | 413

sofs

1> S1 = sofs:relation([{a,1},{b,2}1),
S2 = sofs:relation([{x,3},{y,4}1),

S = sofs:from sets([S1,S2]),

sofs:to _external(S).

[[{a,1},{b,2}1, [{x,3},{y,4}]]

from sets(TupleOfSets) -> Ordset
Types:

Ordset = ordset ()

TupleOfSets = tupl e_of (anyset())

Returns the ordered set containing the sets of the non-empty tuple TupleOfSets.

from term(Term) -> AnySet
from term(Term, Type) -> AnySet

Types:
AnySet = anyset ()
Term = term()
Type = type()

Creates an element of Sets by traversing the term Term, sorting lists, removing duplicates and deriving or verifying a
valid typefor the so obtained external set. An explicitly given type Type can be used to limit the depth of the traversal;
an atomic type stops the traversal, as demonstrated by this example where "foo" and { "foo"} are left unmodified:

1> S = sofs:from term([{{"fo0"},[1,1]},{"fo0",[2,2]1}],
[{atom, [atom]}]),

sofs:to _external(S).

[{{"foo"},[11},{"foo", [2]}]

from_t er mcan be used for creating atomic or ordered sets. The only purpose of such a set isthat of later building
unordered sets since al functions in this module that do anything operate on unordered sets. Creating unordered sets
from acollection of ordered sets may be the way to go if the ordered sets are big and one does not want to waste heap
by rebuilding the elements of the unordered set. An example showing that a set can be built "layer by layer":

1> A = sofs:from term(a),

S = sofs:set([1,2,31),

P1 sofs:from sets({A,S}),

P2 = sofs:from term({b,[6,5,4]1}),
Ss = sofs:from sets([P1,P2]),
sofs:to external(Ss).
[{a,[1,2,3]},{b,[4,5,6]}]

Other functions that create setsaref rom ext ernal / 2 andfrom set s/ 1. Specia casesof from ternf 2 are
a function/1, 2,enpty_set/0,famly/1,2,relation/1,2,andset/ 1, 2.

image(BinRel, Setl) -> Set2
Types.

414 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

BinRel = binary relation()
Setl = Set2 = a_set()

Returns the image of the set Set1 under the binary relation BinRel.

1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 sofs:set([1,2]),

S2 sofs:image(R, S1),

sofs:to external(S2).

[a,b,c]

intersection(Set0fSets) -> Set
Types:

Set = a_set()

Set0fSets = set _of _sets()
Returns the intersection of the set of sets SetOf Sets.

Intersecting an empty set of sets exits the process with abadar g message.

intersection(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = a_set()

Returns the intersection of Setl and Set2.

intersection_of family(Family) -> Set
Types:
Family = fam | y()
Set = a_set ()
Returns the intersection of the family Family.
Intersecting an empty family exits the process with abadar g message.

1> F = sofs:family([{a, [0,2,4]1},{b,[0,1,2]},{c,[2,31}]),
S = sofs:intersection of family(F),

sofs:to _external(S).

[2]

inverse(Functionl) -> Function2
Types.
Functionl = Function2 = a_function()

Returns the inverse of the function Functionl.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
R2 = sofs:inverse(R1l),
sofs:to external(R2).

Ericsson AB. All Rights Reserved

.. STDLIB | 415

sofs

[{a,1},{b,2},{c,3}]

inverse image(BinRel, Setl) -> Set2
Types:

BinRel = binary_rel ation()

Setl = Set2 = a_set()

Returns the inverse image of Set1 under the binary relation BinRel.

1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}1]),
S1 = sofs:set([c,d,el),

S2 = sofs:inverse image(R, S1),

sofs:to external(S2).

is a function(BinRel) -> Bool
Types:

Bool = boolean()

BinRel = binary relation()

Returnst r ue if the binary relation BinRel is afunction or the untyped empty set, f al se otherwise.

is disjoint(Setl, Set2) -> Bool

Types.
Bool = boolean()
Setl = Set2 = a_set ()

Returnst r ue if Setl and Set2 are digoint, f al se otherwise.

is empty set(AnySet) -> Bool
Types:
AnySet = anyset ()
Bool = boolean()
Returnst r ue if AnySet isan empty unordered set, f al se otherwise.

is equal(AnySetl, AnySet2) -> Bool
Types:
AnySetl = AnySet2 = anyset ()
Bool = boolean()

Returnst r ue if the AnySetl and AnySet2 areequal, f al se otherwise. This example showsthat ==/ 2 isused when
comparing sets for equality:

1> S1 = sofs:set([1.0]),
S2 = sofs:set([1]),
sofs:is equal(S1l, S2).
true

416 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

is set(AnySet) -> Bool
Types:
AnySet = anyset ()
Bool = boolean()
Returnst r ue if AnySetisan unordered set, and f al se if AnySet isan ordered set or an atomic set.

is sofs set(Term) -> Bool
Types.

Bool boolean()

Term = term()

Returnst r ue if Termisan unordered set, an ordered set or an atomic set, f al se otherwise.

is subset(Setl, Set2) -> Bool

Types:
Bool = boolean()
Setl = Set2 = a_set()

Returnst r ue if Setl is asubset of Set2, f al se otherwise.

is type(Term) -> Bool

Types:
Bool = boolean()
Term = term()

Returnst r ue if theterm Term isatype.

join(Relationl, I, Relation2, J) -> Relation3
Types.
Relationl = Relation2 = Relation3 = rel ation()
I =1 = integer() >=1

Returns the natural join of the relations Relationl and Relation2 on coordinates | and J.

1> Rl = sofs:relation([{a,x,1},{b,y,2}1),

R2 = sofs:relation([{1,f,q9},{1,h,i},{2,3,4}1),
J = sofs:join(R1, 3, R2, 1),

sofs:to external(J).
[{a,x,1,f,q9},{a,x,1,h,i},{b,y,2,3,4}]

multiple relative product(TupleOfBinRels, BinRell) -> BinRel2
Types:

TupleOfBinRels = tupl e_of (BinRel)

BinRel = BinRell = BinRel2 = binary_relation()

If TupleOfBinRels is a non-empty tuple { R[1], ..., R[n]} of binary relations and BinRell is a binary relation, then
BinRel2 isthe multiple relative product of the ordered set (R[i], ..., R[n]) and BinRel 1.

Ericsson AB. All Rights Reserved.: STDLIB | 417

sofs

1> Ri = sofs:relation([{a,1}, {b,2},{c,3}1),

R = sofs:relation([{a,b},{b,c}, {c,a}l),

MP = sofs:multiple relative product({Ri, Ri}, R),
sofs:to external(sofs:range(MP)).

[{1,2},{2,3},{3,1}]

no elements(ASet) -> NoElements
Types:
ASet = a_set() | ordset()
NoElements = integer() >= 0

Returns the number of elements of the ordered or unordered set A Set.

partition(SetOfSets) -> Partition
Types.
Set0fSets = set_of _sets()
Partition = a_set()

Returns the partition of the union of the set of sets SetOfSets such that two elements are considered equal if they
belong to the same elements of SetOf Sets.

1> Setsl = sofs:from term([[a,b,c],[d,e,f],[g,h,1]1]),
Sets2 = sofs:from term([[b,c,d],[e,f,q],[h,i,711),

P = sofs:partition(sofs:union(Setsl, Sets2)),

sofs:to external(P).
[[al,[b,c],[d],[e,f],[g],[h,i],[j]]

partition(SetFun, Set) -> Partition
Types:

SetFun = set_fun()

Partition = Set = a_set()

Returns the partition of Set such that two elements are considered equal if the results of applying SetFun are equal .

1> Ss = sofs:from term([[a],[b],[c,d],[e,f]1]),

SetFun = fun(S) -> sofs:from term(sofs:no elements(S)) end,
P = sofs:partition(SetFun, Ss),

sofs:to external(P).

[[[al,[bl],[[c,d],[e,f]]]

partition(SetFun, Setl, Set2) -> {Set3, Set4}
Types:

SetFun = set_fun()

Setl = Set2 = Set3 = Setd4 = a_set()

Returns a pair of sets that, regarded as constituting a set, forms a partition of Setl. If the result of applying SetFun to
an element of Setl yields an element in Set2, the element belongs to Set3, otherwise the element belongs to Set4.

418 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

1> R1 = sofs:relation([{1,a},{2,b},{3,c}l),
S = sofs:set([2,4,6]1),

{R2,R3} = sofs:partition(1l, R1l, S),

{sofs:to external(R2),sofs:to external(R3)}.
{[{2,b}],[{1,a},{3,c}I}

partition(F, S1, S2) isequivaentto{restriction(F, S1, S2), drestriction(F, S1, S2)}.

partition family(SetFun, Set) -> Family

Types:
Family = fam | y()
SetFun = set_fun()

Set = a_set()

Returns the family Family where the indexed set is a partition of Set such that two elements are considered equal if
the results of applying SetFun are the same valuei. Thisi istheindex that Family maps onto the eguivalence class.

1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),
SetFun = {external, fun({A, ,C, }) -> {A,C} end},

F = sofs: partltlon family(SetFun, S),

sofs:to external(F

[{{a,a}, [{a,a,a, a}]} {{a,b}, [{a,a,b,b},{a,b,b,b}]}]

product(TupleOfSets) -> Relation
Types:
Relation = rel ation()
TupleOfSets = tuple_of (a_set())

Returns the Cartesian product of the non-empty tuple of sets TupleOfSets. If (x[1], ..., X[n]) is an element of the n-
ary relation Relation, then x[i] is drawn from element i of TupleOfSets.

1> S1 = sofs:set([a,b]),

S2 = sofs:set([1,2]),

S3 = sofs:set([x,yl),

P3 = sofs:product({S1,S2,S3}),

sofs:to _external(P3).
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]

product(Setl, Set2) -> BinRel
Types.
BinRel = binary_rel ation()
Setl = Set2 = a_set()

Returns the Cartesian product of Setl and Set2.

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),

R = sofs:product(S1, S2),
sofs:to _external(R).

Ericsson AB. All Rights Reserved.: STDLIB | 419

sofs

[{1,a},{1,b},{2,a},{2,b}]
product (S1, S2) isequivaenttoproduct ({S1, S2}).

projection(SetFun, Setl) -> Set2
Types:

SetFun = set _fun()

Setl = Set2 = a_set()

Returns the set created by substituting each element of Setl by the result of applying SetFun to the element.
If SetFunisanumber i >= 1 and Setl is arelation, then the returned set is the projection of Setl onto coordinatei.

1> S1 = sofs:from term([{1,a},{2,b},{3,a}]),
S2 = sofs:projection(2, S1),

sofs:to external(S2).

[a,b]

range(BinRel) -> Set

Types:
BinRel = binary relation()
Set = a_set()

Returns the range of the binary relation BinRel.

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:range(R),

sofs:to _external(S).

[a,b,c]

relation(Tuples) -> Relation
relation(Tuples, Type) -> Relation
Types:
N = integer()
Type = N | type()
Relation = rel ation()
Tuples = [tuple()]
Creates arelation. rel ati on(R, T) isequivaenttofromtern(R, T),if T isatype and the result isa
relation. If Typeisaninteger N, then[{atom ..., aton}]), where the size of the tupleis N, is used as

type of the relation. If no type is explicitly given, the size of the first tuple of Tuplesis used if there is such atuple.
relation([]) isequivadenttorel ation([], 2).

relation to family(BinRel) -> Family
Types:

420 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

Family = fam | y()
BinRel = binary_rel ation()

Returns the family Family such that the index set is equal to the domain of the binary relation BinRel, and Family[i]
isthe image of the set of i under BinRel.

1> R = sofs:relation([{b,1},{c,2},{c,3}1),
F = sofs:relation_to family(R),

sofs:to _external (F).

[{b,[11},{c,[2,31}]

relative product(ListOfBinRels) -> BinRel2
relative product(ListOfBinRels, BinRell) -> BinRel2
Types:

ListOfBinRels = [BinRel, ...]

BinRel = BinRell = BinRel2 = binary_relation()

If ListOfBinRelsisanon-empty list [R[1], ..., R[n]] of binary relations and BinRel1 isabinary relation, then BinRel2
istherelative product of the ordered set (R[i], ..., R[n]) and BinRel1.

If BinRell is omitted, the relation of equality between the elements of the Cartesian product of the ranges of RJi],
range R[1] x ... x range R[N}, is used instead (intuitively, nothing is"lost").

1> TR = sofs:relation([{1,a},{1,aa},{2,b}]),
Rl = sofs:relation([{1,u},{2,v},{3,c}1),

R2 = sofs:relative product([TR, R1]),
sofs:to external(R2).

[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]

Notethatr el ati ve_product ([Rl], R2) isdifferentfromrel ati ve_product (Rl, R2);thelistof one
element is not identified with the element itself.

relative product(BinRell, BinRel2) -> BinRel3
Types:
BinRell = BinRel2 = BinRel3 = binary_relation()

Returns the relative product of the binary relations BinRel1 and BinRel2.

relative productl(BinRell, BinRel2) -> BinRel3
Types:
BinRell = BinRel2 = BinRel3 = binary_rel ation()

Returns the relative product of the converse of the binary relation BinRel1 and the binary relation BinRel 2.

1> R1 = sofs:relation([{1,a},{1,aa},{2,b}]),
R2 = sofs:relation([{1,u},{2,v},{3,c}]),

R3 = sofs:relative productl(R1l, R2),

sofs:to _external(R3).

[{a,u},{aa,u},{b,v}]

Ericsson AB. All Rights Reserved.: STDLIB | 421

sofs

rel ative_product 1(Rl, R2) isequivalenttorel ati ve_product (converse(Rl), R2).

restriction(BinRell, Set) -> BinRel2
Types:
BinRell = BinRel2 = binary_rel ation()
Set = a_set()
Returns the restriction of the binary relation BinRel1 to Set.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([1,2,4]),

R2 = sofs:restriction(R1l, S),

sofs:to _external(R2).

[{1,a},{2,b}]

restriction(SetFun, Setl, Set2) -> Set3
Types.

SetFun = set_fun()

Setl = Set2 = Set3 = a_set ()

Returns a subset of Setl containing those elements that yield an element in Set2 as the result of applying SetFun.

1> S1 = sofs:relation([{1,a},{2,b},{3,c}]),
S2 = sofs:set([b,c,d]),

S3 = sofs:restriction(2, S1, S2),

sofs:to _external(S3).

[{2,b},{3,c}]

set(Terms) -> Set
set(Terms, Type) -> Set
Types:
Set = a_set()
Terms = [term()]
Type = type()
Createsan unordered set. set (L, T) isequivalenttofromtern(L, T),iftheresultisan unordered set. If no
typeisexplicitly given, [at onj is used astype of the set.

specification(Fun, Setl) -> Set2
Types:

Fun = spec_fun()

Setl = Set2 = a_set()

Returnsthe set containing every element of Set1 for which Funreturnst r ue. If Funisatuple{ ext er nal , Fun2},
Fun2 is applied to the external set of each element, otherwise Fun is applied to each element.

1> R1 = sofs:relation([{a,1},{b,2}1),

422 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

sofs:relation([{x,1},{x,2},{y,3}]1),

sofs:from sets([R1,R2]),

S2 = sofs:specification(fun sofs:is a function/1, S1),
sofs:to external(S2).

[[{a,1},{b,2}1]

strict relation(BinRell) -> BinRel2
Types:
BinRell = BinRel2 = binary_rel ation()

Returns the strict relation corresponding to the binary relation BinRel 1.

1> R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}1),
R2 = sofs:strict relation(R1),

sofs:to external(R2).

[{1,2},{2,1}]

substitution(SetFun, Setl) -> Set2
Types.

SetFun = set_fun()

Setl = Set2 = a_set()

Returnsafunction, the domain of whichis Setl. The value of an element of the domain isthe result of applying SetFun
to the element.

1> L = [{a,1},{b,2}].

[{a,1},{b,2}]

2> sofs:to external(sofs:projection(1l,sofs:relation(L))).
[a,b]

3> sofs:to external(sofs:substitution(1l,sofs:relation(L))).
[{{a,1},a},{{b,2},Db}]

4> SetFun = {external, fun({A, }=E) -> {E,A} end},

sofs:to _external(sofs:projection(SetFun,sofs:relation(L))).
[{{a,1},a},{{b,2},Db}]

Therelation of equality between the elements of {a,b,c}:

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to _external(I).

[{a,a},{b,b},{c,c}]

Let SetOf Sets be a set of setsand BinRel abinary relation. The function that maps each element Set of SetOf Sets onto
theimage of Set under BinRél isreturned by this function:

images(Set0OfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).

Ericsson AB. All Rights Reserved.: STDLIB | 423

sofs

Here might bethe placeto reveal something that was more or less stated before, namely that external unordered setsare
represented as sorted lists. As a consequence, creating the image of a set under arelation R may traverse all elements
of R (to that comes the sorting of results, theimage). Ini nages/ 2, BinRel will be traversed once for each element
of SetOfSets, which may take too long. The following efficient function could be used instead under the assumption
that the image of each element of SetOfSets under BinRel is non-empty:

images2(Set0fSets, BinRel) ->
CR = sofs:canonical relation(SetOfSets),
R = sofs:relative productl(CR, BinRel),
sofs:relation to family(R).

symdiff(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = a_set()

Returns the symmetric difference (or the Boolean sum) of Setl and Set2.

1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),

P = sofs:symdiff(S1, S2),
sofs:to external(P).

[1,4]

symmetric partition(Setl, Set2) -> {Set3, Set4, Set5}
Types:
Setl = Set2 = Set3 = Set4 = Setb = a_set ()

Returns atriple of sets: Set3 contains the elements of Setl that do not belong to Set2; Set4 contains the elements of
Setl that belong to Set2; Set5 contains the elements of Set2 that do not belong to Setl.

to_external(AnySet) -> ExternalSet
Types:
ExternalSet = external _set()
AnySet = anyset ()
Returns the external set of an atomic, ordered or unordered set.

to_sets(ASet) -> Sets

Types:
ASet = a_set() | ordset()
Sets = tupl e_of (AnySet) | [AnySet]

AnySet = anyset ()

Returns the elements of the ordered set ASet as atuple of sets, and the elements of the unordered set ASet as a sorted
list of setswithout duplicates.

424 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

type(AnySet) -> Type
Types:
AnySet = anyset ()
Type = type()
Returns the type of an atomic, ordered or unordered set.

union(Set0fSets) -> Set
Types.

Set = a_set ()

Set0fSets = set_of sets()
Returns the union of the set of sets SetOf Sets.

union(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = a_set()

Returns the union of Setl and Set2.

union of family(Family) -> Set
Types:

Family = fami | y()

Set = a_set ()
Returns the union of the family Family.

1> F = sofs:family([{a,[0,2,4]1},{b,[0,1,2]},{c,[2,3]1}]),
S = sofs:union_of family(F),

sofs:to external(S).

[0,1,2,3,4]

weak relation(BinRell) -> BinRel2
Types:
BinRell = BinRel2 = binary_rel ation()

Returns a subset S of the weak relation W corresponding to the binary relation BinRel1. Let F bethefield of BinRel 1.
The subset Sisdefined so that x Sy if x Wy for somex in F and for somey in F.

1> Rl = sofs:relation([{1,1},{1,2},{3,1}1),
R2 = sofs:weak relation(R1),

sofs:to external(R2).
[{1,1},{1,2},{2,2},{3,1},{3,3}]

See Also
dict(3), digraph(3), orddict(3), ordsets(3), sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 425

string

string

Erlang module

This module contains functions for string processing.

Exports

len(String) -> Length

Types.
String = string()
Length = integer() >= 0

Returns the number of charactersin the string.

equal(Stringl, String2) -> boolean()
Types:
Stringl = String2 = string()

Tests whether two strings are equal. Returnst r ue if they are, otherwisef al se.

concat(Stringl, String2) -> String3
Types:
Stringl = String2 = String3 = string()

Concatenates two strings to form a new string. Returns the new string.

chr(String, Character) -> Index
rchr(String, Character) -> Index
Types.
String = string()
Character = char()
Index = integer() >= 0
Returnstheindex of thefirst/last occurrenceof Char act er inSt ri ng. 0 isreturnedif Char act er doesnot occur.

str(String, SubString) -> Index
rstr(String, SubString) -> Index
Types:
String = SubString = string()
Index = integer() >= 0
Returns the position where the first/last occurrence of SubSt ri ng beginsin St ri ng. O isreturned if SubSt ri ng
doesnot existin St r i ng. For example:

> string:str(" Hello Hello World World ", "Hello World").
8

426 | Ericsson AB. All Rights Reserved.: STDLIB

string

span(String, Chars) -> Length
cspan(String, Chars) -> Length

Types:
String = Chars = string()
Length = integer() >= 0

Returns the length of the maximum initial segment of St r i ng, which consists entirely of characters from (not from)
Char s.

For example

> string:span("\t abcdef", " \t").
5

> string:cspan("\t abcdef", " \t").
0

substr(String, Start) -> SubString
substr(String, Start, Length) -> SubString
Types:
String = SubString = string()
Start = integer() >=1
Length = integer() >= 0
Returnsasubstring of St r i ng, starting at theposition St ar t , and ending at theend of the string or at length Lengt h.

For example

> substr("Hello World", 4, 5).
"lo Wo"

tokens(String, SeparatorList) -> Tokens

Types:
String = SeparatorList = string()
Tokens = [Token :: nonempty string()]

Returnsalist of tokensin St r i ng, separated by the charactersin Separ at or Li st .

For example

> tokens("abc defxxghix jkl", "x ").
[llabcll' Ilde.fll' Ilghill' IIjk'LII]

Note that, as shown in the example above, two or more adjacent separator charactersin St ri ng will be treated as
one. That is, there will not be any empty stringsin the resulting list of tokens.

join(StringlList, Separator) -> String
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 427

string

StringlList = [string()]

Separator = String = string()
Returns a string with the elements of St ri ngLi st separated by the string in Separ at or .
For example

> join([llonell’ lltwoll’ Ilthreell]' II, II)'
"one, two, three"

chars(Character, Number) -> String
chars(Character, Number, Tail) -> String
Types.

Character = char()

Number = integer() >= 0

Tail = String = string()

Returnsastring consisting of Nunber of charactersChar act er . Optionaly, the string can end with the string Tai | .

copies(String, Number) -> Copies

Types:
String = Copies = string()
Number = integer() >= 0

Returns a string containing St r i ng repeated Nunber times.

words(String) -> Count
words(String, Character) -> Count
Types.
String = string()
Character = char()
Count = integer() >=1
Returns the number of wordsin St r i ng, separated by blanks or Char act er .
For example;

> words (" Hello old boy!", $0).
4

sub word(String, Number) -> Word
sub word(String, Number, Character) -> Word

Types.
String = Word = string()
Number = integer()

Character = char()
Returnsthe word in position Nunber of St ri ng. Words are separated by blanks or Char act er s.

428 | Ericsson AB. All Rights Reserved.: STDLIB

string

For example:

> string:sub word(" Hello old boy !'",3,%0).
Illd bll

strip(String :: string()) -> string()
strip(String, Direction) -> Stripped
strip(String, Direction, Character) -> Stripped
Types:

String = Stripped = string()

Direction = left | right | both

Character char()

Returns a string, where leading and/or trailing blanks or anumber of Char act er have beenremoved. Di r ect i on
canbel ef t, ri ght, or bot h and indicates from which direction blanks are to be removed. Thefunctionstri p/ 1
isequivalenttostri p(String, both).

For example:

> string:strip("...Hello..... ", both, $.).
"Hello"

left(String, Number) -> Left
left(String, Number, Character) -> Left

Types:
String = Left = string()
Number = integer() >= 0

Character = char()

Returns the St ri ng with the length adjusted in accordance with Number . The left margin is fixed. If the
Il engt h(String) <Number, Stri ng ispadded with blanks or Char act er s.

For example:

> string:left("Hello",10,$.).
el o oo "

right(String, Number) -> Right
right(String, Number, Character) -> Right

Types:
String = Right = string()
Number = integer() >= 0

Character = char()

Returnsthe St r i ng with the length adjusted in accordance with Nunber . Theright margin isfixed. If the length of
(String) <Nunber, Stri ng ispadded with blanksor Char act er s.

Ericsson AB. All Rights Reserved.: STDLIB | 429

string

For example:

> string:right("Hello", 10, $.).
R Hello"

centre(String, Number) -> Centered
centre(String, Number, Character) -> Centered
Types:

String = Centered = string()

Number integer() >= 0

Character = char()

Returns a string, where St r i ng is centred in the string and surrounded by blanks or characters. The resulting string
will have the length Number .

sub_string(String, Start) -> SubString
sub _string(String, Start, Stop) -> SubString
Types:
String = SubString = string()
Start = Stop = integer() >=1
Returns asubstring of St ri ng, starting at the position St ar t to the end of the string, or to and including the St op
position.
For example

sub_string("Hello World", 4, 8).
"lo Wo"

to float(String) -> {Float, Rest} | {error, Reason}
Types:
String = string()
Float = float()
Rest = string()
Reason = no_float | not _a list
Argument St r i ng isexpected to start with avalid text represented float (the digits being ASCII values). Remaining
charactersin the string after the float are returned in Rest .

Example:

> {F1,Fs} = string:to float("1.0-1.0e-1"),
> {F2,[]1} = string:to float(Fs),

> F1+F2.

0.9

\%

string:to float("3/2=1.5").
{error,no_float}
> string:to float("-1.5eX").

430 | Ericsson AB. All Rights Reserved.: STDLIB

string

{-1.5,"eX"}

to integer(String) -> {Int, Rest} | {error, Reason}
Types:
String = string()
Int = integer()
Rest = string()
Reason = no integer | not a list
Argument St r i ng isexpected to start with avalid text represented integer (the digitsbeing ASCII values). Remaining
charactersin the string after the integer are returned in Rest .

Example:
> {I1,Is} = string:to integer("33+22"),
> {I2,[]} = string:to integer(Is),
> I1-12.
11
> string:to integer("0.5").
{0' n .5"}

> string:to integer("x=2").
{error,no_integer}

to lower(String) -> Result

to lower(Char) -> CharResult

to upper(String) -> Result

to upper(Char) -> CharResult

Types:
String = Result = io_lib:latinl_string()
Char = CharResult = char()

The given string or character is case-converted. Note that the supported character set is | SO/IEC 8859-1 (a.k.a. Latin
1), all values outside this set is unchanged

Notes

Some of the general string functions may seem to overlap each other. The reason for thisisthat this string package is
the combination of two earlier packages and all the functions of both packages have been retained.

Note:

Any undocumented functionsin st r i ng should not be used.

Ericsson AB. All Rights Reserved.: STDLIB | 431

supervisor

supervisor

Erlang module

A behaviour module for implementing a supervisor, a process which supervises other processes called child processes.
A child process can either be another supervisor or a worker process. Worker processes are normally implemented
usingoneof thegen_event ,gen_fsmorgen_ser ver behaviours. A supervisor implemented using thismodule
will have a standard set of interface functions and include functionality for tracing and error reporting. Supervisors
are used to build an hierarchical process structure called a supervision tree, a nice way to structure a fault tolerant
application. Refer to OTP Design Principles for more information.

A supervisor assumes the definition of which child processes to superviseto be located in a callback module exporting
apre-defined set of functions.

Unless otherwise stated, all functions in this module will fail if the specified supervisor does not exist or if bad
arguments are given.

Supervision Principles

The supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a supervisor
isthat it should keep its child processes aive by restarting them when necessary.

Thechildren of asupervisor isdefined asalist of child specifications. When the supervisor isstarted, the child processes
are started in order from left to right according to thislist. When the supervisor terminates, it first terminatesits child
processes in reversed start order, from right to left.

A supervisor can have one of the following restart strategies:

« one_for_one -if onechild process terminates and should be restarted, only that child process is affected.

« one_for_all -if onechild processterminates and should be restarted, all other child processes are terminated
and then all child processes are restarted.

 rest_for_one -if one child process terminates and should be restarted, the 'rest' of the child processes -- i.e.
the child processes after the terminated child processin the start order -- are terminated. Then the terminated child
process and all child processes after it are restarted.

« sinple_one_for_one-asmplifiedone_f or _one supervisor, where all child processes are dynamically
added instances of the same process type, i.e. running the same code.

The functions del ete_child/2 and restart _child/ 2 are invaid for si npl e_one_for_one
supervisors and will return { error, si npl e_one_for _one} if the specified supervisor uses this restart
strategy.

The function t er mi nat e_chi | d/ 2 can be used for children under si npl e_one_f or _one supervisors
by giving the child's pi d() as the second argument. If instead the child specification identifier is used,
term nate_chil d/ 2 will retun{error, si npl e_one_for_one}.

Becauseasi npl e_one_f or _one supervisor could have many children, it shuts them all down at sametime.
So, order in which they are stopped is not defined. For the same reason, it could have an overhead with regards
to the Shut down strategy.

To prevent asupervisor from getting into an infinite loop of child processterminations and restarts, amaximumrestart
frequency is defined using two integer values Max Rand Max T. If morethan Max Rrestarts occur within Max T seconds,
the supervisor terminates all child processes and then itself.

Thisisthe type definition of a child specification:

child spec() = {Id,StartFunc,Restart,Shutdown, Type,Modules}

432 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

Id = term()
StartFunc = {M,F,A}
M = F = atom()

A = [term()]

Restart = permanent | transient | temporary
Shutdown = brutal kill | int()>0 | infinity
Type = worker | supervisor

Modules = [Module] | dynamic

Module = atom()

| d isanamethat is used to identify the child specification internally by the supervisor.

St ar t Func defines the function call used to start the child process. It should be a modul e-function-arguments
tuple{ M F, A} usedasappl y(M F, A) .

The start function must create and link to the child process, and should return {ok, Child} or
{ ok, Chi |l d, | nf o} where Chi | d isthe pid of the child process and | nf 0 an arbitrary term which isignored
by the supervisor.

The start function can also return i gnor e if the child process for some reason cannot be started, in which case
the child specification will be kept by the supervisor (unless it is atemporary child) but the non-existing child
process will be ignored.

If something goes wrong, the function may also return an error tuple{ error, Error}.

Notethat thest art _| i nk functions of the different behaviour modules fulfill the above reguirements.

Rest art defines when a terminated child process should be restarted. A per manent child process should
always be restarted, at enpor ar y child process should never be restarted (even when the supervisor's restart
strategy isrest _for_one or one_for_all and a sibling's death causes the temporary process to be
terminated) and at r ansi ent child process should berestarted only if it terminates abnormally, i.e. with another
exit reason than nor mal , shut down or { shut down, Ter n} .

Shut down defines how a child process should be terminated. br ut al _ki | | means the child process will be
unconditionally terminated using exi t (Chi | d, ki I). An integer timeout value means that the supervisor
will tell the child process to terminate by calling exi t (Chi | d, shut down) and then wait for an exit signal
with reason shut down back from the child process. If no exit signal is received within the specified number of
milliseconds, the child process is unconditionally terminated usingexi t (Chi I d, ki I'1).

If the child processis another supervisor, Shut down should besettoi nfi ni t y to give the subtree ampletime
to shutdown. It isalso allowed to setittoi nfi ni ty, if the child processis aworker.

Warning:

Be careful by setting the Shut down strategy toi nf i ni t y when the child processisaworker. Because, in
this situation, the termination of the supervision tree depends on the child process, it must be implemented
in asafe way and its cleanup procedure must always return.

Note that al child processes implemented using the standard OTP behavior modules automatically adhere to the
shutdown protocol.

Type specifiesif the child processis a supervisor or aworker.

Mbdul es isused by therelease handler during code replacement to determine which processesareusing acertain
module. As a rule of thumb Modul es should be a list with one element [Modul e] , where Mbdul e is the
callback module, if the child process is a supervisor, gen_server or gen_fsm. If the child process is an event
manager (gen_event) with adynamic set of callback modules, Modul es should be dynamni c. See OTP Design
Principles for more information about release handling.

Ericsson AB. All Rights Reserved.: STDLIB | 433

supervisor

e Internaly, the supervisor also keepstrack of the pid Chi | d of the child process, or undef i ned if no pid exists.

Data Types

child() = undefined | pid()

child id() = term()

Notapi d() .

child spec() =
{Id :: child.id(),
StartFunc :: nfargs(),
Restart :: restart(),
Shutdown :: shutdown(),
Type :: worker(),
Modules :: nodul es() }

mfargs() =
{M :: module(), F :: atom(), A :: [term()] | undefined}
A (the argument list) hasthe valueundef i ned if Rest art ist enporary.

modules() = [module()] | dynamic
restart() = permanent | transient | temporary
shutdown() = brutal kill | timeout()

strategy() = one for all

| one for one

| rest for one

| simple one for one
sup_ref() (Name :: atom())

{Name :: atom(), Node :: node()}

|

| {global, Name :: atom()}

| {via, Module :: module(), Name :: any()}
| pid()

worker() = worker | supervisor

Exports

start _link(Module, Args) -> startlink_ret()
start _link(SupName, Module, Args) -> startlink_ret()
Types.
SupName = sup_nane()
Module = module()
Args = term()
startlink ret() {ok, pid()}
ignore

I

| {error, startlink_ err()}
startlink err() = {already started, pid()}
I

{shutdown, term()}

| term()
sup_name() = {local, Name :: atom()}
| {global, Name :: atom()}

434 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

| {via, Module :: module(), Name :: any()}

Creates a supervisor process as part of a supervision tree. The function will, among other things, ensure that the
supervisor islinked to the calling process (its supervisor).

The created supervisor process callsMbdul e: i ni t/ 1 tofind out about restart strategy, maximum restart frequency
and child processes. To ensure a synchronized start-up procedure, start | i nk/ 2, 3 does not return until
Modul e: i ni t/ 1 hasreturned and all child processes have been started.

If SupName={l ocal , Nanme} the supervisor is registered locally as Name using register/2. If
SupName={ gl obal , Nane} the supervisor isregistered globally asName using gl obal : r egi st er _nane/ 2.
If SupNanme={vi a, Modul e, Nane} the supervisor is registered as Nane using the registry represented by
Modul e. The Modul e callback should export the functions r egi st er _name/ 2, unr egi ster _nane/ 1 and
send/ 2, which should behavelikethe corresponding functionsingl obal . Thus, { vi a, gl obal , Nane} isavalid
reference.

If no nameis provided, the supervisor is not registered.
Mbdul e isthe name of the callback module.
Ar gs isan arbitrary term which is passed as the argument to Modul e: i ni t/ 1.

If the supervisor and its child processes are successfully created (i.e. if al child process start functions return
{ok, Child}, {ok, Child,Info}, orignore) the function returns { ok, Pi d}, where Pi d is the pid of
the supervisor. If there aready exists a process with the specified SupNane the function returns { error,
{already_started, Pid}},wherePi disthepid of that process.

If Modul e: i ni t/ 1returnsi gnor e, thisfunctionreturnsi gnor e aswell and the supervisor terminateswith reason
nor mal . If Modul e: i ni t/ 1 failsor returnsanincorrect value, thisfunctionreturns{ er r or , Ter n} whereTer m
isaterm with information about the error, and the supervisor terminates with reason Ter m

If any child process start function fails or returns an error tuple or an erroneous value, the supervisor will first
terminate al already started child processes with reason shut down and then terminate itself and return { er r or ,
{shut down, Reason}}.

start _child(SupRef, ChildSpec) -> startchild_ret()
Types:
SupRef = sup_ref()
ChildSpec = child_spec() | (List :: [term()])
child spec() =
{Id :: child.id(),
StartFunc :: nfargs(),
Restart :: restart(),
Shutdown :: shutdown(),
Type :: worker(),
Modules :: nodul es() }
startchild ret() = {ok, Child :: child()}
| {ok, Child :: child(), Info :: term()}
| {error, startchild_err()}
= already present
| {already started, Child :: child()}
| term()

Dynamically adds a child specification to the supervisor SupRef which starts the corresponding child process.

startchild err()

SupRef can be:

Ericsson AB. All Rights Reserved.: STDLIB | 435

supervisor

e thepid,

* Nane, if the supervisor islocaly registered,

« {Nane, Node}, if the supervisor islocaly registered at another node, or

 {gl obal, Nane}, if the supervisor is globally registered.

« {via, Modul e, Nane}, if the supervisor is registered through an alternative process registry.

Chi | dSpec should be a valid child specification (unless the supervisor isasi npl e_one_f or _one supervisor,
see below). The child process will be started by using the start function as defined in the child specification.

If the case of asi npl e_one_f or _one supervisor, the child specification defined in Modul e: i ni t/ 1 will be
used and Chi | dSpec should instead be an arbitrary list of terms Li st . The child process will then be started by
appendingLi st totheexisting start function arguments, i.e. by callingapp! y(M F, A++Li st) where{ M F, A}
isthe start function defined in the child specification.

If there aready exists a child specification with the specified | d, Chi | dSpec is discarded and the function
returns {error, al ready_present} or {error,{already_started, Child}}, depending on if the
corresponding child processis running or not.

If the child process start function returns { ok, Chi | d} or { ok, Chi | d, | nf o}, the child specification and pid is
added to the supervisor and the function returns the same value.

If the child process start function returnsi gnor e, the child specification is added to the supervisor, the pid is set to
undef i ned and the function returns { ok, undef i ned}.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the child specification is
discarded and the function returns{ er r or, Err or } where Er r or isaterm containing information about the error
and child specification.

terminate child(SupRef, Id) -> Result
Types:

SupRef = sup_ref()

Id = pid() | child_id()

Result = ok | {error, Error}

Error = not_found | simple one for one
Tellsthe supervisor SupRef to terminate the given child.

If the supervisor is not si npl e_one_f or_one, | d must be the child specification identifier. The process, if
there is one, is terminated and, unless it is a temporary child, the child specification is kept by the supervisor. The
child process may later be restarted by the supervisor. The child process can aso be restarted explicitly by calling
restart_chil d/ 2.Usedel et e_chi | d/ 2 to remove the child specification.

If the child is temporary, the child specification is deleted as soon as the process terminates. This means that
del ete_chil d/ 2 hasnomeaningandrestart _chi | d/ 2 can not be used for these children.

If the supervisorissi npl e_one_f or _one, | d must bethe child process pi d() . If the specified processis aive,
but is not a child of the given supervisor, the function will return { er r or , not _f ound} . If the child specification
identifier is given instead instead of api d() , the function will return{ err or, si npl e_one_f or _one}.

If successful, the function returns ok. If there is no child specification with the specified | d, the function returns
{error,not_found}.

Seestart _chil d/ 2 for adescription of SupRef .

delete child(SupRef, Id) -> Result
Types:

436 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

SupRef = sup_ref()

Id = child_id()

Result = ok | {error, Error}

Error = running | restarting | not found | simple _one for one

Tellsthe supervisor SupRef to delete the child specification identified by | d. The corresponding child process must
not berunning, uset er m nat e_chi | d/ 2 to terminateiit.

Seestart _chil d/ 2 for adescription of SupRef .

If successful, the function returns ok. If the child specification identified by | d exists but the corresponding child
processis running or about to be restarted, the function returns{ err or, runni ng} or{error, restarti ng}
respectively. If the child specification identified by | d does not exist, the function returns{ er r or , not _f ound} .

restart _child(SupRef, Id) -> Result
Types:

SupRef = sup_ref ()

Id = child_id()

Result = {ok, Child :: child()}

| {ok, Child :: child(), Info :: term()}
| {error, Error}

= running

| restarting

| not found

| simple one for one

| term()

Tells the supervisor SupRef to restart a child process corresponding to the child specification identified by | d. The
child specification must exist and the corresponding child process must not be running.

Note that for temporary children, the child specification is automatically deleted when the child terminates, and thus
it is not possible to restart such children.

Seestart _chil d/ 2 for adescription of SupRef .

If the child specification identified by | d does not exist, the function returns{ er r or , not _f ound} . If the child
specification exists but the corresponding processis already running, the function returns{ er r or, r unni ng} .

If the child process start function returns { ok, Chi | d} or { ok, Chi | d, | nf 0}, the pid is added to the supervisor
and the function returns the same value.

If the child process start function returns i gnor e, the pid remains set to undef i ned and the function returns
{ ok, undef i ned}.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the function returns
{error, Error} whereError isaterm containing information about the error.

which children(SupRef) -> [{Id, Child, Type, Modules}]
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 437

supervisor

SupRef = sup_ref()

Id = child_id() | undefined
Child = child() | restarting
Type = worker ()

Modules = nodul es()

Returns a newly created list with information about all child specifications and child processes belonging to the
supervisor SupRef .

Note that calling this function when supervising a large number of children under low memory conditions can cause
an out of memory exception.

Seestart _chil d/ 2 for adescription of SupRef .
Theinformation given for each child specification/processis:

e | d - asdefined in the child specification or undef i ned inthecaseof asi npl e_one_f or _one supervisor.

e Chi | d - thepid of the corresponding child process, theatomr est ar t i ng if the processis about to be restarted
or undef i ned if there is no such process.

* Type - asdefined in the child specification.
e Mbodul es - asdefined in the child specification.

count children(SupRef) -> PropListOfCounts
Types.

SupRef = sup_ref()

PropListOfCounts = [Count]

Count = {specs, ChildSpecCount :: integer() >= 0}
| {active, ActiveProcessCount :: integer() >= 0}
| {supervisors,
ChildSupervisorCount :: integer() >= 0}
| {workers, ChildWorkerCount :: integer() >= 0}

Returns a property list (seepr opl i st s) containing the counts for each of the following elements of the supervisor's
child specifications and managed processes:

e specs - thetotal count of children, dead or aive.

e active -thecount of all actively running child processes managed by this supervisor.

e supervi sors - the count of al children marked as child_type = supervisor in the spec list, whether or not the
child processis till alive.

e« workers - the count of al children marked as child_type = worker in the spec list, whether or not the child
processis till aive.

check childspecs(ChildSpecs) -> Result

Types.
ChildSpecs = [child_spec()]
Result = ok | {error, Error :: term()}

This function takes a list of child specification as argument and returns ok if all of them are syntactically correct, or
{error, Error} otherwise.

CALLBACK FUNCTIONS

The following functions should be exported from asuper vi sor callback module.

438 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

Exports

Module:init(Args) -> Result
Types:
Args = term)
Result = {ok, {{Restart Strategy, MaxR, MaxT}, [Chi |l dSpec]}} | ignore
Restart Strategy = strategy()
MaxR = integer ()>=0
MaxT = integer()>0
Chi | dSpec = chil d_spec()
Whenever asupervisorisstartedusingsuper vi sor: start _|i nk/ 2, 3, thisfunctioniscalled by the new process
to find out about restart strategy, maximum restart frequency and child specifications.
Ar gs isthe Ar gs argument provided to the start function.

Rest art St r at egy is the restart strategy and MaxR and Max T defines the maximum restart frequency of the
supervisor. [Chi | dSpec] isalist of valid child specifications defining which child processes the supervisor should
start and monitor. See the discussion about Supervision Principles above.

Note that when the restart strategy issi npl e_one_f or _one, thelist of child specifications must be alist with one
child specification only. (The | d isignored). No child process is then started during the initialization phase, but all
children are assumed to be started dynamically using super vi sor: start _chi | d/ 2.

The function may also returni gnor e.

SEE ALSO
gen_event(3), gen_fsm(3), gen_server(3), sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 439

supervisor_bridge

supervisor_bridge

Erlang module

A behaviour module for implementing a supervisor_bridge, a process which connects a subsystem not designed
according to the OTP design principles to asupervision tree. The supervisor_bridge sits between a supervisor and the
subsystem. It behaves like a real supervisor to its own supervisor, but has a different interface than areal supervisor
to the subsystem. Refer to OTP Design Principles for more information.

A supervisor_bridge assumes the functions for starting and stopping the subsystem to be located in a callback module
exporting a pre-defined set of functions.

The sys module can be used for debugging a supervisor_bridge.

Unless otherwise stated, all functions in this module will fail if the specified supervisor_bridge does not exist or if
bad arguments are given.

Exports

start_link(Module, Args) -> Result
start _link(SupBridgeName, Module, Args) -> Result
Types:
SupBridgeName = {local, Name} | {global, Name}
Name = atom()
Module = module()
Args = term()
Result = {ok, Pid} | ignore | {error, Error}
Error = {already started, Pid} | term()
Pid = pid()
Creates a supervisor_bridge process, linked to the calling process, which calls Modul e:init/ 1 to start the

subsystem. To ensure a synchronized start-up procedure, this function does not return until Modul e: i nit/ 1 has
returned.

If SupBri dgeName={I| ocal , Nane} the supervisor_bridge is registered locally as Nanme using r egi st er/ 2.
If SupBridgeNane={gl obal , Nane} the supervisor_bridge is registered globally as Nane using
gl obal : regi st er _name/ 2.1f SupBr i dgeName={ vi a, Modul e, Nane} thesupervisor_bridgeisregistered
as Nane using a registry represented by Module. The Modul e calback should export the functions
regi ster_name/ 2, unregi ster_name/1 and send/ 2, which should behave like the corresponding
functions in gl obal . Thus, {vi a, gl obal , A obal Nane} is a valid reference. If no name is provided, the
supervisor_bridgeisnot registered. If there already exists aprocess with the specified SupBr i dgeNane the function
returns{ error, {al ready_started, Pi d}}, wherePi d isthe pid of that process.

Modul e isthe name of the callback module.
Ar gs isan arbitrary term which is passed as the argument to Modul e: i ni t/ 1.

If the supervisor_bridge and the subsystem are successfully started the function returns{ ok, Pi d} , where Pi d isis
the pid of the supervisor_bridge.

If Modul e: i nit/1 returnsi gnor e, this function returnsi gnor e as well and the supervisor_bridge terminates
with reason nor el . If Modul e: i ni t/ 1 failsor returns an error tuple or an incorrect value, this function returns
{error, Errorr} whereError isaterm with information about the error, and the supervisor_bridge terminates
with reason Er r or .

440 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor_bridge

CALLBACK FUNCTIONS

The following functions should be exported from asuper vi sor _br i dge callback module.

Exports

Module:init(Args) -> Result
Types.
Args = term)
Result = {ok,Pid,State} | ignore | {error,Error}
Pid = pid()
State term))
Error term))

Whenever asupervisor_bridgeisstarted usingsuper vi sor _bri dge: start _|i nk/ 2, 3,thisfunctioniscalled
by the new processto start the subsystem and initialize.

I o

Ar gs isthe Ar gs argument provided to the start function.

Thefunction should return{ ok, Pi d, St at e} wherePi d isthe pid of themain processinthe subsystemand St at e
isany term.

If later Pi d terminates with a reason Reason, the supervisor bridge will terminate with reason Reason
as well. If later the supervisor_bridge is stopped by its supervisor with reason Reason, it will call
Modul e: t er m nat e(Reason, St at e) to terminate.

If something goes wrong during the initialization the function should return{ er r or , Err or } where Er r or isany
term, ori gnor e.

Module:terminate(Reason, State)
Types:
Reason = shutdown | term()
State = term))

This function is caled by the supervisor_bridge when it is about to terminate. It should be the opposite of
Modul e: i ni t/ 1 and stop the subsystem and do any necessary cleaning up. The return value isignored.

Reason isshut down if the supervisor_bridge is terminated by its supervisor. If the supervisor_bridge terminates
because aalinked process (apart from the main process of the subsystem) has terminated with reason Ter m Reason
will be Ter m

St at e istaken from thereturn value of Modul e: i ni t/ 1.

SEE ALSO
supervisor (3), sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 441

sys

Sys

Erlang module

This module contains functions for sending system messages used by programs, and messages used for debugging
purposes.

Functions used for implementation of processes should also understand system messages such as debugging messages
and code change. These functions must be used to implement the use of system messages for a process; either directly,
or through standard behaviours, such asgen_ser ver.

The default timeout is 5000 ms, unless otherwise specified. The t i meout defines the time period to wait for the
process to respond to a request. If the process does not respond, the function evaluates exi t ({ti meout, {M

F, Al}).

The functions make reference to a debug structure. The debug structureis alist of dbg_opt () . dbg_opt () isan
internal datatype used by thehandl e_syst em nsg/ 6 function. No debugging is performed if it isan empty list.

System Messages

Processes which are not implemented as one of the standard behaviours must still understand system messages. There
are three different messages which must be understood:

e Plain system messages. These are received as { system From Msg}. The content and meaning of this
message are not interpreted by the receiving process module. When a system message has been received, the
functionsys: handl e_syst em nsg/ 6 iscaled in order to handle the request.

» Shutdown messages. If the process traps exits, it must be able to handle an shut-down request from its parent, the
supervisor. Themessage{' EXI T', Parent, Reason} fromtheparentisan order toterminate. The process
must terminate when this message is received, normally with the same Reason asPar ent .

e There is one more message which the process must understand if the modules used to implement the process
change dynamically during runtime. An example of such aprocessisthegen_event processes. Thismessageis
{get nodul es, Front.ThereplytothismessageisFrom! {nmodul es, Modul es}, whereModul es
isalist of the currently active modules in the process.

This message is used by the release handler to find which processes execute a certain module. The process may
at alater time be suspended and ordered to perform a code change for one of its modules.

System Events

When debugging a process with the functions of this module, the process generates system events which are then
treated in the debug function. For example, t r ace formats the system eventsto the tty.

There are three predefined system events which are used when a process receives or sends amessage. The process can
also define its own system events. It is always up to the process itself to format these events.

Data Types

name() = pid() | atom() | {global, atom()}

system event() = {in, Msg i term()}
| {in, Msg :: term(), From :: term()}
| {out, Msg i term(), To :: term()}
| term(

dbg opt()

See above.

442 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

dbg fun() =
fun((FuncState :: term(),
Event :: systemevent(),
ProcState :: term()) ->
done | (NewFuncState :: term()))
format fun() =
fun((Device :: io:device() | file:io_device(),
Event :: system event(),
Extra :: term()) ->
any())
Exports

log(Name, Flag) -> ok | {ok, [systemevent()]}
log(Name, Flag, Timeout) -> ok | {ok, [systemevent()]}

Types:
Name = nane()
Flag = true | {true, N :: integer() >= 1} | false | get | print

Timeout = timeout()

Turns the logging of system events On or Off. If On, a maximum of N events are kept in the debug structure (the
defaultis 10). If Fl ag isget , alist of al logged eventsisreturned. If Fl ag ispri nt, thelogged events are printed
tost andar d_i 0. The events are formatted with a function that is defined by the process that generated the event
(withacall tosys: handl e_debug/ 4).

log to file(Name, Flag) -> ok | {error, open file}
log to file(Name, Flag, Timeout) -> ok | {error, open file}

Types:
Name = nane()
Flag = (FileName :: string()) | false

Timeout = timeout()

Enables or disables the logging of all system events in textual format to the file. The events are formatted with a
function that is defined by the process that generated the event (with acall tosys: handl e_debug/ 4).

statistics(Name, Flag) -> ok | {ok, Statistics}
statistics(Name, Flag, Timeout) -> ok | {ok, Statistics}

Types:
Name = nane()
Flag = true | false | get

Statistics = [StatisticsTuple] | no statistics

StatisticsTuple = {start time, DateTimel}

| {current time, DateTime2}

| {reductions, integer() >= 0}
| {messages in, integer() >= 0}

Ericsson AB. All Rights Reserved.: STDLIB | 443

sys

| {messages out, integer() >= 0}
DateTimel = DateTime2 = file:date_ tine()
Timeout = timeout()

Enables or disables the collection of statistics. If Fl ag isget , the statistical collection is returned.

trace(Name, Flag) -> ok
trace(Name, Flag, Timeout) -> ok

Types:
Name = nane()
Flag = boolean()

Timeout = timeout()

Prints all system eventson st andar d_i o. The events are formatted with a function that is defined by the process
that generated the event (with acall tosys: handl e_debug/ 4).

no_debug(Name) -> ok
no debug(Name, Timeout) -> ok
Types.

Name = nane()

Timeout = timeout()

Turns off all debugging for the process. Thisincludes functionsthat have been installed explicitly with thei nst al |
function, for example triggers.

suspend(Name) -> ok
suspend(Name, Timeout) -> ok
Types.

Name = nane()

Timeout = timeout()

Suspends the process. When the process is suspended, it will only respond to other system messages, but not other
messages.

resume(Name) -> ok
resume(Name, Timeout) -> ok
Types.

Name = nane()

Timeout = timeout()

Resumes a suspended process.

change code(Name, Module, O0ldVsn, Extra) -> ok | {error, Reason}

change code(Name, Module, 0ldVsn, Extra, Timeout) ->
ok | {error, Reason}

Types.

444 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

Name = nane()

Module = module()

0ldVsn undefined | term()
Extra = term()

Timeout = timeout()

Reason = term()

Tells the process to change code. The process must be suspended to handle this message. The Ext r a argument is
reserved for each process to use asits own. The function Modul e: syst em code_change/ 4 iscaled. O dVsn
isthe old version of the Mbdul e.

get status(Name) -> Status
get status(Name, Timeout) -> Status
Types:

Name = nane()

Timeout = timeout()

Status =
{status, Pid :: pid(), {module, Module :: module()}, [SItem]}

SItem = (PDict :: [{Key :: term(), Value :: term()}])
| (SysState :: running | suspended)
| (Parent :: pid())
| (Dbg :: [dbg_opt()])
| (Misc :: term())
Gets the status of the process.

The value of M sc varies for different types of processes. For example, a gen_server process returns the
callback modul€e's state, a gen_f smprocess returns information such as its current state name and state data, and a
gen_event processreturnsinformation about each of its registered handlers. Callback modulesfor gen_ser ver,
gen_fsm and gen_event can aso customise the value of M sc by exporting a format _st at us/ 2
function that contributes module-specific information; see gen_server:format_status/2, gen fsm:format_status/2, and
gen_event:format_status/2 for more details.

get state(Name) -> State
get state(Name, Timeout) -> State
Types.

Name = nane()

Timeout = timeout()

State = term()

Gets the state of the process.

Note:

These functions are intended only to help with debugging. They are provided for convenience, allowing
developers to avoid having to create their own state extraction functions and also avoid having to interactively
extract state from the return values of get _st at us/ 1 or get _st at us/ 2 while debugging.

Ericsson AB. All Rights Reserved.: STDLIB | 445

sys

The value of St at e varies for different types of processes. For a gen_ser ver process, the returned St at e
is simply the callback module's state. For a gen_f sm process, St at e is the tuple { Cur r ent St at eNane,

Current St at eDat a}. For agen_event process, St at e alist of tuples, where each tuple corresponds to an
event handler registered in the process and contains { Modul e, 1d, Handl er St at e}, where Modul e isthe
event handler's module name, | d is the handler's ID (which isthe value f al se if it was registered without an ID),
and Handl er St at e isthe handler's state.

If the callback module exports a syst em get st at e/ 1 function, it will be called in the target process to get
its state. Its argument is the same as the M sc value returned by get_statug/1,2, and the syst em get _state/ 1
function isexpected to extract the callback module's statefromit. Thesyst em get st at e/ 1 function must return
{ok, State} whereSt at e isthecallback modul€'s state.

If the callback module does not export asyst em get st at e/ 1 function, get _st at e/ 1, 2 assumestheM sc
valueis the callback modul€'s state and returns it directly instead.

If the callback module'ssyst em get _st at e/ 1 function crashes or throws an exception, the caller exitswith error
{cal | back_failed, {Mdule, systemget state}, {d ass, Reason}} whereMdul e isthe
name of the callback module and Cl ass and Reason indicate details of the exception.

Thesyst em get _st at e/ 1 function is primarily useful for user-defined behaviours and modules that implement
OTP special processes. The gen_server, gen_fsm and gen_event OTP behaviour modules export this
function, and so callback modules for those behaviours need not supply their own.

To obtain more information about a process, including its state, see get_status/1 and get_status/2.

replace state(Name, StateFun) -> NewState
replace state(Name, StateFun, Timeout) -> NewState
Types:
Name = nane()
StateFun = fun((State :: term()) -> NewState :: term())
Timeout = timeout()
NewState = term()

Replaces the state of the process, and returns the new state.

Note:

These functions are intended only to help with debugging, and they should not be be called from normal
code. They are provided for convenience, allowing devel opers to avoid having to create their own custom state
replacement functions.

The St at eFun function provides a new state for the process. The St at e argument and NewSt at e return value
of St at eFun vary for different types of processes. For a gen_ser ver process, St at e is simply the callback
module's state, and NewSt at e is a new instance of that state. For a gen_f sm process, St at e is the tuple
{Current St at eNanme, Current St at eDat a}, and NewSt at e isasimilar tuplethat may contain anew state
name, new state data, or both. For agen_event process, St at e isthetuple{ Modul e, 1d, Handl er St at e}
where Mbdul e is the event handler's module name, | d is the handler's ID (which is the value f al se if it was
registered without an D), and Handl er St at e isthe handler's state. NewSt at e is asimilar tuple where Modul e
and | d shall have the same values as in St at e but the value of Handl er St at e may be different. Returning
a NewSt at e whose Modul e or | d values differ from those of St at e will result in the event handler's state
remaining unchanged. For agen_event process, St at eFun iscalled once for each event handler registered in the
gen_event process.

446 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

If a St at eFun function decides not to effect any change in process state, then regardless of process type, it may
simply return its St at e argument.

If aSt at eFun function crashes or throwsan exception, thenforgen_ser ver andgen_f smprocesses, theoriginal
state of the process is unchanged. For gen_event processes, a crashing or failing St at eFun function means that
only the state of the particular event handler it was working on when it failed or crashed is unchanged; it can still
succeed in changing the states of other event handlers registered in the sasme gen_event process.

If the callback module exports a syst em r epl ace_st at e/ 2 function, it will be called in the target process
to replace its state using St at eFun. Its two arguments are St at eFun and M sc, where M sc is the same as
the M sc value returned by get_status/1,2. A syst em r epl ace_st at e/ 2 function is expected to return { ok,
NewSt at e, NewM sc} where NewSt at e isthe callback module's new state obtained by calling St at eFun, and
NewM sc isapossibly new value used to replace the original M sc (required sinceM sc often contains the callback
modul€e's state within it).

If the callback module does not export asyst em r epl ace_st at e/ 2 function, r epl ace_st at e/ 2, 3 assumes
the M sc valueisthe callback modul€e's state, passesit to St at eFun and uses the return value as both the new state
and asthe new value of M sc.

If the callback module's syst em r epl ace_st at e/ 2 function crashes or throws an exception, the caller exits
with error { cal | back_fail ed, {Mddule, systemreplace_state}, {C ass, Reason}} where
Modul e isthe name of the callback moduleand Cl ass and Reason indicate details of the exception. If the callback
module does not provideasyst em r epl ace_st at e/ 2 function and St at eFun crashes or throws an exception,
the caller exitswith error { cal | back_fail ed, StateFun, {C ass, Reason}}.

The system r epl ace_st at e/ 2 function is primarily useful for user-defined behaviours and modules that
implement OTP special processes. Thegen_ser ver,gen_f smandgen_event OTP behaviour modules export
this function, and so callback modules for those behaviours need not supply their own.

install(Name, FuncSpec) -> ok
install(Name, FuncSpec, Timeout) -> ok
Types:
Name = nane()
FuncSpec = {Func, FuncState}
Func = dbg_fun()
FuncState = term()
Timeout = timeout()
This function makes it possible to install other debug functions than the ones defined above. An example of such a

functionisatrigger, afunction that waitsfor some special event and performs some action when the event is generated.
This could, for example, be turning on low level tracing.

Func is called whenever a system event is generated. This function should return done, or a new func state. In the
first case, the function is removed. It isremoved if the function fails.

remove (Name, Func) -> ok
remove (Name, Func, Timeout) -> ok

Types:
Name = nane()
Func = dbg_fun()

Timeout = timeout()
Removes a previoudy installed debug function from the process. Func must be the same as previously installed.

Ericsson AB. All Rights Reserved.: STDLIB | 447

sys

Process Implementation Functions

The following functions are used when implementing a specia process. This is an ordinary process which does not
use a standard behaviour, but a process which understands the standard system messages.

Exports

debug options(Options) -> [dbg_opt()]

Types.
Options = [Opt]
Opt = trace
| log
| {log, integer() >= 1}
| statistics
| {Log to file, FileName}
| {install, FuncSpec}
FileName = fil e: name()
FuncSpec = {Func, FuncState}

Func = dbg_fun()
FuncState = term()

This function can be used by a process that initiates a debug structure from alist of options. The values of the Opt
argument are the same as the corresponding functions.

get debug(Item, Debug, Default) -> term()
Types:

Item = log | statistics

Debug = [dbg_opt ()]

Default = term()

This function gets the data associated with a debug option. Def aul t isreturned if the | t emis not found. Can be
used by the process to retrieve debug data for printing before it terminates.

handle _debug(Debug, FormFunc, Extra, Event) -> [dbg_opt()]
Types:
Debug = [dbg opt ()]
FormFunc = format _fun()
Extra = term()
Event = system event()
This function is called by a process when it generates a system event. For nfFunc is a formatting function which is
caled as For nfFunc(Devi ce, Event, Extra) in order to print the events, which is necessary if tracing is

activated. Ext r a is any extra information which the process needs in the format function, for example the name of
the process.

handle system msg(Msg, From, Parent, Module, Debug, Misc) ->
no_return()
Types.

448 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

Msg = term()

From = {pid(), Tag :: term()}
Parent pid()

Module = module()

Debug = [dbg opt ()]

Misc = term()

This function is used by a process module that wishes to take care of system messages. The process receives a
{system From Msg} message and passesthe Msg and Fr omto this function.

This function never returns. It cals the function Modul e: syst em conti nue(Parent, NDebug,
M sc) where the process continues the execution, or Modul e: system tern nat e(Reason,
Par ent, Debug, M sc) if the process should terminate. The Mbdul e must export

system conti nue/ 3,systemternmninate/4,system code_change/ 4,system get state/1land
system repl ace_st at e/ 2 (see below).

The M sc argument can be used to save internal data in a process, for example its state. It is sent to
Modul e: system conti nue/ 3 or Modul e: systemterm nate/ 4

print_log(Debug) -> ok
Types:
Debug = [dbg_opt ()]

Prints the logged system events in the debug structure using For nFunc as defined when the event was generated
by acdl tohandl e_debug/ 4.

Mod:system continue(Parent, Debug, Misc) -> none()
Types:

Parent = pid()

Debug = [dbg_opt ()]

Msc = term)

This function is called from sys: handl e_syst em nmsg/ 6 when the process should continue its execution (for
example after it has been suspended). This function never returns.

Mod:system terminate(Reason, Parent, Debug, Misc) -> none()
Types:
Reason = term()

Parent = pid()
Debug = [dbg_opt ()]
Msc = term)

Thisfunctionis called from sys: handl e_syst em nsg/ 6 when the process should terminate. For example, this
function is called when the process is suspended and its parent orders shut-down. It gives the process a chance to do
aclean-up. This function never returns.

Mod:system code change(Misc, Module, 0ldVsn, Extra) -> {ok, NMisc}
Types.

Msc = term)

A dVsn = undefined | term))

Ericsson AB. All Rights Reserved.: STDLIB | 449

sys

Modul e = atom()

Extra = tern()

NMsc = tern()
Cdlled from sys: handl e_syst em nsg/ 6 when the process should perform a code change. The code change is
used when theinternal data structure has changed. Thisfunction convertstheM sc argument to the new datastructure.

A dVsn isthe vsn attribute of the old version of the Modul e. If no such attribute was defined, theatom undef i ned
is sent.

Mod:system get state(Misc) -> {ok, State}
Types:

Msc = term)

State = term)

Thisfunction iscalled from sys: handl e_syst em nsg/ 6 when the process should return aterm that reflectsits
current state. St at e isthe valuereturned by sys: get _st at e/ 2.

Mod:system replace state(StateFun, Misc) -> {ok, NState, NMisc}
Types.

StateFun = fun((State :: tern()) -> NState)

Msc = term)

NState = term)

NMsc = tern()

This function is called from sys: handl e_syst em nsg/ 6 when the process should replace its current state.
NSt at e isthevauereturned by sys: repl ace_st at e/ 3.

450 | Ericsson AB. All Rights Reserved.: STDLIB

timer

timer

Erlang module

This module provides useful functions related to time. Unless otherwise stated, time is always measured in
m | | i seconds. All timer functions return immediately, regardless of work carried out by another process.

Successful evaluations of the timer functions yield return values containing a timer reference, denoted TRef below.
By using cancel / 1, the returned reference can be used to cancel any requested action. A TRef isan Erlang term,
the contents of which must not be altered.

The timeouts are not exact, but should beat | east aslong as requested.

Data Types

time() = integer() >= 0
Time in milliseconds.

tref()

A timer reference.

Exports

start() -> ok

Startsthetimer server. Normally, the server doesnot need to be started explicitly. Itisstarted dynamically if it isneeded.
This is useful during development, but in a target system the server should be started explicitly. Use configuration
parametersfor ker nel for this.

apply after(Time, Module, Function, Arguments) ->
{ok, TRef} | {error, Reason}

Types:
Time = time()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref ()
Reason = term()

Evaluatesappl y(Modul e, Function, Argunents) after Ti me amount of time has elapsed. Returns { ok,
TRef},or{error, Reason}.

send after(Time, Message) -> {ok, TRef} | {error, Reason}

send after(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 451

timer

Time = tinme()
Pid = pid() |
Message =
TRef = tref()
Reason =
send _after/3

EvauatesPi d !

send_after/2

Sameassend_after (Ti ne,

kill after(Time)
kill after(Time,

(RegName :: atom())

term()

term()

Reason}.

sel f(), Message).

-> {ok, TRef} | {error, Reason2}
Pid) -> {ok, TRef} | {error, Reason2}
Reasonl) -> {ok, TRef} | {error, Reason2}

(
(

exit after(Time,
(

exit after(Time, Pid, Reasonl) -> {ok, TRef} | {error, Reason2}

Types:
Time = time()
Pid = pid() | (RegName :: atom())

TRef = tref()

Reasonl = Reason2 = term()
exit_after/3

Send an exit signal with reason Reasonl to Pid Pi d. Returns{ ok, TRef},or{error,
exit_after/2

Sameasexit_after(Time, self(), Reasonl).
kill _after/2

Sameasexit_after(Tine, Pid, kill).
kill _after/1

Sameasexit_after(Tinme, self(), kill).

apply interval(Time, Module, Function, Arguments) ->
{ok, TRef} | {error, Reason}

Types.
Time = time()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref ()
Reason = term()

Message after Ti me amount of time has elapsed. (Pi d can also be an atom of aregistered
name.) Returns{ ok, TRef},or{error

Reason2}.

Evaluatesappl y(Modul e, Function, Argunents) repeatedly atintervalsof Ti me. Returns{ ok, TRef},

or{error, Reason}.

452 | Ericsson AB. All Rights Reserved.: STDLIB

timer

send interval(Time, Message) -> {ok, TRef} | {error, Reason}
send interval(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
Types.
Time = time()
Pid = pid() | (RegName :: atom())
Message = term()
TRef = tref()
Reason = term()
send_interval /3

EvaluatesPi d ! Message repeatedly after Ti me amount of time has elapsed. (Pi d can aso be an atom of
aregistered name.) Returns{ ok, TRef} or{error, Reason}.

send_interval/2
Sameassend_i nterval (Tinme, self(), Message).

cancel(TRef) -> {ok, cancel} | {error, Reason}
Types.

TRef = tref ()

Reason = term()

Cancels apreviously requested timeout. TRef isaunique timer reference returned by the timer function in question.
Returns{ ok, cancel },or{error, Reason} whenTRef isnotatimer reference.

sleep(Time) -> ok
Types.
Time = timeout()

Suspends the process calling this function for Ti me amount of milliseconds and then returns ok, or suspend the
process forever if Ti me istheatomi nfi ni t y. Naturally, this function does not return immediately.

tc(Fun) -> {Time, Value}
tc(Fun, Arguments) -> {Time, Value}
tc(Module, Function, Arguments) -> {Time, Value}
Types:
Module = module()
Function = atom()
Arguments = [term()]
Time = integer()
In microseconds
Value = term()

tc/3

Evaluatesappl y(Modul e, Function, Argunents) and measuresthe elapsed rea time as reported by
os:tinmestanp/ 0. Returns{Ti me, Val ue}, where Ti ne isthe elapsed rea time in microseconds, and
Val ue iswhat isreturned from the apply.

tc/2
Evaluatesappl y(Fun, Argunents) . Otherwise worksliket c/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 453

timer

tc/l
Evaluates Fun() . Otherwise worksliket c/ 2.

now diff (T2, T1l) -> Tdiff
Types.
Tl = T2 = erlang:timestanp()
Tdiff = integer()
In microseconds

Calculates the time difference Tdi ff = T2 - T1 in microseconds, where T1 and T2 probably are timestamp
tuplesreturned fromer | ang: now 0.

seconds(Seconds) -> MilliSeconds
Types:
Seconds = MilliSeconds = integer() >= 0

Returns the number of millisecondsin Seconds.

minutes(Minutes) -> MilliSeconds
Types.
Minutes = MilliSeconds = integer() >= 0

Return the number of millisecondsin M nut es.

hours(Hours) -> MilliSeconds
Types:
Hours = MilliSeconds = integer() >= 0

Returns the number of millisecondsin Hour s.

hms (Hours, Minutes, Seconds) -> MilliSeconds
Types.
Hours = Minutes = Seconds = MilliSeconds = integer() >= 0

Returns the number of millisecondsin Hours + M nutes + Seconds.

Examples

This exampleillustrates how to print out "Hello World!" in 5 seconds:

1> timer:apply after(5000, io, format, ["~nHello World!~n", [1]).
{ok, TRef}
Hello World!

The following coding exampleillustrates a process which performs a certain action and if this action is not completed
within a certain limit, then the processis killed.

Pid = spawn(mod, fun, [foo, bar]),

454 | Ericsson AB. All Rights Reserved.: STDLIB

timer

%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill after(timer:seconds(10), Pid),

%% We change our mind...
timer:cancel(R),

WARNING

A timer can always be removed by calling cancel / 1.

An interval timer, i.e. a timer created by evaluating any of the functions apply_interval/4,
send_i nterval / 3,andsend_i nt erval / 2, islinked to the process towards which the timer performsits task.

A one-shot timer, i.e. a timer created by evaluating any of the functions appl y_after/ 4, send_after/3,
send_after/2,exit_after/3,exit_after/2,kill_after/2,andkill_after/1 isnotlinked to
any process. Hence, such atimer is removed only when it reaches its timeout, or if it is explicitly removed by a call
tocancel / 1.

Ericsson AB. All Rights Reserved.: STDLIB | 455

unicode

unicode

Erlang module

This module contains functions for converting between different character representations. Basically it converts
between |SO-latin-1 characters and Unicode ditto, but it can also convert between different Unicode encodings (like
UTF-8, UTF-16 and UTF-32).

The default Unicode encoding in Erlang is in binaries UTF-8, which is aso the format in which built in functions
and libraries in OTP expect to find binary Unicode data. In lists, Unicode data is encoded as integers, each integer
representing one character and encoded simply as the Unicode codepoint for the character.

Other Unicode encodings than integers representing codepoints or UTF-8 in binaries are referred to as "external
encodings'. The ISO-latin-1 encoding isin binaries and lists referred to as latinl-encoding.

Itisrecommended to only use external encodingsfor communication with external entitieswherethisisrequired. When
working inside the Erlang/OTP environment, it is recommended to keep binariesin UTF-8 when representing Unicode
characters. Latinl encoding is supported both for backward compatibility and for communication with external entities
not supporting Unicode character sets.

Data Types

encoding() latinl

| unicode

| utf8

| utfl6

| {utfl6, endian()}

| utf32

| {utf32, endian()}

endian() = big | little

unicode binary() = binary()

A bi nar y() with characters encoded in the UTF-8 coding standard.

chardata() = charlist() | unicode_binary()

charlist() =
maybe improper list(char() | unicode_binary() | charlist(),
uni code_binary() | [1)

external unicode binary() = binary()
A bi nar y() with characters coded in a user specified Unicode encoding other than UTF-8 (UTF-16 or UTF-32).

external chardata() = external _charlist()
| external _uni code_bi nary()
external charlist() =
maybe improper list(char() |
ext ernal _uni code_bi nary() |
external _charlist(),
external _uni code_binary() | [1)

latinl binary() = binary()

A bi nary() with characters coded in 1SO-latin-1.
latinl char() = byte()

Ani nt eger () representing valid latinl character (0-255).

456 | Ericsson AB. All Rights Reserved.: STDLIB

unicode

latinl chardata() = latinl_charlist() | latinl_binary()

Thesameasi odat a() .
latinl charlist() =
maybe improper list(latinl_char() |
latinl_binary() |
latinl _charlist(),
latinl_binary() | [1)

Thesameasi ol i st ().

Exports

bom to encoding(Bin) -> {Encoding, Length}
Types:
Bin = binary()
A bi nary() suchthat byte_si ze(Bin) >= 4.
Encoding = latinl
| utf8
| {utfl6, endian()}
| {utf32, endian()}
Length = integer() >= 0
endian() = big | little
Check for aUTF byte order mark (BOM) in the beginning of abinary. If the supplied binary Bi n beginswith avalid

byte order mark for either UTF-8, UTF-16 or UTF-32, the function returns the encoding identified along with the
length of the BOM in bytes.

If no BOM isfound, the function returns{ | ati n1, 0}

characters to list(Data) -> Result
Types.
Data = latinl_chardata() | chardata() | external _chardata()
Result = list()
|

{error, list(), RestData}
| {incomplete, list(), binary()}

RestData = latinl_chardata() | chardata() | external _chardata()
Sameascharacters_to_list(Data, unicode).

characters to list(Data, InEncoding) -> Result
Types:
Data = latinl_chardata() | chardata() | external _chardata()
InEncoding = encodi ng()
Result = list()
| {error, list(), RestData}
| {incomplete, list(), binary()}
RestData = latinl_chardata() | chardata() | external _chardata()

Convertsapossibly deep list of integersand binariesinto alist of integersrepresenting Unicode characters. The binaries
in the input may have characters encoded as latinl (0 - 255, one character per byte), in which casethel nEncodi ng

Ericsson AB. All Rights Reserved.: STDLIB | 457

unicode

parameter should begivenasl| at i n1, or have characters encoded as one of the UTF-encodings, whichisgiven asthe
| nEncodi ng parameter. Only when the | nEncodi ng is one of the UTF encodings, integersin thelist are allowed
to be grater than 255.

If | nEncodi ngisl ati n1, the Dat a parameter correspondsto thei odat a() type, but for uni code, the Dat a
parameter can contain integers greater than 255 (Unicode characters beyond the | SO-latin-1 range), which would make
itinvalidasi odat a() .

The purpose of the function is mainly to be able to convert combinations of Unicode characters into a pure Unicode
string in list representation for further processing. For writing the data to an external entity, the reverse function
characters_t o_bi nary/ 3 comesin handy.

Theoptionuni code isanaliasfor ut f 8, asthisisthe preferred encoding for Unicode charactersin binaries. ut f 16
isandiasfor {utf 16, bi g} andut f 32 isandiasfor{utf 32, big}.Thebigandlittl e atomsdenotebig
or little endian encoding.

If for some reason, the data cannot be converted, either because of illegal Unicode/latinl characters in the list, or
because of invalid UTF encoding in any binaries, an error tupleis returned. The error tuple containsthetager r or , a
list representing the characters that could be converted before the error occurred and a representation of the characters
including and after the offending integer/bytes. The last part is mostly for debugging as it still constitutes a possibly
deep and/or mixed list, not necessarily of the same depth as the origina data. The error occurs when traversing the
list and whatever isleft to decodeis simply returned asis.

However, if the input Dat a isapure binary, the third part of the error tuple is guaranteed to be abinary as well.
Errors occur for the following reasons:

« Integersout of range- If | nEncodi ng isl at i nl, an error occurs whenever an integer greater than 255 is
found inthelists. If | nEncodi ng isof aUnicode type, an error occurs whenever an integer

e greater than 16#10FFFF (the maximum Unicode character),
* intherange 16#D800 to 16#DFFF (invalid range reserved for UTF-16 surrogate pairs)
isfound.

* UTF encoding incorrect - If | nEncodi ng isone of the UTF types, the bytesin any binaries haveto bevalid in
that encoding. Errors can occur for various reasons, including "pure" decoding errors (like the upper bits of the
bytes being wrong), the bytes are decoded to atoo large number, the bytes are decoded to a code-point in the
invalid Unicode range, or encoding is "overlong", meaning that a number should have been encoded in fewer
bytes. The case of atruncated UTF is handled specialy, see the paragraph about incomplete binaries below. If
I nEncodi ngisl ati nl, binaries are always valid as long as they contain whole bytes, as each byte falsinto
the valid 1SO-latin-1 range.

A special type of error iswhen no actual invalid integers or bytes are found, but atrailing bi nar y() consists of too
few bytesto decode the last character. Thiserror might occur if bytes areread from afilein chunks or binariesin other
ways are split on non UTF character boundaries. Inthiscaseani nconpl et e tupleisreturned instead of theer r or

tuple. It consists of the same parts asthe er r or tuple, but thetag isi nconpl et e instead of er r or and the last
element is always guaranteed to be a binary consisting of the first part of a (so far) valid UTF character.

If one UTF charactersis split over two consecutive binariesin the Dat a, the conversion succeeds. This means that a
character can be decoded from arange of binaries aslong asthewholerangeisgiven asinput without errors occurring.
Example:

decode data(Data) ->
case unicode:characters to list(Data,unicode) of
{incomplete,Encoded, Rest} ->
More = get some more data(),
Encoded ++ decode data([Rest, Morel);
{error,Encoded,Rest} ->
handle error(Encoded,Rest);

458 | Ericsson AB. All Rights Reserved.: STDLIB

unicode

List ->
List
end.

Bit-strings that are not whole bytes are however not allowed, so aUTF character has to be split along 8-bit boundaries
to ever be decoded.

If any parameters are of the wrong type, the list structure is invalid (a number as tail) or the binaries do not contain
whole bytes (bit-strings), abadar g exception is thrown.

characters to binary(Data) -> Result
Types:
Data = latinl_chardata() | chardata() | external _chardata()

Result = binary()
| {error, binary(), RestData}
| {incomplete, binary(), binary()}

RestData = latinl_chardata() | chardata() | external _chardata()
Sameascharacters_to_bi nary(Data, unicode, unicode).

characters to binary(Data, InEncoding) -> Result

Types:
Data = latinl_chardata() | chardata() | external _chardata()
InEncoding = encodi ng()

Result = binary()
| {error, binary(), RestData}
| {incomplete, binary(), binary()}

RestData = latinl_chardata() | chardata() | external _chardata()
Sameascharacters_to_binary(Data, |nEncoding, unicode).

characters to binary(Data, InEncoding, OutEncoding) -> Result
Types.
Data = latinl_chardata() | chardata() | external _chardata()

InEncoding = OutEncoding = encodi ng()
Result = binary()

| {error, binary(), RestData}

| {incomplete, binary(), binary()}

RestData = latinl_chardata() | chardata() | external _chardata()
Behaves as characters_to_|i st/ 2, but produces an binary instead of a Unicode list. The | nEncodi ng

defineshow input isto beinterpreted if binariesare present inthe Dat a, while Qut Encodi ng definesin what format
output isto be generated.

Theoptionuni code isanaliasfor ut f 8, asthisisthe preferred encoding for Unicode charactersin binaries. ut f 16
isanaliasfor {utf 16, bi g} andut f 32 isandiasfor {utf 32, bi g}.Thebigandlittl e aomsdenotebig
or little endian encoding.

Errors and exceptions occur as in characters_to |ist/2, but the second element in the error or
i nconpl et e tuplewill beabi nary() andnotal i st().

Ericsson AB. All Rights Reserved.: STDLIB | 459

unicode

encoding to bom(InEncoding) -> Bin
Types:
Bin = binary()
A bi nary() suchthat byt e_si ze(Bin) >= 4.
InEncoding = encodi ng()

Create a UTF byte order mark (BOM) as a binary from the supplied | nEncodi ng. The BOM is, if supported at all,
expected to be placed first in UTF encoded files or messages.

The function returns <<>> for thel at i n1 encoding asthereisno BOM for 1SO-latin-1.

It can be noted that the BOM for UTF-8 is seldom used, and it isreally not a byte order mark. There are obviously no
byte order issues with UTF-8, so the BOM is only there to differentiate UTF-8 encoding from other UTF formats.

460 | Ericsson AB. All Rights Reserved.: STDLIB

win32reg

win32reg

Erlang module

W n32r eg provides read and write access to the registry on Windows. It is essentially a port driver wrapped around
the Win32 API callsfor accessing the registry.

Theregistry isahierarchical database, used to store various system and softwareinformationin Windows. Itisavailable
in Windows 95 and Windows NT. It contains installation data, and is updated by installers and system programs. The
Erlang installer updates the registry by adding data that Erlang needs.

Theregistry contains keys and values. Keys are like the directoriesin afile system, they form ahierarchy. Valuesare
likefiles, they have aname and avalue, and also atype.

Paths to keys are l€eft to right, with sub-keys to the right and backslash between keys. (Remember that backslashes
must be doubled in Erlang strings.) Case is preserved but not significant. Example: "\ \ hkey_| ocal _machi ne\
\software\\ Eri csson\\ Erl ang\\ 5. 0" isthekey for the installation data for the latest Erlang release.

There are six entry pointsin the Windows registry, top level keys. They can be abbreviated inthewi n32r eg module
as.

Abbrev. Registry key

hkcr HKEY_CLASSES_ROOT
current user HKEY CURRENT USER
hkcu HKEY_CURRENT_USER
local machine HKEY LOCAL MACHINE
hklm HKEY_LOCAL_MACHINE
users HKEY USERS

hku HKEY_USERS

current config HKEY CURRENT CONFIG
hkcc HKEY_CURRENT_CONFIG
dyn_data HKEY_DYN_DATA

hkdd HKEY_DYN_DATA

The key above could be writtenas"\\ hkl M\ sof tware\\ eri csson\\erl ang\\5. 0".

Thewi n32r eg module uses a current key. It works much like the current directory. From the current key, values
can be fetched, sub-keys can be listed, and so on.

Under akey, any number of named values can be stored. They have name, and types, and data.

Currently, the wi n32r eg module supports storing only the following types: REG_DWORD, which is an integer,
REG_SZ which is a string and REG_BINARY which is a binary. Other types can be read, and will be returned as
binaries.

There is also a "default” value, which has the empty string as name. It is read and written with the atom def aul t
instead of the name.

Some registry values are stored as strings with references to environment variables, eg. " %Byst enRoot
9N ndows" . Syst enRoot isan environment variable, and should bereplaced withitsvalue. A functionexpand/ 1
is provided, so that environment variables surrounded in % can be expanded to their values.

For additional information on the Windows registry consult the Win32 Programmer's Reference.

Ericsson AB. All Rights Reserved.: STDLIB | 461

win32reg

Data Types
reg _handle()
Asreturned by open/1.

name() = string() | default
value() = string() | integer() | binary()

Exports

change key(RegHandle, Key) -> ReturnValue
Types.

RegHandle = reg_handl e()

Key = string()

ReturnValue ok | {error, ErrorId :: atom()}

Changes the current key to another key. Works like cd. The key can be specified as arelative path or as an absolute
path, starting with \.

change key create(RegHandle, Key) -> ReturnValue
Types.
RegHandle = reg_handl e()
Key = string()
ReturnValue = ok | {error, ErrorId :: atom()}

Createsakey, or just changesto it, if it is already there. Works like a combination of nkdi r and cd. Callsthe Win32
API function RegCr eat eKeyEx() .

The registry must have been opened in write-mode.

close(RegHandle) -> ok
Types:
RegHandle = reg_handl e()
Closestheregistry. After that, the RegHand| e cannot be used.

current key(RegHandle) -> ReturnValue
Types.
RegHandle = reg_handl e()
ReturnValue = {ok, string()}

Returns the path to the current key. Thisisthe equivaent of pwd.
Note that the current key is stored in the driver, and might be invalid (e.g. if the key has been removed).

delete key(RegHandle) -> ReturnValue

Types:
RegHandle = reg_handl e()
ReturnValue = ok | {error, ErrorId :: atom()}

Deletes the current key, if it isvalid. Callsthe Win32 API function RegDel et eKey() . Note that this call does not
change the current key, (unlikechange_key_cr eat e/ 2.) Thismeansthat after the cal, the current key isinvalid.

462 | Ericsson AB. All Rights Reserved.: STDLIB

win32reg

delete value(RegHandle, Name) -> ReturnValue
Types:
RegHandle = reg_handl e()
Name = nane()
ReturnValue = ok | {error, ErrorId :: atom()}
Deletes a named value on the current key. The atom def aul t isused for the the default value.

The registry must have been opened in write-mode.

expand(String) -> ExpandedString
Types:
String = ExpandedString = string()

Expands a string containing environment variables between percent characters. Anything between two % is taken for
aenvironment variable, and is replaced by the value. Two consecutive % is replaced by one %.

A variable name that is not in the environment, will result in an error.

format error(ErrorId) -> ErrorString
Types:

ErrorId = atom()

ErrorString = string()

Convert an POSIX errorcodeto astring (by callinger | _posi x_nsg: nessage).

open(OpenModelList) -> ReturnValue
Types:
OpenModelList = [OpenMode]
OpenMode = read | write
ReturnValue = {ok, RegHandle} | {error, ErrorId :: enotsup}
RegHandle = reg_handl e()

Opensthe registry for reading or writing. The current key will be theroot (HKEY_CLASSES ROOT). Ther ead flag
in the mode list can be omitted.

Usechange_key/ 2 with an absolute path after open.

set value(RegHandle, Name, Value) -> ReturnValue
Types:
RegHandle = reg_handl e()
Name = nane()
Value = val ue()
ReturnValue = ok | {error, ErrorId :: atom()}
Sets the named (or default) value to value. Calls the Win32 API function RegSet Val ueEx() . The value can be

of three types, and the corresponding registry type will be used. Currently the types supported are;: REG_DWORD for
integers, REG_SZ for strings and REG_BI NARY for binaries. Other types cannot currently be added or changed.

The registry must have been opened in write-mode.

Ericsson AB. All Rights Reserved.: STDLIB | 463

win32reg

sub_keys(RegHandle) -> ReturnValue

Types:
RegHandle = reg_handl e()
ReturnValue = {ok, [SubKeyl} | {error, ErrorId :: atom()}
SubKey = string()

Returns alist of subkeysto the current key. Calls the Win32 API function EnunRegKeysEx() .

Avoid calling this on the root keys, it can be slow.

value(RegHandle, Name) -> ReturnValue
Types:
RegHandle = reg_handl e()
Name = nane()
ReturnValue = {ok, Value :: value()}
| {error, ErrorId :: atom()}

Retrieves the named value (or default) on the current key. Registry values of type REG_SZ, are returned as strings.
Type REG_DWORD values are returned as integers. All other types are returned as binaries.

values (RegHandle) -> ReturnValue

Types:
RegHandle = reg_handl e()
ReturnValue = {ok, [ValuePair]} | {error, ErrorId :: atom()}
ValuePair = {Name :: nane(), Value :: value()}

Retrievesalist of al values on the current key. The values have types corresponding to the registry types, seeval ue.
Callsthe Win32 API function EnunRegVal uesEx() .

SEE ALSO

Win32 Programmer's Reference (from Microsoft)
erl _posi x_nsg
The Windows 95 Registry (book from O'Reilly)

464 | Ericsson AB. All Rights Reserved.: STDLIB

zip

Zip

Erlang module

The zi p module archives and extracts files to and from a zip archive. The zip format is specified by the "ZIP
Appnote.txt” file available on PK Ware's website www.pkware.com.

The zip module supports zip archive versions up to 6.1. However, password-protection and Zip64 are not supported.

By convention, the name of a zip file should end in". zi p". To abide to the convention, you'll needto add ". zi p"
yourself to the name.

Zip archives are created with the zip/2 or the zip/3 function. (They are also available as cr eat e, to resemble the
er| _tar module)

To extract files from a zip archive, use the unzip/1 or the unzip/2 function. (They are also available asext r act .)
To fold afunction over al filesin a zip archive, use the foldl_3 function.

To return alist of the files in a zip archive, use the list_dir/1 or the list_dir/2 function. (They are also available as
tabl e.)

To print alist of filesto the Erlang shell, use either the t/1 or tt/1 function.

In some cases, it is desirable to open a zip archive, and to unzip files from it file by file, without having to reopen the
archive. The functions zip_open, zZip_get, zip list_dir and zip_close do this.

LIMITATIONS

Zip64 archives are not currently supported.

Password-protected and encrypted archives are not currently supported

Only the DEFLATE (zlib-compression) and the STORE (uncompressed data) zip methods are supported.
The size of the archive is limited to 2 G-byte (32 bits).

Comments for individual files is not supported when creating zip archives. The zip archive comment for the whole
zZip archiveis supported.

Thereis currently no support for altering an existing zip archive. To add or remove afile from an archive, the whole
archive must be recreated.

Data Types
zip _comment() = #zip comment{comment = undefined | string()}
Therecord zi p_conment just contains the archive comment for a zip archive

zip file() =
#zip file{name = undefined | string(),
info = undefined | file:file_info(),
comment = undefined | string(),
offset = undefined | integer() >= 0,
comp _size = undefined | integer() >= 0}

Therecord zi p_fi | e containsthe following fields.
name

the name of thefile

Ericsson AB. All Rights Reserved.: STDLIB | 465

zip

info
fileinfoasinfileread file info/l
comment
the comment for thefilein the zip archive
of f set
the offset of the filein the zip archive (used internaly)
conp_si ze
the compressed size of the file (the uncompressed sizeisfoundini nf 0)

filename() = file:filenane()
extension() = string()

extension spec() = all

| [extension()]

| {add, [extension(
| {del, [extension(

= memory

| cooked

| verbose

| {comment, string()}
I

I

) 1}
) 1}

create option()

{cwd, file:filename()}
{compress, extension_spec()}
| {uncompress, extension_spec()}

These options are described in create/3.

Exports

zip(Name, FilelList) -> RetValue
zip(Name, FilelList, Options) -> RetValue
create(Name, FilelList) -> RetValue
create(Name, FilelList, Options) -> RetValue
Types:

Name = file: nane()

FileList = [FileSpec]

FileSpec = fil e: nane()
| {file:nane(), binary()}
| {file:name(), binary(), file:file_info()}
Options = [Option]
Option = create_option()
RetValue = {ok, FileName :: filenane()}

|

{ok, {FileName :: filename(), binary()}}
| {error, Reason :: term()}

The zi p function creates a zip archive containing the files specified in Fi | eLi st .

As synonyms, the functionscr eat e/ 2 and cr eat e/ 3 are provided, to make it resembletheer | _t ar module.

Thefilelistisalist of files, with paths relative to the current directory, they will be stored with this path in the archive.

Files may also be specified with datain binaries, to create an archive directly from data.

466 | Ericsson AB. All Rights Reserved.: STDLIB

zip

Fileswill be compressed using the DEFL ATE compression, as described in the Appnote.txt file. However, fileswill be
stored without compression if they already are compressed. Thezi p/ 2 and zi p/ 3 functions check thefile extension
to see whether the file should be stored without compression. Files with the following extensions are not compressed:
.Z,.zip,.zo0,.arc,.lzh,.arj.

It is possible to override the default behavior and explicitly control what types of files that should be compressed by
using the{ conpr ess, What} and{unconpress, What} options. It is possible to have severa conpr ess
and unconpr ess options. In order to trigger compression of afile, its extension must match with the conpr ess
condition and must not match theunconpr ess condition. For exampleif conpr ess issetto["gi f", "j pg"]
and unconpressissetto["j pg"], only fileswith " gi f" as extension will be compressed. No other files will
be compressed.

The following options are available:
cooked

By default, the open/ 2 function will open the zip filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the zip file
without the r aw option. The same goes for the files added.

ver bose
Print an informational message about each file being added.
nenory

The output will not beto afile, but instead asatuple{ Fi | eName, bi nary()}. Thebinary will beafull zip
archive with header, and can be extracted with for instance unzi p/ 2.

{comrent, Comment}
Add a comment to the zip-archive.
{cwd, CWD}

Use the given directory as current directory, it will be prepended to file names when adding them, although it
will not be in the zip-archive. (Acting like afile:set_cwd/1, but without changing the global cwd property.)

{conpress, Wat}

Controls what types of files will be compressed. It is by default set to al | . The following values of What are
allowed:

al |
means that all fileswill be compressed (as long as they passthe unconpr ess condition).
[Ext ensi on]
means that only files with exactly these extensions will be compressed.
{add, [Ext ensi on] }
adds these extensions to the list of compress extensions.
{del , [Extension]}
deletes these extensions from the list of compress extensions.
{unconpress, Wat}

Controls what types of files will be uncompressed. It is by default setto [". Z", ".zip", ".zoo",
".arc", ".lzh", ".arj"].Thefollowingvauesof What areallowed:

al |
means that no files will be compressed.

Ericsson AB. All Rights Reserved.: STDLIB | 467

zip

[Ext ensi on]

means that files with these extensions will be uncompressed.
{add, [Extensi on] }

adds these extensions to the list of uncompress extensions.
{del , [Extensi on]}

deletes these extensions from the list of uncompress extensions.

unzip(Archive) -> RetValue
unzip(Archive, Options) -> RetValue
extract(Archive) -> RetValue
extract(Archive, Options) -> RetValue

Types:
Archive = file:name() | binary()
Options = [Option]
Option = {file list, FilelList}
| keep old files
| verbose
| memory
| {file filter, FileFilter}
| {cwd, CwWD}

FileList = [file:nane()]

FileBinList = [{file:nanme(), binary()}]
FileFilter = fun((ZipFile) -> boolean())
CWD = file:filename()

ZipFile = zip_ file()

RetValue = {ok, FilelList}
| {ok, FileBinList}
| {error, Reason :: term()}
| {error, {Name :: file:name(), Reason :: term()}}

Theunzi p/ 1 function extracts all filesfrom azip archive. Theunzi p/ 2 function provides options to extract some
files, and more

If the Ar chi ve argument is given as a binary, the contents of the binary is assumed to be a zip archive, otherwise
it should be afilename.

The following options are available:
{file_list, FileList}

By default, al fileswill be extracted from the zip archive. Withthe{fil e _Iist, Fil eLi st} option, the
unzi p/ 2 function will only extract the fileswhose namesareincluded inFi | eLi st . Thefull paths, including
the names of all sub directories within the zip archive, must be specified.

cooked

By default, theopen/ 2 function will open the zip filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the zip file
without the r aw option. The same goes for the files extracted.

468 | Ericsson AB. All Rights Reserved.: STDLIB

zip

keep_old files

By default, all existing files with the same name as file in the zip archive will be overwritten. With the
keep_ol d _fil es option, the unzi p/ 2 function will not overwrite any existing files. Note that even with
the menor y option given, which means that no files will be overwritten, files existing will be excluded from
the result.

ver bose
Print an informational message as each file is being extracted.
menory

Instead of extracting to the current directory, the nenory option will give the result as a list of tuples
{Fi l enanme, Bi nary},whereBi nary isabinary containing the extracted dataof thefilenamed Fi | enane
in the zip archive.

{cwd, OWD}

Use the given directory as current directory, it will be prepended to file names when extracting them from the
zip-archive. (Acting like afile:set_cwd/1, but without changing the global cwd property.)

foldl(Fun, AccO, Archive) -> {ok, Accl} | {error, Reason}

Types.
Fun = fun((FileInArchive, GetInfo, GetBin, AccIn) -> AccOut)
FileInArchive = fil e: name()

GetInfo = fun(() -> file:file_info())
GetBin = fun(() -> binary())

AccO = Accl = AccIn = AccOut = term()
Archive = file:name() | {file:name(), binary()}

Reason = term()

Thef ol dI / 3 functioncalsFun(Fi | el nArchi ve, Getlnfo, GetBin, Accln) onsuccessivefilesinthe
Ar chi ve, startingwithAccl n == AccO.Fi | el nAr chi ve isthenamethat thefilehasinthearchive. Get | nf o
isafun that returnsinfo about thethefile. Get Bi n returnsthe contents of thefile. Both Get | nf 0 and Get Bi n must
be called within the Fun. Their behavior isundefined if they are called outside the context of the Fun. The Fun must
return anew accumulator which is passed to the next call. f ol dl / 3 returnsthe final value of the accumulator. AccO
isreturned if the archiveis empty. It is not necessary to iterate over al filesin the archive. The iteration may be ended
prematurely in a controlled manner by throwing an exception.

For example:

> Name = "dummy.zip".
"dummy.zip"
> {ok, {Name, Bin}} = zip:create(Name, [{"foo", <<"F00">>}, {"bar", <<"BAR">>}], [memory]).
{ok, {"dummy.zip",
<<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
0,0,3,0,0,...>>}}
> {ok, FileSpec} = zip:foldl(fun(N, I, B, Acc) -> [{N, B(), I()} | Acc] end, [], {Name, Bin}).
{ok, [{"bar",<<"BAR">>,
{file info,3,regular, read write,
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
54,1,0,0,0,0,0}},
{"foo",<<"F00">>,
{file info,3,regular, read write,

Ericsson AB. All Rights Reserved.: STDLIB | 469

zip

{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
54,1,0,0,0,0,0}}1}
> {ok, {Name, Bin}} = zip:create(Name, lists:reverse(FileSpec), [memory]).
{ok, {"dummy.zip",
<<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
0,0,3,0,0,...>>}}
> catch zip:foldl(fun("foo", , B,) -> throw(B()); (_, , ,Acc) -> Acc end, [], {Name, Bin}).
<<"F00">>

list dir(Archive) -> RetValue

list dir(Archive, Options) -> RetValue
table(Archive) -> RetValue
table(Archive, Options) -> RetValue

Types:
Archive = file:name() | binary()
RetValue = {ok, CommentAndFiles} | {error, Reason :: term()}

CommentAndFiles = [zip_coment() | zip_file()]
Options = [Option]
Option = cooked

Thel i st _di r/ 1 function retrievesthe names of al filesin the zip archive Ar chi ve. Thel i st _di r/ 2 function
provides options.

As synonyms, the functionst abl e/ 2 andt abl e/ 3 are provided, to makeit resembletheer | _t ar module.
Theresult valueisthetuple{ ok, Li st},whereLi st containsthe zip archive comment as the first element.
The following options are available:

cooked

By default, the open/ 2 function will open the zip filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the zip file
without the r aw option.

t(Archive) -> ok
Types:
Archive = file:name() | binary() | ZipHandle
ZipHandle = pid()
Thet / 1 function prints the names of al filesin the zip archive Ar chi ve to the Erlang shell. (Smilarto"tar t".)

tt(Archive) -> ok

Types.
Archive = file:name() | binary() | ZipHandle
ZipHandle = pid()

Thett/ 1 function prints names and information about al files in the zip archive Ar chi ve to the Erlang shell.
(Similarto"tar tv".)

470 | Ericsson AB. All Rights Reserved.: STDLIB

zip

zip open(Archive) -> {ok, ZipHandle} | {error, Reason}
zip open(Archive, Options) -> {ok, ZipHandle} | {error, Reason}
Types.
Archive = file:name() | binary()
ZipHandle = pid()
Options = [Option]
Option = cooked | memory | {cwd, CWD :: file:filename()}
Reason = term()

Thezi p_open function opens azip archive, and reads and savesits directory. This means that subsequently reading
files from the archive will be faster than unzipping files one at atime with unzi p.

The archive must be closed with zi p_cl ose/ 1.

zip list dir(ZipHandle) -> {ok, Result} | {error, Reason}
Types:

Result = [zip_comment() | zip_file()]

ZipHandle = pid()

Reason = term()

The zi p_l i st_dir/1 function returns the file list of an open zip archive. The first returned element is the zip
archive comment.

zip get(ZipHandle) -> {ok, [Result]} | {error, Reason}
zip get(FileName, ZipHandle) -> {ok, Result} | {error, Reason}
Types.

FileName = fil e: name()

ZipHandle = pid()

Result = file:nane() | {file:name(), binary()}

Reason = term()

Thezi p_get function extracts one or al files from an open archive.

The files will be unzipped to memory or to file, depending on the options given to the zi p_open function when
the archive was opened.

zip close(ZipHandle) -> ok | {error, einval}
Types.
ZipHandle = pid()

Thezi p_cl ose/ 1 function closes azip archive, previously opened with zi p_open. All resources are closed, and
the handle should not be used after closing.

Ericsson AB. All Rights Reserved.: STDLIB | 471

	STDLIB
	STDLIB User's Guide
	The Erlang I/O-protocol
	Protocol Basics
	Output Requests
	Input Requests
	I/O-server Modes
	Multiple I/O Requests
	Optional I/O Requests
	Unimplemented Request Types
	An Annotated and Working Example I/O Server

	Using Unicode in Erlang
	Unicode Implementation
	Understanding Unicode
	What Unicode Is
	Areas of Unicode Support
	Standard Unicode Representation
	Basic Language Support
	Bit-syntax
	String and Character Literals
	Heuristic String Detection

	The Interactive Shell
	Unicode File Names
	Notes About Raw File Names
	Notes About MacOS X

	Unicode in Environment and Parameters
	Unicode-aware Modules
	Unicode Data in Files
	Summary of Options
	Recipes
	Byte Order Marks
	Formatted I/O
	Heuristic Identification of UTF-8
	Lists of UTF-8 Bytes
	Double UTF-8 Encoding

	Reference Manual
	STDLIB
	array
	default/1
	fix/1
	foldl/3
	foldr/3
	from_list/1
	from_list/2
	from_orddict/1
	from_orddict/2
	get/2
	is_array/1
	is_fix/1
	map/2
	new/0
	new/1
	new/2
	relax/1
	reset/2
	resize/1
	resize/2
	set/3
	size/1
	sparse_foldl/3
	sparse_foldr/3
	sparse_map/2
	sparse_size/1
	sparse_to_list/1
	sparse_to_orddict/1
	to_list/1
	to_orddict/1

	base64
	encode/1
	encode_to_string/1
	decode/1
	decode_to_string/1
	mime_decode/1
	mime_decode_to_string/1

	beam_lib
	chunks/2
	chunks/3
	version/1
	md5/1
	info/1
	cmp/2
	cmp_dirs/2
	diff_dirs/2
	strip/1
	strip_files/1
	strip_release/1
	format_error/1
	crypto_key_fun/1
	clear_crypto_key_fun/0

	binary
	at/2
	bin_to_list/1
	bin_to_list/2
	bin_to_list/3
	compile_pattern/1
	copy/1
	copy/2
	decode_unsigned/1
	decode_unsigned/2
	encode_unsigned/1
	encode_unsigned/2
	first/1
	last/1
	list_to_bin/1
	longest_common_prefix/1
	longest_common_suffix/1
	match/2
	match/3
	matches/2
	matches/3
	part/2
	part/3
	referenced_byte_size/1
	replace/3
	replace/4
	split/2
	split/3

	c
	bt/1
	c/1
	c/2
	cd/1
	flush/0
	help/0
	i/0
	ni/0
	i/3
	l/1
	lc/1
	ls/0
	ls/1
	m/0
	m/1
	memory/0
	memory/1
	memory/1
	nc/1
	nc/2
	nl/1
	pid/3
	pwd/0
	q/0
	regs/0
	nregs/0
	xm/1
	y/1
	y/2

	calendar
	date_to_gregorian_days/1
	date_to_gregorian_days/3
	datetime_to_gregorian_seconds/1
	day_of_the_week/1
	day_of_the_week/3
	gregorian_days_to_date/1
	gregorian_seconds_to_datetime/1
	is_leap_year/1
	iso_week_number/0
	iso_week_number/1
	last_day_of_the_month/2
	local_time/0
	local_time_to_universal_time/1
	local_time_to_universal_time_dst/1
	now_to_local_time/1
	now_to_universal_time/1
	now_to_datetime/1
	seconds_to_daystime/1
	seconds_to_time/1
	time_difference/2
	time_to_seconds/1
	universal_time/0
	universal_time_to_local_time/1
	valid_date/1
	valid_date/3

	dets
	all/0
	bchunk/2
	close/1
	delete/2
	delete_all_objects/1
	delete_object/2
	first/1
	foldl/3
	foldr/3
	from_ets/2
	info/1
	info/2
	init_table/2
	init_table/3
	insert/2
	insert_new/2
	is_compatible_bchunk_format/2
	is_dets_file/1
	lookup/2
	match/1
	match/2
	match/3
	match_delete/2
	match_object/1
	match_object/2
	match_object/3
	member/2
	next/2
	open_file/1
	open_file/2
	pid2name/1
	repair_continuation/2
	safe_fixtable/2
	select/1
	select/2
	select/3
	select_delete/2
	slot/2
	sync/1
	table/1
	table/2
	to_ets/2
	traverse/2
	update_counter/3

	dict
	append/3
	append_list/3
	erase/2
	fetch/2
	fetch_keys/1
	filter/2
	find/2
	fold/3
	from_list/1
	is_key/2
	map/2
	merge/3
	new/0
	size/1
	is_empty/1
	store/3
	to_list/1
	update/3
	update/4
	update_counter/3

	digraph
	add_edge/3
	add_edge/4
	add_edge/5
	add_vertex/1
	add_vertex/2
	add_vertex/3
	del_edge/2
	del_edges/2
	del_path/3
	del_vertex/2
	del_vertices/2
	delete/1
	edge/2
	edges/1
	edges/2
	get_cycle/2
	get_path/3
	get_short_cycle/2
	get_short_path/3
	in_degree/2
	in_edges/2
	in_neighbours/2
	info/1
	new/0
	new/1
	no_edges/1
	no_vertices/1
	out_degree/2
	out_edges/2
	out_neighbours/2
	vertex/2
	vertices/1

	digraph_utils
	arborescence_root/1
	components/1
	condensation/1
	cyclic_strong_components/1
	is_acyclic/1
	is_arborescence/1
	is_tree/1
	loop_vertices/1
	postorder/1
	preorder/1
	reachable/2
	reachable_neighbours/2
	reaching/2
	reaching_neighbours/2
	strong_components/1
	subgraph/2
	subgraph/3
	topsort/1

	epp
	open/1
	open/2
	open/3
	close/1
	parse_erl_form/1
	parse_file/2
	parse_file/3
	default_encoding/0
	encoding_to_string/1
	read_encoding/1
	read_encoding/2
	read_encoding_from_binary/1
	read_encoding_from_binary/2
	set_encoding/1
	set_encoding/2
	format_error/1

	erl_eval
	exprs/2
	exprs/3
	exprs/4
	expr/2
	expr/3
	expr/4
	expr/5
	expr_list/2
	expr_list/3
	expr_list/4
	new_bindings/0
	bindings/1
	binding/2
	add_binding/3
	del_binding/2

	erl_expand_records
	module/2

	erl_id_trans
	parse_transform/2

	erl_internal
	bif/2
	guard_bif/2
	type_test/2
	arith_op/2
	bool_op/2
	comp_op/2
	list_op/2
	send_op/2
	op_type/2

	erl_lint
	module/1
	module/2
	module/3
	is_guard_test/1
	format_error/1

	erl_parse
	parse_form/1
	parse_exprs/1
	parse_term/1
	format_error/1
	tokens/1
	tokens/2
	normalise/1
	abstract/1
	abstract/2

	erl_pp
	form/1
	form/2
	attribute/1
	attribute/2
	function/1
	function/2
	guard/1
	guard/2
	exprs/1
	exprs/2
	exprs/3
	expr/1
	expr/2
	expr/3
	expr/4

	erl_scan
	string/1
	string/2
	string/3
	tokens/3
	tokens/4
	reserved_word/1
	token_info/1
	token_info/2
	token_info/2
	attributes_info/1
	attributes_info/2
	attributes_info/2
	set_attribute/3
	format_error/1

	erl_tar
	add/3
	add/4
	close/1
	create/2
	create/3
	extract/1
	extract/2
	format_error/1
	open/2
	init/3
	table/1
	table/2
	t/1
	tt/1

	ets
	all/0
	delete/1
	delete/2
	delete_all_objects/1
	delete_object/2
	file2tab/1
	file2tab/2
	first/1
	foldl/3
	foldr/3
	from_dets/2
	fun2ms/1
	give_away/3
	i/0
	i/1
	info/1
	info/2
	init_table/2
	insert/2
	insert_new/2
	is_compiled_ms/1
	last/1
	lookup/2
	lookup_element/3
	match/2
	match/3
	match/1
	match_delete/2
	match_object/2
	match_object/3
	match_object/1
	match_spec_compile/1
	match_spec_run/2
	member/2
	new/2
	next/2
	prev/2
	rename/2
	repair_continuation/2
	safe_fixtable/2
	select/2
	select/3
	select/1
	select_count/2
	select_delete/2
	select_reverse/2
	select_reverse/3
	select_reverse/1
	setopts/2
	slot/2
	tab2file/2
	tab2file/3
	tab2list/1
	tabfile_info/1
	table/1
	table/2
	test_ms/2
	to_dets/2
	update_counter/3
	update_counter/3
	update_counter/3
	update_element/3
	update_element/3

	file_sorter
	sort/1
	sort/2
	sort/3
	keysort/2
	keysort/3
	keysort/4
	merge/2
	merge/3
	keymerge/3
	keymerge/4
	check/1
	check/2
	keycheck/2
	keycheck/3

	filelib
	ensure_dir/1
	file_size/1
	fold_files/5
	is_dir/1
	is_file/1
	is_regular/1
	last_modified/1
	wildcard/1
	wildcard/2

	filename
	absname/1
	absname/2
	absname_join/2
	basename/1
	basename/2
	dirname/1
	extension/1
	flatten/1
	join/1
	join/2
	nativename/1
	pathtype/1
	rootname/1
	rootname/2
	split/1
	find_src/1
	find_src/2

	gb_sets
	add/2
	add_element/2
	balance/1
	delete/2
	delete_any/2
	del_element/2
	difference/2
	subtract/2
	empty/0
	new/0
	filter/2
	fold/3
	from_list/1
	from_ordset/1
	insert/2
	intersection/2
	intersection/1
	is_disjoint/2
	is_empty/1
	is_member/2
	is_element/2
	is_set/1
	is_subset/2
	iterator/1
	largest/1
	next/1
	singleton/1
	size/1
	smallest/1
	take_largest/1
	take_smallest/1
	to_list/1
	union/2
	union/1

	gb_trees
	balance/1
	delete/2
	delete_any/2
	empty/0
	enter/3
	from_orddict/1
	get/2
	insert/3
	is_defined/2
	is_empty/1
	iterator/1
	keys/1
	largest/1
	lookup/2
	map/2
	next/1
	size/1
	smallest/1
	take_largest/1
	take_smallest/1
	to_list/1
	update/3
	values/1

	gen_event
	start_link/0
	start_link/1
	start/0
	start/1
	add_handler/3
	add_sup_handler/3
	notify/2
	sync_notify/2
	call/3
	call/4
	delete_handler/3
	swap_handler/3
	swap_sup_handler/3
	which_handlers/1
	stop/1
	Module:init/1
	Module:handle_event/2
	Module:handle_call/2
	Module:handle_info/2
	Module:terminate/2
	Module:code_change/3
	Module:format_status/2

	gen_fsm
	start_link/3
	start_link/4
	start/3
	start/4
	send_event/2
	send_all_state_event/2
	sync_send_event/2
	sync_send_event/3
	sync_send_all_state_event/2
	sync_send_all_state_event/3
	reply/2
	send_event_after/2
	start_timer/2
	cancel_timer/1
	enter_loop/4
	enter_loop/5
	enter_loop/5
	enter_loop/6
	Module:init/1
	Module:StateName/2
	Module:handle_event/3
	Module:StateName/3
	Module:handle_sync_event/4
	Module:handle_info/3
	Module:terminate/3
	Module:code_change/4
	Module:format_status/2

	gen_server
	start_link/3
	start_link/4
	start/3
	start/4
	call/2
	call/3
	multi_call/2
	multi_call/3
	multi_call/4
	cast/2
	abcast/2
	abcast/3
	reply/2
	enter_loop/3
	enter_loop/4
	enter_loop/4
	enter_loop/5
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_info/2
	Module:terminate/2
	Module:code_change/3
	Module:format_status/2

	io
	columns/0
	columns/1
	put_chars/1
	put_chars/2
	nl/0
	nl/1
	get_chars/2
	get_chars/3
	get_line/1
	get_line/2
	getopts/0
	getopts/1
	printable_range/0
	setopts/1
	setopts/2
	write/1
	write/2
	read/1
	read/2
	read/3
	read/4
	fwrite/1
	fwrite/2
	fwrite/3
	format/1
	format/2
	format/3
	fread/2
	fread/3
	rows/0
	rows/1
	scan_erl_exprs/1
	scan_erl_exprs/2
	scan_erl_exprs/3
	scan_erl_exprs/4
	scan_erl_form/1
	scan_erl_form/2
	scan_erl_form/3
	scan_erl_form/4
	parse_erl_exprs/1
	parse_erl_exprs/2
	parse_erl_exprs/3
	parse_erl_exprs/4
	parse_erl_form/1
	parse_erl_form/2
	parse_erl_form/3
	parse_erl_form/4

	io_lib
	nl/0
	write/1
	write/2
	print/1
	print/4
	fwrite/2
	format/2
	fread/2
	fread/3
	write_atom/1
	write_string/1
	write_string_as_latin1/1
	write_latin1_string/1
	write_char/1
	write_char_as_latin1/1
	write_latin1_char/1
	indentation/2
	char_list/1
	latin1_char_list/1
	deep_char_list/1
	deep_latin1_char_list/1
	printable_list/1
	printable_latin1_list/1
	printable_unicode_list/1

	lib
	flush_receive/0
	error_message/2
	progname/0
	nonl/1
	send/2
	sendw/2

	lists
	all/2
	any/2
	append/1
	append/2
	concat/1
	delete/2
	droplast/1
	dropwhile/2
	duplicate/2
	filter/2
	filtermap/2
	flatlength/1
	flatmap/2
	flatten/1
	flatten/2
	foldl/3
	foldr/3
	foreach/2
	keydelete/3
	keyfind/3
	keymap/3
	keymember/3
	keymerge/3
	keyreplace/4
	keysearch/3
	keysort/2
	keystore/4
	keytake/3
	last/1
	map/2
	mapfoldl/3
	mapfoldr/3
	max/1
	member/2
	merge/1
	merge/2
	merge/3
	merge3/3
	min/1
	nth/2
	nthtail/2
	partition/2
	prefix/2
	reverse/1
	reverse/2
	seq/2
	seq/3
	sort/1
	sort/2
	split/2
	splitwith/2
	sublist/2
	sublist/3
	subtract/2
	suffix/2
	sum/1
	takewhile/2
	ukeymerge/3
	ukeysort/2
	umerge/1
	umerge/2
	umerge/3
	umerge3/3
	unzip/1
	unzip3/1
	usort/1
	usort/2
	zip/2
	zip3/3
	zipwith/3
	zipwith3/4

	log_mf_h
	init/3
	init/4

	maps
	find/2
	fold/3
	from_list/1
	get/2
	get/3
	is_key/2
	keys/1
	map/2
	merge/2
	new/0
	put/3
	remove/2
	size/1
	to_list/1
	update/3
	values/1
	with/2
	without/2

	math
	pi/0
	sin/1
	cos/1
	tan/1
	asin/1
	acos/1
	atan/1
	atan2/2
	sinh/1
	cosh/1
	tanh/1
	asinh/1
	acosh/1
	atanh/1
	exp/1
	log/1
	log10/1
	pow/2
	sqrt/1
	erf/1
	erfc/1

	ms_transform
	parse_transform/2
	transform_from_shell/3
	format_error/1

	orddict
	append/3
	append_list/3
	erase/2
	fetch/2
	fetch_keys/1
	filter/2
	find/2
	fold/3
	from_list/1
	is_key/2
	map/2
	merge/3
	new/0
	size/1
	is_empty/1
	store/3
	to_list/1
	update/3
	update/4
	update_counter/3

	ordsets
	new/0
	is_set/1
	size/1
	to_list/1
	from_list/1
	is_element/2
	add_element/2
	del_element/2
	union/2
	union/1
	intersection/2
	intersection/1
	is_disjoint/2
	subtract/2
	is_subset/2
	fold/3
	filter/2

	pg
	create/1
	create/2
	join/2
	send/2
	esend/2
	members/1

	pool
	start/1
	start/2
	attach/1
	stop/0
	get_nodes/0
	pspawn/3
	pspawn_link/3
	get_node/0

	proc_lib
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	start/3
	start/4
	start/5
	start_link/3
	start_link/4
	start_link/5
	init_ack/1
	init_ack/2
	format/1
	format/2
	initial_call/1
	translate_initial_call/1
	hibernate/3

	proplists
	append_values/2
	compact/1
	delete/2
	expand/2
	get_all_values/2
	get_bool/2
	get_keys/1
	get_value/2
	get_value/3
	is_defined/2
	lookup/2
	lookup_all/2
	normalize/2
	property/1
	property/2
	split/2
	substitute_aliases/2
	substitute_negations/2
	unfold/1

	qlc
	append/1
	append/2
	cursor/1
	cursor/2
	delete_cursor/1
	eval/1
	eval/2
	e/1
	e/2
	fold/3
	fold/4
	format_error/1
	info/1
	info/2
	keysort/2
	keysort/3
	next_answers/1
	next_answers/2
	q/1
	q/2
	sort/1
	sort/2
	string_to_handle/1
	string_to_handle/2
	string_to_handle/3
	table/2

	queue
	new/0
	is_queue/1
	is_empty/1
	len/1
	in/2
	in_r/2
	out/1
	out_r/1
	from_list/1
	to_list/1
	reverse/1
	split/2
	join/2
	filter/2
	member/2
	get/1
	get_r/1
	drop/1
	drop_r/1
	peek/1
	peek_r/1
	cons/2
	head/1
	tail/1
	snoc/2
	daeh/1
	last/1
	liat/1
	init/1
	lait/1

	random
	seed/0
	seed/3
	seed/1
	seed0/0
	uniform/0
	uniform/1
	uniform_s/1
	uniform_s/2

	re
	compile/1
	compile/2
	inspect/2
	run/2
	run/3
	replace/3
	replace/4
	split/2
	split/3

	sets
	new/0
	is_set/1
	size/1
	to_list/1
	from_list/1
	is_element/2
	add_element/2
	del_element/2
	union/2
	union/1
	intersection/2
	intersection/1
	is_disjoint/2
	subtract/2
	is_subset/2
	fold/3
	filter/2

	shell
	history/1
	results/1
	catch_exception/1
	prompt_func/1
	start_restricted/1
	stop_restricted/0
	strings/1

	shell_default
	slave
	start/1
	start/2
	start/3
	start_link/1
	start_link/2
	start_link/3
	stop/1
	pseudo/1
	pseudo/2
	relay/1

	sofs
	a_function/1
	a_function/2
	canonical_relation/1
	composite/2
	constant_function/2
	converse/1
	difference/2
	digraph_to_family/1
	digraph_to_family/2
	domain/1
	drestriction/2
	drestriction/3
	empty_set/0
	extension/3
	family/1
	family/2
	family_difference/2
	family_domain/1
	family_field/1
	family_intersection/1
	family_intersection/2
	family_projection/2
	family_range/1
	family_specification/2
	family_to_digraph/1
	family_to_digraph/2
	family_to_relation/1
	family_union/1
	family_union/2
	field/1
	from_external/2
	from_sets/1
	from_sets/1
	from_term/1
	from_term/2
	image/2
	intersection/1
	intersection/2
	intersection_of_family/1
	inverse/1
	inverse_image/2
	is_a_function/1
	is_disjoint/2
	is_empty_set/1
	is_equal/2
	is_set/1
	is_sofs_set/1
	is_subset/2
	is_type/1
	join/4
	multiple_relative_product/2
	no_elements/1
	partition/1
	partition/2
	partition/3
	partition_family/2
	product/1
	product/2
	projection/2
	range/1
	relation/1
	relation/2
	relation_to_family/1
	relative_product/1
	relative_product/2
	relative_product/2
	relative_product1/2
	restriction/2
	restriction/3
	set/1
	set/2
	specification/2
	strict_relation/1
	substitution/2
	symdiff/2
	symmetric_partition/2
	to_external/1
	to_sets/1
	type/1
	union/1
	union/2
	union_of_family/1
	weak_relation/1

	string
	len/1
	equal/2
	concat/2
	chr/2
	rchr/2
	str/2
	rstr/2
	span/2
	cspan/2
	substr/2
	substr/3
	tokens/2
	join/2
	chars/2
	chars/3
	copies/2
	words/1
	words/2
	sub_word/2
	sub_word/3
	strip/1
	strip/2
	strip/3
	left/2
	left/3
	right/2
	right/3
	centre/2
	centre/3
	sub_string/2
	sub_string/3
	to_float/1
	to_integer/1
	to_lower/1
	to_lower/1
	to_upper/1
	to_upper/1

	supervisor
	start_link/2
	start_link/3
	start_child/2
	terminate_child/2
	delete_child/2
	restart_child/2
	which_children/1
	count_children/1
	check_childspecs/1
	Module:init/1

	supervisor_bridge
	start_link/2
	start_link/3
	Module:init/1
	Module:terminate/2

	sys
	log/2
	log/3
	log_to_file/2
	log_to_file/3
	statistics/2
	statistics/3
	trace/2
	trace/3
	no_debug/1
	no_debug/2
	suspend/1
	suspend/2
	resume/1
	resume/2
	change_code/4
	change_code/5
	get_status/1
	get_status/2
	get_state/1
	get_state/2
	replace_state/2
	replace_state/3
	install/2
	install/3
	remove/2
	remove/3
	debug_options/1
	get_debug/3
	handle_debug/4
	handle_system_msg/6
	print_log/1
	Mod:system_continue/3
	Mod:system_terminate/4
	Mod:system_code_change/4
	Mod:system_get_state/1
	Mod:system_replace_state/2

	timer
	start/0
	apply_after/4
	send_after/2
	send_after/3
	kill_after/1
	kill_after/2
	exit_after/2
	exit_after/3
	apply_interval/4
	send_interval/2
	send_interval/3
	cancel/1
	sleep/1
	tc/1
	tc/2
	tc/3
	now_diff/2
	seconds/1
	minutes/1
	hours/1
	hms/3

	unicode
	bom_to_encoding/1
	characters_to_list/1
	characters_to_list/2
	characters_to_binary/1
	characters_to_binary/2
	characters_to_binary/3
	encoding_to_bom/1

	win32reg
	change_key/2
	change_key_create/2
	close/1
	current_key/1
	delete_key/1
	delete_value/2
	expand/1
	format_error/1
	open/1
	set_value/3
	sub_keys/1
	value/2
	values/1

	zip
	zip/2
	zip/3
	create/2
	create/3
	unzip/1
	unzip/2
	extract/1
	extract/2
	foldl/3
	list_dir/1
	list_dir/2
	table/1
	table/2
	t/1
	tt/1
	zip_open/1
	zip_open/2
	zip_list_dir/1
	zip_get/1
	zip_get/2
	zip_close/1

